首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The activities of inorganic, monomeric aluminium (Al) species in the root environment are important in the toxicity of Al to plant roots, which may be ameliorated by increased activities of basic cations. Additionally, it has been suggested that electro-chemical processes in walls of root cells play a role in Al tolerance. Empirical models were proposed to accomodate genetic and calcium (Ca) and magnesium (Mg) ameliorative effects on Al toxicity. The models were tested using data from a solution culture study (with ionic strength 1.6 to 8.6 mM) in which wheat (Triticum aestivum L.) cvv. Warigal (Al-sensitive) and Waalt (Al-tolerant) were grown for 28 d at 0, 10 and 20 M Al, in factorial combination with 200, 400, 800 and 1600 M Ca and 100, 200, 400 and 800 M Mg. There was a poor relationship between relative total dry mass (TDM) (calculated as a percentage of the average TDM of each cultivar in the absence of added Al) and the activity of Al3+ or the sum of the activities of the monomeric Al species in solution. A model based on the ratios of activities of cations in solution, taking valency into consideration, was more successful, accounting for ca 85% of the observed variation in relative TDM. There were no systematic variations between observed values and those estimated by the model.  相似文献   

4.
The physiological basis of plant reaction to and tolerance of aluminium (Al) is poorly understood. We review the results of investigations into Al toxicity and root physiology to develop a theoretical basis for explaining the reaction of the root to Al, including suggested roles for Ca2+, mucilaginous cap secretions and endogenous growth regulators in mediating a transmitted response between Al-damaged cap cells and the interacting cell populations of the cap and root. This information is used to identify possible mechanisms of Al tolerance, notably involving signal transduction, Al uptake pathways and root morphogenesis; and to briefly discuss how procedures selecting for Al tolerance may be improved by incorporating the concept of stimulus-response coupling. Similarities in the responses of roots to Al and other signals (e.g. gravity, light, mechanical impedance) are used to develop the hypothesis that roots respond to environmental signals by way of a common regulatory system. New research prospects for extending our perception of Al tolerance mechanisms are identified.  相似文献   

5.
The relationship between carboxylate release and the ability of plants to access phosphorus from AlPO4 and to detoxify aluminium was studied by comparing species with a low and high rate of carboxylate release, Triticum aestivum (wheat) and Lupinus albus (white lupin), respectively. Species were supplied with P at 10, 20, 40 or 100 mg P kg-1 sand in the form of sparingly soluble AlPO4 or soluble KH2PO4; control plants did not receive any P. Triticum aestivum was significantly better than L. albus at accessing P from AlPO4, despite accumulating fewer carboxylates in its rhizosphere. Rhizosphere pH of L. albus did not vary with form or level of P supply, while the rhizosphere pH of T. aestivum increased with the level of P supplied. Based on the evidence in the present study, a model is proposed to explain the poor performance of L. albus, whereby the release of carboxylates and associated protons reduces the chelating ability of exuded carboxylates, thus reducing P acquisition and increasing Al toxicity.  相似文献   

6.
Johnson Jr  J.P.  Carver  B.F.  Baligar  V.C. 《Plant and Soil》1997,188(1):101-106
Soil acidity in the Great Plains of the USA can reduce forage and grain yields of winter wheat, primarily by Al toxicity. Indigenous cultivars may vary in seedling tolerance to Al toxicity, but the benefit that Al tolerance provides to forage and grain production is not well documented in this region. Backcrossed-derived lines of Chisholm and Century were selected with an additional gene from Atlas 66 conferring Al tolerance in solution culture. Our objective was to determine the impact of this source of Al tolerance on forage production prior to the jointing stage and subsequent grain yield. Experiments were conducted at several locations on non-limed (pH=4.5–4.7) and limed soils (pH=5.2-6.1) in Oklahoma. Two cultivars (TAM 105, susceptible; 2180, tolerant) with extreme differences in Al tolerance were used as controls . In limed conditions, forage and grain production did not differ between Al-tolerant and -susceptible genotypes, indicating a neutral effect of the Atlas 66 gene in the absence of Al toxicity. Despite visual differences in early-season plant vigor in non-limed acid soil, the Al-tolerant selections did not yield greater season-long forage than their susceptible parents. At sites where Al saturation in the non-limed soil exceeded 30%, spike production at maturity was nearly doubled in the Century background by the addition of Al tolerance, but final grain yield was not significantly improved. In the Chisholm background, grain yield was improved 50 to 74% by Al tolerance. The magnitude of the agronomic benefit of Al tolerance was highly influenced by the edaphic environment and genetic background. Acid soils of the Great Plains appear highly variable in Al toxicity; hence, consideration of the target environment is essential to predict the potential impact of Al tolerance selected in solution culture.  相似文献   

7.
Increase in solubility of soil aluminium (Al) as a result of root-induced decrease of soil pH was studied. Soil samples of known distances from the roots of NH4-N fertilized Ryegrass were analyzed for pH and aluminium extractable with 0.01 M CaCl2. Results showed that though no Al was found in bulk soil (pH 6.8), its concentration in the vicinity of roots increased to 0.023 mM with a concomitant decrease of soil pH from 6.8 to 4.4.  相似文献   

8.
Aluminum tolerance was assessed in the moderately Al-tolerant wheat (Triticum aestivum L.) cultivar Chinese Spring and a set of ditelosomic lines derived from Chinese Spring. Three ditelosomic lines lacking chromosome arms 4DL, 5AS and 7AS, respectively, exhibited decreased Al tolerance relative to the euploid parent Chinese Spring based on reduced root growth in Al-containing solutions. The physiological basis of the reduced Al tolerance was investigated. Measurements by inductively coupled argon plasma mass spectroscopy of root apical Al accumulation demonstrated that two of these three lines had a decreased ability to exclude Al from the root apex, the site of Al phytotoxicity. As Al-induced malate exudation has been suggested to be an important physiological mechanism of Al tolerance in wheat, this parameter was quantified and malate exudation was shown to be smaller in all three deletion lines compared with Chinese Spring. These results suggest that the decreased Al tolerance in at least two of the three ditelosomic lines is due to the loss of different genes independently influencing a single Al-tolerance mechanism, rather than to the loss of genes encoding alternative Al-tolerance mechanisms. Received: 3 July 2000 / Accepted: 9 August 2000  相似文献   

9.
The effects of aluminium (Al) ions on the metabolism of root apical meristems were examined in 4-day-old seedlings of two cereals which differed in their tolerance to Al: wheat cv. Grana (Al-sensitive) and rye cv. Dakowskie Nowe (Al tolerant). During a 24 h incubation period in nutrient solutions containing 0.15 mM and 1.0 mM of Al for wheat and rye, respectively, the activity of first two enzymes in the pentose phosphate pathway (G-6-PDH and 6-PGDH) decreased in the sensitive cultivar. In the tolerant cultivar activities of these enzymes increased initially, then decreased slightly, and were at control levels after 24 h. In the Al-sensitive wheat cultivar a 50% reduction in the activity of 6-phosphogluconate dehydrogenase was observed in the presence of Al. Changes in enzyme activity were accompanied by changes in levels of G-6-P- the initial substrate in the pentose phosphate pathway. When wheat was exposed for 16 h to a nutrient solution containing aluminium, a 90% reduction in G-6-P concentration was observed. In the Al-tolerant rye cultivar, an increase and subsequently a slight decrease in G-6-P concentration was detected, and after 16 h of Al-stress the concentration of this substrate was still higher than in control plants. This dramatic Al-induced decrease in G-6-P concentration in the Al-sensitive wheat cultivar was associated with a decrease in both the concentration of glucose in the root tips as well as the activity of hexokinase, an enzyme which is responsible for phosphorylation of glucose to G-6-P. However, in the Al-tolerant rye cultivar, the activity of this enzyme remained at the level of control plants during Al-treatment, and the decrease in the concentration of glucose occurred at a much slower rate than in wheat. These results suggest that aluminium ions change cellular metabolism of both wheat and rye root tips. In the Al-sensitive wheat cultivar, irreversible disturbances induced by low doses of Al in the nutrient solution appear very quickly, whereas in the Al-tolerant rye cultivar, cellular metabolism, even under severe stress conditions, is maintained for a long time at a level which allows for root elongation to continue.Abbreviations G-6-PDH glucose-6-phosphate dehydrogenase - 6-PGDH 6-phosphogluconate dehydrogenase - G-6-P glucose-6-phosphate - TEA triethanolamine  相似文献   

10.
Basu  U.  McDonald-Stephens  J. L.  Archambault  D. J.  Good  A. G.  Briggs  K. G.  Taing-Aung  Taylor  G. J. 《Plant and Soil》1997,196(2):283-288
We have made use of a genetic approach to develop homozygous, near-isogenic germplasm for investigating aluminium (Al) resistance in Triticum aestivum L. A conventional backcross program was used to transfer Al resistance from the Al-resistant cultivar, Maringa, to a locally-adapted, Al-sensitive cultivar, Katepwa. At the third backcross stage, a single, resistant isoline (Alikat = Katepwa*3/Maringa) was chosen on the basis of superior root growth after 14 days of exposure to a broad range of Al concentrations (0 to 600 µM). Genetic analysis of doubled-haploid lines (DH) developed from this isoline suggested that resistance is controlled by a single dominant gene. Crosses between DH Alikat and DH Katepwa yielded an Al-resistant F1 population. Backcrossing this F1 population to DH Katepwa produced a population which segregated 1:1 for Al resistance, while selfing produced a population segregating 3 : 1 for Al resistance. Under conditions of Al stress, Al-resistant F2 plants released a suite of novel low molecular weight polypeptides into the rhizosphere. One of these polypeptides (23 kD) shows substantive Al-binding capacity and segregates with the resistant phenotype. While the precise mechanisms that mediate Al resistance are still unknown, this research has provided support for a possible role of the 23 kD exudate polypeptide in mediating resistance to Al. To more fully understand the role that this polypeptide plays in Al-resistance, we are attempting to clone this gene from microsequence data obtained from purified protein.  相似文献   

11.
Genotypic differences in aluminium (Al) tolerance hold considerable promise in overcoming an important limitation to plant growth in acid soils. Little is known, however, about the biochemical basis of such differences. Extracellular properties, particularly low root cation-exchange capacity (CEC), have been associated with Al tolerance, since roots of low CEC adsorb less Al than do those of high CEC. A solution culture study was conducted in which 12 plant species (monocots and dicots) were grown in solution culture of low ionic strength (ca 2 mM) for 8 d at four Al concentrations (0, 16, 28 and 55 M). The species differed significantly in Al tolerance as shown by differences in root length. Root length relative to that of the same species grown in the absence of Al varied from 6 to 117% at 16 M Al, and from 6 to 75% at 28 M Al. Species tolerance of Al was not closely associated with differences in root CEC. Although in some species Al sensitivity was associated with high adsorption of Al during a 10- or 40-min exposure to Al (expressed on a fresh mass or root length basis), this was not a good predictor of Al tolerance across all species studied.  相似文献   

12.
Tang  C.  Diatloff  E.  Rengel  Z.  McGann  B. 《Plant and Soil》2001,236(1):1-10
Subsurface soil acidity coupled with high levels of toxic Al is a major limiting factor in wheat production in many areas of the world. This study examined the effect of subsurface soil acidity on the growth and yield of two near-isogenic wheat genotypes differing in Al tolerance at a single genetic locus in reconstructed soil columns. In one experiment, plants were grown in columns with limed topsoil and limed or acidic subsurface soils, and received water only to the subsurface soil at a late part of the growth period. While shoot dry weight, ear number and grain yield of Al-tolerant genotype (ET8) were not affected by subsurface soil acidity, liming subsurface soil increased shoot weight and grain yield of Al-sensitive genotype (ES8) by 60% and ear number by 32%. Similarly, root length density of ET8 was the same in the limed and acidic subsurface soils, while the root length density of ES8 in the acidic subsurface soil was only half of that in the limed subsurface soil. In another experiment, plants were grown with limed topsoil and acidic subsurface soil under two watering regimes. Both genotypes supplied with water throughout the soil column produced almost twice the dry weight of those receiving water only in the subsurface soil. The tolerant genotype ET8 had shoot biomass and grain yield one-third higher than ES8 when supplied with water throughout the whole column, and had yield 11% higher when receiving water in the subsurface soil only. The tolerant genotype ET8 produced more than five times the root length in the acidic subsurface soil compared to ES8. Irrespective of watering regime, the amount of water added to maintain field capacity of the soil was up to 2-fold higher under ET8 than under ES8. The results suggest that the genotypic variation in growth and yield of wheat grown with subsurface soil acidity results from the difference in root proliferation in the subsurface soil and hence in utilizing nutrient and water reserves in the subsurface soil layer.  相似文献   

13.
Wheeler  D. M.  Power  I. L.  Edmeades  D. C. 《Plant and Soil》1993,155(1):489-492
The effects of aluminium (Al), manganese (Mn), zinc (Zn), copper (Cu), boron (B), iron (Fe), gallium (Ga), scandium (Sc) and lanthanum (La) on growth of an Al-tolerant and an Al-sensitive line of wheat (Triticum aestivum L.) were measured in solution culture. The concentrations of nutrients in the basal nutrient solution were (M) 500 Ca, 100 Mg, 300 K, 600 N (150 NH4, 450 NO3), 600 SO4, 2.5 P, 3 B, 2.5 Fe, 0.5 Zn, 0.5 Mn, 0.1 Cu at a pH of 4.7. The major solution nutrient concentrations were maintained at the nominal concentration with monitoring, frequent additions and weekly renewal. Differentiation in yield between the Al-tolerant and Al-sensitive line only occurred in the presence of Al indicating that, in the long term, none of the other metals tested could be used as an analog for Al. The visual symptoms in the roots of Cu toxicity (in both lines) and Al toxicity (in the sensitive line) were similar. The solution concentration (M) at which yield of the roots of the tolerant line was reduced by 50% was, in order of increasing tolerance, Cu 0.5, Sc 1.1, La 7.1, Ga 8.6, Al 15, Zn 19, Fe 84, B 490 and Mn 600.  相似文献   

14.
Quantitative trait loci (QTL) analysis of aluminium (Al) tolerance was performed using Ler/Cvi recombinant inbred (RI) lines of Arabidopsis thaliana. Relative root length (RRL) (root length with 4 µm Al/root length with no Al at pH 5.0) on day 5 was used as the Al tolerance index for QTL analysis. Al tolerance judged by RRL was well correlated to tolerance judged by other indexes, including accumulation of callose, reactive oxygen species in the root apex and growth performance on acid soil containing a large amount of exchangeable Al. Using data sets with an hb2 of 0.91, two QTLs were detected at the top of chromosome 1 and bottom of chromosome 3. These QTLs explained 40 and 16% of the phenotypic variation of Al tolerance, respectively, and the positive effect of the Cvi allele. The QTL on chromosome 1 overlapped with a major QTL in another recombinant inbred population, and is possibly related to malate excretion. A complete pair-wise search revealed 11 sets of epistatic interacting loci pairs, which accounted for the transgressive segregation among the RI population. Several epistatic interactions shared the same chromosomal region, indicating the possible involvement of regulatory proteins in Al tolerance in Arabidopsis.  相似文献   

15.
Four maize cultivars, which differ in tolerance to acid soils under field conditions ( Zea mays L., acid soil-tolerant C 525 M, BR 201 F and Adour 250, and acid soil-sensitive HS 7777) were used to study the influence of pH (4.3 and 6.0) and Al (0, 20 and 50 μ M ) on the elongation of seminal roots in nutrient solution. Root elongation was inhibited by high H+ concentrations (pH 4.3) in cultivars C 525 M, Adour 250 and HS 7777 but not in BR 201 F. After 20 h exposure to Al, root elongation rates were more inhibited in cultivars BR 201 F and HS 7777 than in C 525 M and Adour 250. The use of a computerized linear displacement transducer system with high resolution (1 μm) allowed the monitoring of short-term responses of root elongation to Al. In the three cultivars affected by H+ toxicity, but not in the acid-tolerant BR 201 F, Al supply caused an immediate, but transient increase of relative root elongation rates. This result supports the hypothesis that Al-induced growth stimulation is caused by amelioration of proton toxicity. The time required for 20 μ M Al to induce a 5% decrease of root elongation rates was shorter in the Al-sensitive BR 201 F (33 min) and HS 7777 (86 min) than in the Al-tolerant C 525 M (112 min) and Adour 250 (146 min) cultivars. However, the response-time to Al may be overestimated in the proton-sensitive cultivars, due to the transient stimulation of root elongation rates induced by Al. According to our results, experiments intended to investigate primary mechanisms of Al toxicity should be started after less than 30 min exposure to toxic Al concentrations, using pH conditions which avoid Al-induced growth stimulation due to amelioration of proton toxicity.  相似文献   

16.
The effects of growth period (time between transplanting and harvesting), plant age at which aluminium (Al) was added to solution, changes in Al concentration, and solution culture techniques (monitoring and adjusting solution Al concentrations thrice weekly or weekly replacement of the solutions) were investigated using a low ionic strength (2.7×10–3 M) solution culture technique. The wheat (Triticum aestivum L.) cultivars Waalt (Al-tolerant) and Warigal (Al-sensitive), or the near isogenic lines bred from these cultivars (RR for the Al-tolerant line and SS for the Al-sensitive line) were grown. In all experiments and treatments, Al additions were required to maintain the nominal concentration. The decline in solution Al concentrations was partially attributed to formation of an Al-hydroxy-phosphate precipitate with an Al:P molar ratio of 2.8 to 4.0. Increasing the growth period from 14 to 28 days increased Al sensitivity in Warigal but not in Waalt. When plants were exposed to Al for the same time, increasing the age of the plants that Al was added to solution decreased sensitivity to Al. Differential Al tolerance between the two lines was evident when solutions were monitored thrice weekly or replaced weekly. However, the Al concentration required to reduce relative yield by a given amount when the solutions were replaced weekly was about twice that when the solutions were monitored. With a constant growth period of 28 days, increasing solution Al concentrations for 3 or more days resulted in decreased yields at harvest. The exact effect depended on the cultivar, plant part (tops or roots), when solution Al concentrations were increased and the duration of the increase. For example, increasing Al concentrations from 5 M to 20 M for 10 days reduced yield in the RR line by approximately 50% in the tops and 30% in the roots beyond the effect of 5 M but had no effect in the SS line due to yields already being low at 5 M. Adding 10 M Al to solution for 6 days at the beginning of the experiment reduced yield by 25% in the RR line and 50% in the SS line. In contrast, adding 10 M Al for 6 days in the middle of the growth cycle had no effect on the RR line but reduced yield by approximately 25% in the SS line. These results show that growth period, the age of the plants at which Al is added and the technique used (monitored or weekly replacement) all need to be considered when comparing results from different experiments. These results also show that the Al concentrations in solution need to be regularly monitored in long term experiments.  相似文献   

17.
Seven strains of Rhizobium loti were tested for acid tolerance in yeast-extract mannitol (YEM) broth at pH values ranging from 4.0 to 8.0. The strains that grew at pH 4.0 showed the slowest generation time when grown at pH above 7.0 and also produced the most acid. The acid tolerance was related to the composition and structure of the membrane. pH influenced protein expression in acid-tolerant strains growing at pH 4.0 or 7.0. Acid tolerant strains showed one membrane protein of 49.5 kDa and three soluble proteins of 66.0, 58.0 and 44.0kDa; their expression increased when the cells grew at pH 4.0. It is suggested that acid tolerance in Rhizobium loti involves constitutive mechanisms, such as permeability of the outer membrane together with adaptive responses, including the state of bacterial growth and concomitant changes in protein expression.  相似文献   

18.
Many elements of the lanthanide series exist as trivalent cations in solution below pH 6. The present study was carried out to investigate whether lanthanides could stimulate malate efflux from wheat (Triticum aestivum L.) roots, as has been found for trivalent aluminium (Al) cations. Excised root apices treated with 100 µm of each of seven different lanthanide elements (lanthanum, praseodymium, europium, gadolinium, terbium, erbium, and ytterbium) stimulated malate efflux, with five‐ to fifty‐fold more malate being released from an Al‐tolerant wheat line than from a near‐isogenic Al‐sensitive line. As erbium stimulated the greatest malate efflux of the lanthanides tested, this response was characterized further. The characteristics of the erbium‐activated efflux were similar to the Al‐activated efflux described previously suggesting that both of these ions activate the same transport mechanism. The capacity for erbium‐activated malate efflux cosegregated with Al tolerance in wheat seedlings derived from a cross between Al‐sensitive and Al‐tolerant near‐isogenic lines. This is the first study to identify cations, other than Al, which can activate malate release from wheat roots. It also provides additional evidence that malate efflux from root apices is the primary mechanism for Al tolerance in wheat.  相似文献   

19.
The effect of aluminium (Al) on root elongation was studied in solution culture and sand culture. Compared to solution culture, in sand culture a ten times higher Al supply was necessary to inhibit root elongation to a comparable degree. This was due to a much lower Al uptake into the 5 mm root tips in sand culture. Fe concentrations in root tips were also lower in sand culture. Ca concentrations were higher and less depressed by Al, whereas Mg and K concentrations were not affected by the culture substrate. Regressions of Al concentrations in root tips versus inhibition of root elongation by Al revealed root damage at lower Al concentrations in sand culture. The effect of culture substrate on Al tolerance was independent of N source and could also be shown in flowing solution culture with and without sand. The results indicate that mechanical impedance in sand culture decreased Al uptake. This may be due to enhanced exudation of organic complexors thus reducing activites of monomeric Al species.  相似文献   

20.
Aluminium (Al) tolerance of fourteen white clover (Trifolium repens L.) cultivars from eleven countries was compared in the greenhouse in the Wainui silt loam (Typic Dystrochrept) to which Al had been added at nine levels (0, 2.5, 5, 20, 50, 150, 250, 500 and 750 mg kg−1 of soil) as Al2 (SO4)3 and incubated for 30 days. None of the white clover cultivars, including those either referred to as Al-tolerant, Dusi and Pathfinder, or from countries that have large areas of acid soils, El Lucero M.A.G., Bayucua, Bage and Zapican, showed greater Al-tolerance than ‘Grasslands Huia’ white clover. Subsequent screening for Al-tolerance can therefore be restricted to germplasm with wide agronomic adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号