共查询到20条相似文献,搜索用时 0 毫秒
1.
The trabecular meshwork, a specialized eye tissue, is a major site for regulation of the aqueous humor outflow. Malfunctioning of the trabecular meshwork is believed to be responsible for development of glaucoma, a blinding disease. Myocilin is a gene linked to the most common form of glaucoma. Its expression is known to be upregulated by glucocorticoids in trabecular meshwork cells and the altered myocilin level may be the culprit for glaucomatous conditions such as corticosteroid-induced glaucoma. In this study, we examined the influence of myocilin overexpression on the adhesion, spreading, migration, phagocytosis, and apoptosis of human trabecular meshwork cells in culture. When the myocilin expression was increased by 3- to 4-fold, the transfectants showed a dramatic loss of actin stress fibers and focal adhesions. Cell adhesion to fibronectin and spreading were also compromised. Myocilin thus appeared to have a de-adhesive activity, similar to that reported extensively with matricellular proteins. The transfected cells in addition displayed an increased sensitivity to apoptosis. These results demonstrate that overexpression of myocilin renders trabecular meshwork cells in a de-adhesive and vulnerable state. This vulnerability may be the basis for pathologic consequences in subtypes of glaucoma. 相似文献
2.
Caballero M Liton PB Challa P Epstein DL Gonzalez P 《Biochemical and biophysical research communications》2004,323(3):1048-1054
The mechanisms involved in the progressive malfunction of the trabecular meshwork (TM) in glaucoma are not yet understood. To study age-related changes in human TM cells, we isolated primary TM cell cultures from young (ages 9, 14, and 25) and old (ages 66, 70, and 73) donors, and compared levels of oxidized proteins, autofluorescence, proteasome function, and markers for cellular senescence. TM cells from old donors showed a 3-fold increase in oxidized proteins and a 7.5-fold decrease of proteasome activity. Loss of proteasome function was not associated with decreased proteasome content but with partial replacement of the proteolytic subunit PSMB5 with the inducible subunit LMP7. Cells from old donors also demonstrated features characteristic of cellular senescence associated with phosphorylation of p38MAPK but only a modest increase in p53. These data suggest that age-related proteasome inhibition and cellular senescence could contribute to the pathophysiological alterations of the TM in glaucoma. 相似文献
3.
Caballero M Liton PB Epstein DL Gonzalez P 《Biochemical and biophysical research communications》2003,308(2):346-352
The pathophysiologic mechanisms leading to the malfunction of the trabecular meshwork (TM)-Schlemm's canal (SC) outflow pathway in glaucoma are still unclear. We hypothesize that chronic oxidative stress may contribute to the malfunction of the outflow pathway by impairing the intracellular proteasome system of the cells, decreasing the ability of the tissue to modulate outflow resistance. To study the effects of chronic oxidative stress on proteasome function, primary cultures of human TM cells were incubated under 40% oxygen and proteasome activity was analyzed by measuring the accumulation of enhanced green fluorescent protein fused to a PEST motif. Changes in proteasome content, cellular senescence, and cell viability were also monitored. After 10 days of exposure to chronic oxidative stress, TM cells showed a marked decline in proteasome activity that was associated with premature senescence and decreased cell viability. These results suggest that proteasome failure may be involved in glaucoma pathophysiology. 相似文献
4.
5.
Kaitlin C. Murphy Joshua T. Morgan Joshua A. Wood Adeline Sadeli Christopher J. Murphy Paul Russell 《Experimental cell research》2014
The cytoskeleton of human trabecular meshwork (HTM) cells is known to be altered in glaucoma and has been hypothesized to reduce outflow facility through contracting the HTM tissue. Latrunculin B (Lat-B) and Rho-associated protein kinase (ROCK) inhibitors disrupt the actin cytoskeleton and are in clinical trials as glaucoma therapeutics. We have previously reported a transient increase in HTM cell stiffness peaking at 90 min after Lat-B treatment with a return to pretreatment values after 270 min. We hypothesize that changes in actin morphology correlate with alterations in cell stiffness induced by Lat-B but this is not a general consequence of other cytoskeletal disrupting agents such as Rho kinase inhibitors. We treated HTM cells with 2 µM Lat-B or 100 µM Y-27632 and allowed the cells to recover for 30–270 min. While examining actin morphology in Lat-B treated cells, we observed striking cortical actin arrays (CAAs). The percentage of CAA positive cells (CPCs) was time dependent and exceeded 30% at 90 min and decreased after 270 min. Y-27632 treated cells exhibited few CAAs and no changes in cell stiffness. Together, these data suggest that the increase in cell stiffness after Lat-B treatment is correlated with CAAs. 相似文献
6.
7.
High ER stress in beta-cells stimulates intracellular degradation of misfolded insulin 总被引:5,自引:0,他引:5
Allen JR Nguyen LX Sargent KE Lipson KL Hackett A Urano F 《Biochemical and biophysical research communications》2004,324(1):166-170
Endoplasmic reticulum (ER) stress, which is caused by the accumulation of misfolded proteins in the ER, elicits an adaptive response, the unfolded protein response (UPR). One component of the UPR, the endoplasmic reticulum-associated protein degradation (ERAD) system, has an important function in the survival of ER stressed cells. Here, we show that HRD1, a component of the ERAD system, is upregulated in pancreatic islets of the Akita diabetes mouse model and enhances intracellular degradation of misfolded insulin. High ER stress in beta-cells stimulated mutant insulin degradation through HRD1 to protect beta-cells from ER stress and ensuing death. If HRD1 serves the same function in humans, it may serve as a target for therapeutic intervention in diabetes. 相似文献
8.
Jing Zhao HongYan Zhou Lixia Sun Ben Yang Lin Zhang Hongfeng Shi 《Free radical research》2017,51(1):103-111
Oxidative stress-induced dysfunction in trabecular meshwork (TM) cells is considered a major alteration that can lead to glaucoma. Hydrogen peroxide (H2O2) is the most widely used agent for inducing oxidation in TM cells in vitro. Quantitative real-time PCR (qPCR) is an important method for studying alterations in gene expression, and suitable (i.e. invariant) reference genes must be defined to normalize expression levels. In this study, eight common reference genes, i.e. PRS18, ACTB, B2M, GAPDH, PPIA, HPRT1, YWHAZ, and TBP, were evaluated for use in studies of H2O2-induced dysfunction in TM cells. Three established algorithms, geNorm, NormFinder, and BestKeeper, were used to analyze the reference genes. ACTB expression was least affected by H2O2 treatment in TM cells, and the combination of PPIA and HPRT1 was the most suitable gene pair for normalization. GAPDH and TBP were the most unstable genes and accordingly should be avoided in experiments with TM cells. These results provide a foundation for analyses of the mechanisms underlying glaucoma, and emphasize the importance of selecting suitable reference genes for qPCR studies. 相似文献
9.
Genetic and epigenetic regulation as well as immune surveillance are known defense mechanisms to protect organisms from developing cancer. Based on experimental evidence, we proposed that small metabolically active molecules accumulating in cancer cells may play a role in an alternative antitumor surveillance system. Previously, we reported that treatment with a mixture of experimentally selected small molecules, usually found in the serum (defined ‘active mixture’, AM), selectively induces apoptosis in cancer cells and significantly inhibits tumor formation in vivo. In this study, we show that the AM elicits gene expression changes characteristic of endoplasmic reticulum (ER) stress in HeLa, MCF-7, PC-3 and Caco-2 cancer cells, but not in primary human renal epithelial cells. The activation of the ER stress pathway was confirmed by the upregulation of ATF3, ATF4, CHAC1, DDIT3 and GDF15 proteins. Mechanistically, our investigation revealed that eIF2α, PERK and IRE1α are phosphorylated upon treatment with the AM, linking the induction of ER stress to the antiproliferative and proapoptotic effects of the AM previously demonstrated. Inhibition of ER stress in combination with BBC3 and PMAIP1 knockdown completely abrogated the effect of the AM. Moreover, we also demonstrated that the AM induces mIR-3189-3p, which in turn enhances the expression of ATF3 and DDIT3, thus representing a possible new feedback mechanism in the regulation of ATF3 and DDIT3 during ER stress. Our results highlight small molecules as attractive anticancer agents and warrant further evaluation of the AM in cancer therapy, either alone or in combination with other ER stress inducing agents. 相似文献
10.
As the biopharmaceutical industry expands, improving the production of therapeutic proteins using Chinese hamster ovary (CHO) cells is important. However, excessive and complicated protein production causes protein misfolding and triggers endoplasmic reticulum (ER) stress. When ER stress occurs, cells mediate the unfolded protein response (UPR) pathway to restore protein homeostasis and folding capacity of the ER. However, when the cells fail to control prolonged ER stress, UPR induces apoptosis. Therefore, monitoring the degree of UPR is required to achieve high productivity and the desired quality. In this study, we developed a fluorescence-based UPR monitoring system for CHO cells. We integrated mGFP into endogenous HSPA5 encoding BiP, a major ER chaperone and the primary ER stress activation sensor, using CRISPR/Cas9-mediated targeted integration. The mGFP expression level changed according to the ER stress induced by chemical treatment and batch culture in the engineered cell line. Using this monitoring system, we demonstrated that host cells and recombinant CHO cell lines with different mean fluorescence intensities (MFI; basal expression levels of BiP) possess a distinct capacity for stress culture conditions induced by recombinant protein production. Antibody-producing recombinant CHO cell lines were generated using site-specific integration based on host cells equipped with the BiP reporter system. Targeted integrants showed a strong correlation between productivity and MFI, reflecting the potential of this monitoring system as a screening readout for high producers. Taken together, these data demonstrate the utility of the endogenous BiP reporter system for the detection of real-time dynamic changes in endogenous UPR and its potential for applications in recombinant protein production during CHO cell line development. 相似文献
11.
Pae HO Jeong SO Jeong GS Kim KM Kim HS Kim SA Kim YC Kang SD Kim BN Chung HT 《Biochemical and biophysical research communications》2007,353(4):1040-1045
Curcumin has been shown to induce apoptosis in many cancer cells. However, the molecular mechanism(s) responsible for curcumin-induced apoptosis is not well understood and most probably involves several pathways. In HL-60 cells, curcumin induced apoptosis and endoplasmic reticulum (ER) stress as evidenced by the survival molecules such as phosphorylated protein kinase-like ER-resident kinase, phosphorylated eukaryotic initiation factor-2alpha, glucose-regulated protein-78, and the apoptotic molecules such as caspase-4 and CAAT/enhancer binding protein homologous protein (CHOP). Inhibition of caspase-4 activity by z-LEVD-FMK, blockage of CHOP expression by small interfering RNA, and treatment with salubrinal, an ER inhibitor, significantly reduced curcumin-induced apoptosis. Removing two double bonds in curcumin, which was speculated to form Michael adducts with thiols in secretory proteins, resulted in a loss of the ability of curcumin to induce apoptosis as well as ER stress. Thus, the present study shows that curcumin-induced apoptosis is associated with its ability to cause ER stress. 相似文献
12.
Andrii Puzyrenko Elizabeth R. Jacobs Yunguang Sun Juan C. Felix Yuri Sheinin Linna Ge Shuping Lai Qiang Dai Benjamin N. Gantner Rahul Nanchal Paula E. North Pippa M. Simpson Hallgeir Rui Ivor J. Benjamin 《Cell stress & chaperones》2021,26(5):859
Vaccinations are widely credited with reducing death rates from COVID-19, but the underlying host-viral mechanisms/interactions for morbidity and mortality of SARS-CoV-2 infection remain poorly understood. Acute respiratory distress syndrome (ARDS) describes the severe lung injury, which is pathologically associated with alveolar damage, inflammation, non-cardiogenic edema, and hyaline membrane formation. Because proteostatic pathways play central roles in cellular protection, immune modulation, protein degradation, and tissue repair, we examined the pathological features for the unfolded protein response (UPR) using the surrogate biomarker glucose-regulated protein 78 (GRP78) and co-receptor for SARS-CoV-2. At autopsy, immunostaining of COVID-19 lungs showed highly elevated expression of GRP78 in both pneumocytes and macrophages compared with that of non-COVID control lungs. GRP78 expression was detected in both SARS-CoV-2-infected and un-infected pneumocytes as determined by multiplexed immunostaining for nucleocapsid protein. In macrophages, immunohistochemical staining for GRP78 from deceased COVID-19 patients was increased but overlapped with GRP78 expression taken from surgical resections of non-COVID-19 controls. In contrast, the robust in situ GRP78 immunostaining of pneumocytes from COVID-19 autopsies exhibited no overlap and was independent of age, race/ethnicity, and gender compared with that from non-COVID-19 controls. Our findings bring new insights for stress-response pathways involving the proteostatic network implicated for host resilience and suggest that targeting of GRP78 expression with existing therapeutics might afford an alternative therapeutic strategy to modulate host-viral interactions during SARS-CoV-2 infections. 相似文献
13.
Kristine M. Porter Nallathambi JeyabalanPaloma B. Liton 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014
The trabecular meshwork (TM) is part of a complex tissue that controls the exit of aqueous humor from the anterior chamber of the eye, and therefore helps maintaining intraocular pressure (IOP). Because of variations in IOP with changing pressure gradients and fluid movement, the TM and its contained cells undergo morphological deformations, resulting in distention and stretching. It is therefore essential for TM cells to continuously detect and respond to these mechanical forces and adapt their physiology to maintain proper cellular function and protect against mechanical injury. Here we demonstrate the activation of autophagy, a pro-survival pathway responsible for the degradation of long-lived proteins and organelles, in TM cells when subjected to biaxial static stretch (20% elongation), as well as in high-pressure perfused eyes (30 mm Hg). Morphological and biochemical markers for autophagy found in the stretched cells include elevated LC3-II levels, increased autophagic flux, and the presence of autophagic figures in electron micrographs. Furthermore, our results indicate that the stretch-induced autophagy in TM cells occurs in an MTOR- and BAG3-independent manner. We hypothesize that activation of autophagy is part of the physiological response that allows TM cells to cope and adapt to mechanical forces. 相似文献
14.
The regulation of connective tissue growth factor expression influences the viability of human trabecular meshwork cells 下载免费PDF全文
Barbara M. Braunger Ernst R. Tamm Rudolf Fuchshofer 《Journal of cellular and molecular medicine》2015,19(5):1010-1020
Connective tissue growth factor (CTGF) induces extracellular matrix (ECM) synthesis and contractility in human trabecular meshwork (HTM) cells. Both processes are involved in the pathogenesis of primary open‐angle glaucoma. To date, little is known about regulation and function of CTGF expression in the trabecular meshwork (TM). Therefore, we analysed the effects of different aqueous humour proteins and stressors on CTGF expression in HTM cells. HTM cells from three different donors were treated with endothelin‐1, insulin‐like growth factor (IGF)‐1, angiotensin‐II, H2O2 and heat shock and were analysed by immunohistochemistry, real‐time RT‐PCR and Western blotting. Viability after H2O2 treatment was measured in CTGF silenced HTM‐N cells and their controls. Latrunculin A reduced expression of CTGF by about 50% compared to untreated HTM cells, whereas endothelin‐1, IGF‐1, angiotensin‐II, heat shock and oxidative stress led to a significant increase. Silencing of CTGF resulted in a delayed expression of αB‐crystallin and in reduced cell viability in comparison to the controls after oxidative stress. Conversely, CTGF treatment led to a higher cell viability rate after H2O2 treatment. CTGF expression is induced by factors that have been linked to glaucoma. An increased level of CTGF appears to protect TM cells against damage induced by stress. The beneficial effect of CTGF for viability of TM cells is likely associated with the effects on increased ECM synthesis and higher contractility of the TM, thereby contributing to reduced aqueous humour outflow facility causing increased intraocular pressure. 相似文献
15.
The unfolded protein response in human corneal endothelial cells following hypothermic storage: implications of a novel stress pathway 总被引:1,自引:0,他引:1
Human corneal endothelial cells (HCEC) have become increasingly important for a range of eye disease treatment therapies. Accordingly, a more detailed understanding of the processing and preservation associated stresses experienced by corneal cells might contribute to improved therapeutic outcomes. To this end, the unfolded protein response (UPR) pathway was investigated as a potential mediator of corneal cell death in response to hypothermic storage. Once preservation-induced failure had begun in HCECs stored at 4 °C, it was noted that necrosis accounted for the majority of cell death but with significant apoptotic involvement, peaking at several hours post-storage (4–8 h). Western blot analysis demonstrated changes associated with apoptotic activation (caspase 9, caspase 3, and PARP cleavage). Further, the activation of the UPR pathway was observed through increased and sustained levels of ER folding and chaperone proteins (Bip, PDI, and ERO1-Lα) in samples experiencing significant cell death. Modulation of the UPR pathway using the specific inhibitor, salubrinal, resulted in a 2-fold increase in cell survival in samples experiencing profound cold-induced failure. Furthermore, this increased cell survival was associated with increased membrane integrity, cell attachment, and decreased necrotic cell death populations. Conversely, addition of the UPR inducer, tunicamycin, during cold exposure resulted in a significant decrease in HCEC survival during the recovery period. These data implicate for the first time that this novel cell stress pathway may be activated in HCEC as a result of the complex stresses associated with hypothermic exposure. The data suggest that the targeted control of the UPR pathway during both processing and preservation protocols may improve cell survival and function of HCEC thus improving the clinical utility of these cells as well as whole human corneas. 相似文献
16.
L. Ulianich G. Terrazzano M. AnnunziatellaG. Ruggiero F. Beguinot B. Di Jeso 《生物化学与生物物理学报:疾病的分子基础》2011,1812(4):431-438
We recently reported that, in thyroid cells, ER stress triggered by thapsigargin or tunicamycin, two well known ER stressing agents, induced dedifferentiation and loss of the epithelial phenotype in rat thyroid cells. In this study, we sought to evaluate if, in thyroid cells, ER stress could affect MHC class I expression and the possible implications of this effect in the alteration of function of natural killer cells, suggesting a role in thyroid pathology. In both, a human line of fetal thyroid cells (TAD-2 cells) and primary cultures of human thyroid cells, thapsigargin and tunicamicin triggered ER stress evaluated by BiP mRNA levels and XBP-1 splicing. In both cell types, TAD-2 cell line and primary cultures, major histocompatibility complex class I (MHC-I) plasmamembrane expression was significantly reduced by ER stress. This effect was accompanied by signs of natural killer activation. Thus, natural killer cells dramatically increased IFN-γ production and markedly increased their cytotoxicity against thyroid cells. Together, these data indicate that ER stress induces a decrease of MHC class I surface expression in thyroid cells, resulting in reduced natural killer-cell self-tolerance. 相似文献
17.
Shane Deegan Svetlana Saveljeva Susan E Logue Karolina Pakos-Zebrucka Sanjeev Gupta Peter Vandenabeele Mathieu JM Bertrand Afshin Samali 《Autophagy》2014,10(11):1921-1936
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells. 相似文献
18.
《Autophagy》2013,9(11):1921-1936
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells. 相似文献
19.
20.
Jones J Nivitchanyong T Giblin C Ciccarone V Judd D Gorfien S Krag SS Betenbaugh MJ 《Biotechnology and bioengineering》2005,91(6):722-732
The inducible T-REx system and other inducible expression systems have been developed in order to control the expression levels of recombinant protein in mammalian cells. In order to study the effects of heterologous protein expression on mammalian host behavior, the gene for recombinant Human transferrin (hTf) was integrated into HEK-293 cells and expressed under the control of the T-REx inducible technology (293-TetR-Hyg-hTf) or using a constitutive promoter (293-CMV-hTf). A number of inducible clones with variable expression levels were identified for the T-REx system with levels of hTf for the high expressing clones nearly double those obtained using the constitutive cytomegalovirus (CMV) promoter. The level of transferrin produced was found to increase proportionately with tetracycline concentration between 0 and 1 mug/mL with no significant increases in transferrin production above 1 mug/mL. As a result, the optimal induction time and tetracycline concentrations were determined to be the day of plating and 1 mug/mL, respectively. Interestingly, the cells induced to express transferrin, 293-TetR-Hyg-hTf, exhibited lower viable cell densities and percent viabilities than the uninduced cultures for multiple clonal isolates. In addition, the induction of transferrin expression was found to cause an increase in the expression of the ER-stress gene, BiP, that was not observed in the uninduced cells. However, both uninduced and induced cell lines containing the hTf gene exhibited longer survival in culture than the control cells, possibly as a result of the positive effects of hTf on cell survival. Taken together, these results suggest that the high level expression of complex proteins in mammalian cells can limit the viable cell densities of cells in culture as a result of cellular stresses caused by generating proteins that may be difficult to fold or are otherwise toxic to cells. The application of inducible systems such as the T-REx technology will allow us to optimize protein production while limiting the negative effects that result from these cellular stresses. 相似文献