首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human peripheral blood lymphocytes secrete high titers of interleukin-2 (IL-2) after stimulation by Ca2+-ionophore A23187/phorbol 12-myristate-13-acetate. During the first 30 hours of incubation cells secrete only the nonglycosylated IL-2 M form of the lymphokine, the glycosylated forms IL-2 N1,2 being detected only after prolonged culture times (30-48 h). After recultivation of cells for a second 48 h period (without additional mitogen), the glycosylated and nonglycosylated IL-2 forms are secreted at a constant ratio of 7:3 throughout. The detection of glycosylated IL-2 is parallelled by an increase in cellular glycosyltransferase activities involved in formation of sialylated oligosaccharides O-linked to proteins.  相似文献   

2.
The role of carbohydrate chains for the structure, function, stability, and folding of glycoproteins has been investigated using invertase as a model. The protein is encoded by several different genes, and its carbohydrate moiety is heterogeneous. Both properties complicate physicochemical comparisons. Here we used the temperature-sensitive sec18 secretion mutant of yeast with a single invertase gene (SUC2). This mutant produces the carbohydrate-free internal invertase, the core-glycosylated form, and, at the permissive temperature, the fully glycosylated external enzyme, all with identical protein moieties. The core-glycosylated enzyme resembles the nascent glycoprotein chain that folds in the endoplasmic reticulum. Therefore, it may be considered a model for the in vivo folding of glycoproteins. In addition, because of its uniform glycosylation, it can be used to investigate the state of association of native invertase. Glycosylation is found to stabilize the protein with respect to thermal denaturation and chaotropic solvent components; the stabilizing effect does not differ for the external and the core-glycosylated forms. Unlike the internal enzyme, the glycosylated forms are protected from aggregation. Native internal invertase is a dimer (115 kDa) whereas the core-glycosylated enzyme is a mixture of dimers, tetramers, and octamers. This implies that core-glycosylation is necessary for oligomerization to tetramers and octamers. Dimerization is required and sufficient to generate enzymatic activity; further association does not alter the specific activity of core-glycosylated invertase, suggesting that the active sites of invertase are not affected by the association of the dimeric units. Reconstitution of the glycosylated and nonglycosylated forms of the enzyme after preceding guanidine denaturation depends on protein concentration. The maximum yield (approximately 80%) is obtained at pH 6-8 and protein concentrations < or = 4 micrograms/mL for the nonglycosylated and < or = 40 for the glycosylated forms of the enzyme. The lower stability of the internal enzyme is reflected by a narrower pH range of reactivation and enhanced aggregation. As indicated by the sigmoidal reactivation kinetics at low protein concentration both folding and association are rate-determining.  相似文献   

3.
We have previously shown that three Petunia inflata S-proteins, products of the multiallelic S-gene of the self-incompatibility system, are ribonucleases. Here we report the expression of cDNAs for two of these S-proteins using the baculovirus expression system. S2- and S3-proteins were found in both supernatants and lysates of Spodoptera frugiperda cells infected with recombinant baculoviruses. Both recombinant S-proteins contained glycosylated (25 kD) and nonglycosylated (23 kD) forms. Recombinant S2- and S3-proteins were purified from insect cell cultures, and the amino-terminal sequences determined from glycosylated S2- and S3-proteins indicated that the leader peptide encoded by each cDNA was correctly removed. Both glycosylated and nonglycosylated forms of S2- and S3-proteins exhibited ribonuclease activity.  相似文献   

4.
The second component of complement (C2), is a class III major histocompatibility complex gene product and a glycoprotein in the classical complement activating system. Synthesis in the human hepatoma-derived cell line HepG2 results in three intracellular forms: an 84-kDa form secreted in 1-2 h; 79-kDa and 70-kDa forms that remain cell-associated for intervals up to 12 h. All three forms are C2 polypeptides as demonstrated by inhibition of immunoprecipitation with unlabeled C2 and the presence of common major peptide fragments following chymotryptic digestion. The cell-associated forms of C2 are not products of proteolysis as demonstrated by experiments with multiple proteinase inhibitors and by observations of the kinetics of synthesis. Inhibition of core glycosylation by tunicamycin and deglycosylation by acid hydrolysis indicate that the three intracellular C2 polypeptides are glycosylated to a similar extent. Although the 84-kDa form of C2 is susceptible to C1s cleavage, the two cell-associated forms are not. Cell-free biosynthesis by mRNA from HepG2 or human liver results in three primary translation products corresponding to the three unglycosylated forms of C2. These results indicate that HepG2 cells synthesize C2 protein in both secreted and cell-associated forms and that each form is derived from a separate primary translation product.  相似文献   

5.
Soybean agglutinin (gSBA) is a tetrameric legume lectin, each of whose subunits are glycosylated. Earlier studies have shown that this protein shows exceptionally high stability in terms of free energy of unfolding when compared to other proteins from the same family. This article deals with the unfolding reactions of the nonglycosylated recombinant form of the protein rSBA and its comparison with the glycosylated counterpart gSBA. The nonglycosylated form features a lower stability when compared to the glycosylated form. Further, the unfolding pathways in the two are widely different. Although the glycosylated form undergoes a simple two-state unfolding, the nonglycosylated species unfolds via a compact monomeric intermediate that is not a molten globule. Representative isothermal and thermal denaturation profiles show that glycosylation accounts for a stabilization of approximately 9 kcal/mol of the tetramer, whereas the difference in T(m) between the two forms is 26 degrees C. Computational studies on the glycan-protein interactions at the noncanonical interface of the protein show that quite a number of hydrogen bond and hydrophobic interactions stabilize the glycoprotein tetramer.  相似文献   

6.
A commercially available, purified preparation of avidin was found to comprise two polypeptide bands (Mr 18,000 and Mr 15,500 respectively). Both bands bound biotin as assessed by biotin overlays of protein blots. The Mr 15,500 polypeptide was found to differ from the Mr 18,000 polypeptide only in its sugar content. When the commercial preparation was applied to a concanavalin A affinity column, the glycosylated forms were retarded as expected, and homotypic nonglycosylated avidin tetramers which failed to bind selectively to the column were collected in the effluent. The biotin-binding properties of the nonglycosylated avidin were equivalent to those obtained for the native (glycosylated) avidin molecule, indicating that the oligosaccharide moiety is not essential for the binding activity.  相似文献   

7.
The role of mannan chains in the formation and secretion of active acid phosphatase of yeast (Saccharomyces cerevisiae), a repressible cell surface mannoprotein, was studied in yeast protoplast systems by using tunicamycin at various temperatures. At 30 degrees C, tunicamycin-treated protoplasts did not produce active acid phosphatase; however, at 25 or 20 degrees C they formed and secreted active enzyme. This form of acid phosphatase gave 59-, 57-, and 55-kDa bands on SDS-PAGE which neither bound to concanavalin A Sepharose, nor changed in molecular weight upon treatment with endoglycosidase H, indicating that the peptides are nonglycosylated. The nonglycosylated form, like its glycosylated counterpart, is a dimer on the basis of gel permeation chromatography. The Km for para-nitrophenyl-phosphate and Ki for inorganic phosphate of both glycosylated and nonglycosylated acid phosphatases were almost the same. These results suggested that 1) the conformation of the nonglycosylated acid phosphatase secreted at low temperatures is probably identical with that of the glycosylated one, and 2) the conformation of acid phosphatase is very important for its secretion. The rate of intracellular transport of nonglycosylated acid phosphatase is about one-fourth that of the glycosylated enzyme, indicating that glycosylation facilitates the transport of acid phosphatase proteins.  相似文献   

8.
The modular xylanase Cex (or CfXyn10A) from Cellulomonas fimi consists of an N-terminal catalytic domain and a C-terminal cellulose-binding domain, joined by a glycosylated proline-threonine (PT) linker. To characterize the conformation and dynamics of the Cex linker and the consequences of its modification, we have used NMR spectroscopy to study full-length Cex in its nonglycosylated ( approximately 47 kDa) and glycosylated ( approximately 51 kDa) forms. The PT linker lacks any predominant structure in either form as indicated by random coil amide chemical shifts. Furthermore, heteronuclear (1)H-(15)N nuclear Overhauser effect relaxation measurements demonstrate that the linker is flexible on the ns-to-ps time scale and that glycosylation partially dampens this flexibility. The catalytic and cellulose-binding domains also exhibit identical amide chemical shifts whether in isolation or in the context of either unmodified or glycosylated full-length Cex. Therefore, there are no noncovalent interactions between the two domains of Cex or between either domain and the linker. This conclusion is supported by the distinct (15)N relaxation properties of the two domains, as well as their differential alignment within a magnetic field by Pf1 phage particles. These data demonstrate that the PT linker is a flexible tether, joining the structurally independent catalytic and cellulose-binding domains of Cex in an ensemble of conformations; however, more extended forms may predominate because of restrictions imparted by the alternating proline residues. This supports the postulate that the binding-domain anchors Cex to the surface of cellulose, whereas the linker provides flexibility for the catalytic domain to hydrolyze nearby hemicellulose (xylan) chains.  相似文献   

9.
Export and accumulation of various forms of invertase (EC 3.2.1.26) in the cell wall and culture medium of the yeast Candida utilis was investigated. It was found that there is the high-molecular-weight invertase in the cell wall (CW-form). This form is not exported into the culture medium, and it is by a third more glycosylated than the previously described exported S-form. It was shown that one of the two forms of invertase exported into the culture medium—the glycosylated S-form—is retained in the cell wall, while the other one-the nonglycosylated F-form—was not detected in the cell wall. Based on these results, as well as data on the distribution dynamics of the enzyme in the culture medium and in the cell wall during different growth stages of a yeast culture, we suggested that the nonglycosylated form was exported into the culture medium via the zone of abnormal cell wall permeability and the glycosylated forms of this enzyme (both exported and nonexported) did not use this pathway and the degree of N-glycosylation is an important factor determining the final localization of the enzyme.  相似文献   

10.
Both glycosylated and nonglycosylated forms of recombinant human prourokinase were produced to the level of 20 mg/L by yeast Pichia pastoris in BMMY medium after 2 days of culture. The expressed pro-UK was 98% secreted into the culture medium and easily purified by carboxymethyl cellulose chromatography. More than 99% of pro-UK in the culture medium was found in single-chain form. This was contradictory to a previous finding which found that glycosylation of pro-UK by yeast inhibited its secretion. The absence of glycosylation at Asn302 of pro-UK has no measurable effect on its secretion from the yeast cells. However, the nonglycosylated pro-UK was much less stable in the culture medium, probably due to proteolysis. Nonglycosylated pro-UK from yeast had a clot lysing activity comparable to that of Escherichia coli-derived or mammalian cell-derived recombinant pro-UK. By contrast, the glycosylated yeast pro-UK was less activatable by plasmin and had a lower enzymatic activity against plasminogen and a lower clot lysing activity than nonglycosylated pro-UK from yeast, while their amidolytic activity against S2444 was equivalent. It was concluded that glycosylation of pro-UK by yeast P. pastoris interferes with the catalytic site but not secretion of this protein.  相似文献   

11.
The isolation and characterization of eight forms of corticotropin-like intermediary lobe peptide (CLIP, adrenocorticotropin18-39) from the intermediary lobe of the rat pituitary has been accomplished by using reversed phase high performance liquid chromatography. The eight forms are the result of all combinations of the presence or absence of three post-translational modifications. These are glycosylation, phosphorylation, and removal of the carboxyl-terminal amino acid. The sites of phosphorylation and glycosylation are at serine 31 and asparagine 29, respectively. The eight forms (in order of elution from the reversed high performance liquid chromatography column) are glycosylated, phosphorylated CLIP18-38; glycosylated, nonphosphorylated CLIP18-38; nonglycosylated, phosphorylated CLIP18-38; nonglycosylated, nonphosphorylated CLIP18-38; glycosylated, phosphorylated CLIP18-39; glycosylated, nonphosphorylated CLIP18-39; nonglycosylated, phosphorylated CLIP18-39; and nonglycosylated, nonphosphorylated CLIP18-39.  相似文献   

12.
Gel-shift assays previously described in the literature are based on protein-protein or protein-DNA interactions. We show that carbohydrate-lectin interactions can be successfully used to alter the electrophoretic mobility of glycosylated, but not nonglycosylated, protein species in SDS-polyacrylamide gels. We were able to separate the two closely migrating mono- (95 kDa) and nonglycosylated (92 kDa) forms of a polytopic membrane protein, anion exchanger 1 (AE1), synthesized by cell-free translation or in transfected HEK293 cells. Concanavalin A was selected as the lectin due to the high mannose content of the oligosaccharide chain on AE1. Concanavalin A was either added to the samples prior to loading or copolymerized in a top layer of the separating gel, the latter being the method of choice. The presence of concanavalin A resulted in slower mobility of the monoglycosylated protein while the mobility of the nonglycosylated form was not altered. The shift in mobility was dependent on concentration of concanavalin A and the length of separating gel containing copolymerized concanavalin A. When a diglycosylated mutant of AE1 was tested, good separation was achieved at lower concentrations of concanavalin A. This lectin gel-shift assay allows the separation of N-glycosylated and nonglycosylated forms of the protein.  相似文献   

13.
We investigated the nature of signal recognition, transport, and secretion of mutant hemagglutinins (HAs) of a human influenza virus by the yeast Saccharomyces cerevisiae. The cDNA sequences encoding variant forms of influenza HA were expressed in S. cerevisiae. The HA polypeptides (HA500 and HA325) that were synthesized with their N-terminal signal peptides were correctly targeted to the membrane compartment where they were glycosylated. In contrast, the HA polypeptides (HA484 and HA308) lacking the signal peptide were expressed in the cytoplasm and did not undergo any glycosidic modification, demonstrating the importance of the heterologous signal sequence in the early steps of translocation in S. cerevisiae. The analysis of the N-terminal amino acid sequence of HA500 and HA325 polypeptides demonstrated the correct cleavage of the signal peptide, indicating the structural compatibility of a heterologous signal peptide for efficient recognition and processing by the yeast translocation machinery. The membrane-sequestered and glycosylated HA polypeptides were relatively stable in S. cerevisiae compared with the signal-minus, nonglycosylated HA molecules. Although both the anchor-minus HA (HA500) and HA1 (HA325) polypeptides were targeted efficiently to the membrane, their glycosylation and transport patterns were shown to be different. During pulse-chase, the HA500 remained cell-associated with no detectable secretion into the extracellular medium, whereas the HA325 secreted into the medium. Furthermore, only the cell-associated and secreted forms of HA325 and not HA500 appeared to have undergone hyperglycosylation with the extensive addition of high-molecular-weight outer-chain mannans. Possible reasons for the observed phenotypic behavior of these two mutant HAs are discussed.  相似文献   

14.
Live recombinants based on attenuated modified vaccinia virus Ankara (MVA) are potential vaccine candidates against a broad spectrum of diseases and tumors. To better understand the efficacy of MVA as a human vaccine, we analyzed by confocal and electron microscopy approaches MVA-induced morphological changes and morphogenetic stages during infection of human HeLa cells in comparison to other strains of vaccinia virus (VV): the wild-type Western Reserve (WR), Ankara, and the New York City Board of Health (NYCBH) strains. Confocal microscopy studies revealed that MVA infection alters the cytoskeleton producing elongated cells (bipolar), which do not form the characteristic actin tails. Few virions are detected in the projections connecting neighboring cells. In contrast, cells infected with the WR, Ankara, and NYCBH strains exhibit a stellated (multipolar) or rounded morphology with actin tails. A detailed transmission electron microscopy analysis of HeLa cells infected with MVA showed important differences in fine ultrastructure and amounts of the viral intermediates compared to cells infected with the other VV strains. In HeLa cells infected with MVA, the most abundant viral forms are intracellular immature virus, with few intermediates reaching the intracellular mature virus (IMV) form, at various stages of maturation, which exhibit a more rounded shape than IMVs from cells infected with the other VV strains. The "IMVs" from MVA-infected cells have an abnormal internal structure ("atypical" viruses) with potential alterations in the core-envelope interactions and are unable to significantly acquire the additional double envelope to render intracellular envelope virus. The presence of potential cell-associated envelope virus is very scarce. Our findings revealed that MVA in human cells promotes characteristic morphological changes to the cells and is able to reach the IMV stage, but these virions were not structurally normal and the subsequent steps in the morphogenetic pathway are blocked.  相似文献   

15.
Various nonglycosylated analogs were designed in order to explore the role of glycosylation in formaecin I, an antibacterial glycopeptide of insect origin. The functional behavior of a designed nonglycosylated analog (P(7),endo P(8a),DeltaT(11))formaecin I was found to be similar to that of native glycosylated peptide. Both the peptides showed similar antibacterial activities against Escherichia coli and Salmonella strains. The designed nonglycosylated analog (P(7),endo P(8a),DeltaT(11))formaecin I has low binding affinity to LPS identical to that of native glycopeptide, formaecin I. Both the peptides have similar killing kinetics and are nontoxic to erythrocytes. Formaecin I and designed nonglycosylated (P(7),endo P(8a),DeltaT(11))formaecin I have no definite conformational features associated with them. The glycosylated residue of threonine in formaecin I and proline residues in designed peptide [(P(7),endo P(8a),DeltaT(11))formaecin I], possibly help in stabilizing the correct conformation that facilitates presentation of the peptide to its receptor. It is evident that a functionally equivalent nonglycosylated analog of native glycosylated antibacterial peptide can be designed by strategically modifying the sequence.  相似文献   

16.
Cathepsin E (CE), a nonlysosomal, intracellular aspartic proteinase, exists in several molecular forms that are N-glycosylated with high-mannose and/or complex-type oligosaccharides. To investigate the role of N-glycosylation on the catalytic properties and molecular stability of CE, both natural and recombinant enzymes with distinct oligosaccharides were purified from different sources. An N-glycosylation minus mutant, that was constructed by site-directed mutagenesis (by changing asparagine residues to glutamine and aspartic acid residues at positions 73 and 305 in potential N-glycosylation sites of rat CE) and expressed in normal rat kidney cells, was also purified to homogeneity from the cell extracts. The kinetic parameters of the nonglycosylated mutant were found to be essentially equivalent to those of natural enzymes N-glycosylated with either high-mannose or complex-type oligosaccharides. In contrast, the nonglycosylated mutant showed lower pH and thermal stabilities than the glycosylated enzymes. The nonglycosylated mutant exhibited particular sensitivity to conversion to a monomeric form by 2-mercaptoethanol, as compared with those of the glycosylated enzymes. Further, the high-mannose-type enzymes were more sensitive to this agent than the complex-type proteins. A striking difference was found between the high-mannose and complex-type enzymes in terms of activation by ATP at a weakly acidic pH. At pH 5.5, the complex-type enzymes were stabilized by ATP to be restored to the virtual activity, whereas the high-mannose-type enzymes as well as the nonglycosylated mutant were not affected by ATP. These results suggest that N-glycosylation in CE is important for the maintenance of its proper folding upon changes in temperature, pH and redox state, and that the complex-type oligosaccharides contribute to the completion of the tertiary structure to maintain its active conformation in the weakly acidic pH environments.  相似文献   

17.
The single site for N-linked glycosylation of the beta-subunit of bovine LH (LH beta) was disrupted by oligonucleotide-directed mutagenesis to assess its potential roles in the biosynthesis, transport, and hormonal activity of the LH alpha/beta heterodimer. Pulsechase studies performed with stably transfected Chinese hamster ovary cells that expressed both alpha-subunit (fully glycosylated) and nonglycosylated LH beta revealed that turnover, transport, and secretion of newly synthesized, nonglycosylated LH beta were effectively blocked over a 22-h span. Free nonglycosylated LH beta, like free wild-type LH beta, was sequestered inside the cell; therefore, the intracellular retention of uncombined LH beta-subunit is not due to a signal located within the N-glycan moiety. Nevertheless, an older pool of unlabeled, nonglycosylated LH beta-subunit was available for combination with newly synthesized alpha-subunit, as verified by immunoprecipitation of radiolabeled alpha-subunit from cell lysates and culture medium with anti-LH beta-antiserum. This heterodimer displayed normal kinetics of secretion (t 1/2 = 2.4 h) as compared to fully glycosylated LH (t 1/2 = 2.1 h). The wild-type and mutant forms of LH were also purified from culture supernatants of the two cell lines, and were compared for their relative abilities to stimulate progesterone secretion in cultured rat Leydig cells. Both proteins displayed similar potency (ED50 = 32 vs. 41 ng/ml, respectively) and maximal stimulation of progesterone release Pmax = 2.7 vs 2.5 micrograms/ml), indicating that N-linked glycosylation of the LH beta-subunit does not play a significant role in LH signal transduction. Collectively, these results indicate that N-linked glycosylation is important for intracellular degradation of free LH beta, but is not essential for either its assembly with alpha-subunit or the transport and secretion of biologically active heterodimer.  相似文献   

18.
Tunicamycin, an antibiotic which prevents the glycosylation of newly synthesized proteins, inhibits the replication of both vesicular stomatitis virus and Sindbis virus. In tunicamycin-treated infected cells, all of the viral proteins are synthesized but the glycoproteins are devoid of carbohydrate. The nonglycosylated glycoproteins could not be detected on the outside of the plasma membrane by lactoperoxidase labeling, indirect immunofluorescence staining, or chymotrypsin treatment of intact cells, whereas the glycosylated glycoproteins were readily detected by all three methods. These results indicate that the bulk of the nonglycosylated glycoproteins are unable to undergo the normal migration to the cell surface. In contrast to the normal glycosylated viral glycoproteins, the nonglycosylated glycoproteins were insoluble in nonionic detergents such as Triton X-100. The nonglycosylated glycoprotein of vesicular stomatitis virus could be solubilized using a combination of 6 M guanidine hydrochloride and 0.2% Triton X-100, but precipitated when the 6 M guanidine was removed by dialysis. These results suggest that the lack of carbohydrate alters the properties of the glycoproteins, which may explain their impaired mobility through the intracellular membranous system.  相似文献   

19.
The fiber protein purified from the pool of nonincorporated viral protein after infection of cells with adenovirus type 5 exists as two forms separable by reverse-phase HPLC. As determined by mass spectrometry, this heterogeneity results from a difference in one O-linked N-acetylglucosamine (GlcNac). A western blot analysis using a monoclonal antibody directed against the GlcNac motif showed that only one of the two forms reacted with the antibody, suggesting that one form carries a single GlcNac and the other form has none. The ratio of glycosylated to nonglycosylated forms of fiber, which is about 1, is conserved in assembled viruses. After digestion of glycosylated fiber with endoproteinase GluC, isolation of the glycosylated peptide by reverse-phase HPLC, and chemical derivatization using dimethylamine, the site of glycosylation was located in the fiber shaft at serine 109 by mass spectrometry. Elimination of glycosylation by site-directed mutagenesis of fiber should help to understand the function of this postranslational modification.  相似文献   

20.
We have purified contulakin-G, a 16-amino acid O-linked glycopeptide (pGlu-Ser-Glu-Glu-Gly-Gly-Ser-Asn-Ala-Thr-Lys-Lys-Pro-Tyr-Ile-Leu-OH, pGlu is pyroglutamate) from Conus geographus venom. The major glycosylated form of contulakin-G was found to incorporate the disaccharide beta-D-Galp-(1-->3)-alpha-D-GalpNAc-(1-->) attached to Thr10. The C-terminal sequence of contulakin-G shows a high degree of similarity to the neurotensin family of peptides. Synthetic peptide replicates of Gal(beta-->3) GalNAc(alpha-->)Thr10 contulakin-G and its nonglycosylated analog were prepared using an Fmoc (9-fluorenylmethoxycarbonyl) protected solid phase synthesis strategy. The synthetic glycosylated con- tulakin-G, when administered intracerebroventricular into mice, was found to result in motor control-associated dysfunction observed for the native peptide. Contulakín-G was found to be active at 10-fold lower doses than the nonglycosylated Thr10 contulakin-G analog. The binding affinities of contulakin-G and the nonglycosylated Thr10 contulakin-G for a number of neurotensin receptor types including the human neurotensin type 1 receptor (hNTR1), the rat neurotensin type 1 and type 2 receptors, and the mouse neurotensin type 3 receptor were determined. The binding affinity of the nonglycosylated Thr10 contulakin-G was approximately an order of magnitude lower than that of neurotensin1-13 for all the receptor types tested. In contrast, the glycosylated form of contulakin-G exhibited significantly weaker binding affinity for all of the receptors tested. However, both contulakin-G and nonglycosylated Thr10 contulakin-G were found to be potent agonists of rat neurotensin receptor type 1. Based on these results, we conclude that O-linked glycosylation appears to be a highly unusual strategy for increasing the efficacy of toxins directed against neurotransmitter receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号