首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Biological assays for adenoviral gene therapy vectors have included conventional procedures initially developed to detect wild-type adenoviruses. Standard virological assays to quantitate adenoviruses rely on the virus to infect and replicate in the host cell until a cytopathic effect is observed. The appearance of plaques, colonies of rounded, enlarged cells containing infectious virions, usually takes 2 to 3 weeks to reach an endpoint. We describe a flow cytometric bioassay for adenovirus which shortens the time from when the infection takes place to the time that biological titer is determined. A fluorescent focus-forming assay was one of the first rapid adenoviral bioassays developed. Virus titer was determined using fluorescence immunocytochemistry to detect adenovirus proteins and microscopy to count fluorescent foci in cultures of adenovirus-infected cells. In this study, we describe a flow cytometric assay performed on cells stained for adenovirus hexon capsid protein, where virus titer is determined based on the dose-dependent appearance of hexon-positive cells. Adenovirus hexon detection in infected cells can provide data to determine virus titer, inducible promoter function in vector-complementing cells, and vector replication in complementation-deficient cells.  相似文献   

3.
The current study presents a new miniature microfluidic flow cytometer integrated with several functional micro-devices capable of viral sample purification and detection by utilizing a magnetic bead-based immunoassay. The magnetic beads were conjugated with specific antibodies, which can recognize and capture target viruses. Another dye-labeled anti-virus antibody was then used to mark the bead-bound virus for the subsequent optical detection. Several essential components were integrated onto a single chip including a sample incubation module, a micro flow cytometry module and an optical detection module. The sample incubation module consisting of pneumatic micropumps and a membrane-type, active micromixer was used for purifying and enriching the target virus-bound magnetic beads with the aid of a permanent magnet. The micro flow cytometry module and the optical detection module were used to perform the functions of virus counting and collection. Experimental results showed that virus samples with a concentration of 10(3)PFU/ml can be automatically detected successfully by the developed system. In addition, the entire diagnosis procedure including sample incubation and virus detection took only about 40min. Consequently, the proposed micro flow cytometry may provide a powerful platform for rapid diagnosis and future biological applications.  相似文献   

4.
The plaque assay has been widely used for titration of adenovirus (AdV). However, it takes usually 2-3 weeks, so this slow assay often impedes bioprocess development of large-scale AdV production. In this study, we developed a rapid AdV titration assay that can be done within a day. Further, unlike the plaque assay, this assay does not require a laborious serial dilution of samples. This rapid assay can be achieved by using green fluorescent protein (GFP) as a marker gene and flow cytometric analysis. It yields a good correlation between infectious titer of AdV harboring GFP and flow cytometric parameters such as average green fluorescence intensity or % of infected cells. Taken together, this rapid assay will facilitate bioprocess development for efficient large-scale AdV production.  相似文献   

5.
The influence of inoculum size and cell culture density on virus titer by cytopathic effect or plaque assay was studied using poliovirus type 1 and BGM (Buffalo green monkey) cells as a model for this evaluation. With a plaque assay system, a linear relationship was observed for an inoculum size of up 1 mL/25 cm2; a marked decrease in the number of plaques was observed when over 1 mL of sample was inoculated on this surface area. Cell culture density also affected virus titer; maximal titers were observed when cells were seeded at 25 000 to 75 000 cells/mL and incubated for 6 days before infection with the virus. Viral density, evaluated as most-probable-number and measured by cytopathic effect under liquid overlay, revealed that the viral titer was similar up to 1 mL inoculum and increased only when over 1 mL was inoculated. Cell density had no significant effect on the viral titer measured by the most-probable-number method and cytopathic effect. Inactivation of inoculum due to an incubation temperature of 37 degrees C for a short period was shown to be minimal for poliovirus type 1, reovirus type 2, coxsackievirus B-5, and the simian rotavirus SA-11. Longer inactivation time led to a 2 logs reduction of the infectious titer of coxsackievirus B-5 (in 48 h) while the other viruses showed a significant reduction in titer only after 96 h.  相似文献   

6.
BACKGROUND: Plug flow cytometry is a recently developed system for the automated delivery of multiple small boluses or "plugs" of cells or particles to the flow cytometer for analysis. Important system features are that sample plugs are of precisely defined volume and that the sample vessel need not be pressurized. We describe how these features enable direct cell concentration determinations and novel ways to integrate flow cytometers with other analytical instruments. METHODS: Adhesion assays employed human polymorphonuclear neutrophils (PMNs) loaded with Fura Red and Chinese hamster ovary (CHO) cells cotransfected with genes for green fluorescent protein (GFP) and human P-selectin. U937 cells expressing the human 7-transmembrane formyl peptide receptor were loaded with the fluorescent probe indo-1 for intracellular ionized calcium determinations. A computer-controlled syringe or peristaltic pump loaded the sample into a sample loop of the plug flow coupler, a reciprocating eight-port valve. When the valve position was switched, the plug of sample in the sample loop was transported to the flow cytometer by a pressure-driven fluid line. RESULTS: In stirred mixtures of PMNs and CHO cells, we used plug flow cytometry to directly quantify changes in concentrations of nonadherent singlet PMNs. This approach enabled accurate quantification of adherent PMNs in multicell aggregates. We constructed a novel plug flow interface between the flow cytometer and a cone-plate viscometer to enable real-time flow cytometric analysis of cell-cell adhesion under conditions of uniform shear. The High Throughput Pharmacology System (HTPS) is an instrument used for automated programming of complex pharmacological cell treatment protocols. It was interfaced via the plug flow coupling device to enable rapid (< 5 min) flow cytometric characterization of the intracellular calcium dose-response profile of U937 cells to formyl peptide. CONCLUSIONS: By facilitating the coupling of flow cytometers to other fluidics-based analytical instruments, plug flow cytometry has extended analytical capabilities in cell adhesion and pharmacological characterization of receptor-ligand interactions.  相似文献   

7.
[目的]建立流式微球一步法快速免疫检测马铃薯A病毒(PVA)的新方法.[方法]以荧光微球为反应载体,通过在微球表面进行双抗夹心免疫反应形成微球-捕获抗体-PVA-标记FITC检测抗体的复合物,利用流式细胞仪荧光检测系统收集荧光信号.[结果]通过实验优化检测条件,最佳捕获抗体工作浓度为4μg/mL、最佳检测抗体工作浓度为1:25倍稀释、最佳反应时间为2h;与马铃薯Y病毒、莴苣花叶病毒、番茄环斑病毒等均未出现交叉反应;阳性样品经64倍稀释后依然可检出,检测灵敏度是传统微孔板ELISA的4倍.[结论]流式微球一步法能灵敏、快速、简便的检测马铃薯A病毒.  相似文献   

8.
We describe here a double-layer plaque assay for the quantification of enteroviruses, combining a monolayer plaque assay and a suspended-cell plaque assay. The double-layer assay provides significantly greater counts than other methods of virus quantification of both suspensions of pure culture viruses and naturally occurring viruses. The counts obtained by this method are approximately one order of magnitude greater than those obtained with the more commonly used method, the monolayer plaque assay. We conclude that the methods available for quantifying viruses rank in efficiency as follows: double-layer plaque assay >or=suspended-cell plaque assay > counting cytopathogenic virus adsorbed to cellulose nitrate membrane filters >or= most probable number of cytopathogenic units > monolayer plaque assay. Moreover, the double-layer plaque assay allows the use of two different cell lines in the two layers. Using the human colonic carcinoma cell line CaCo2 facilitates the recovery of a greater number and diversity of naturally occurring enteroviruses in water than the monolayer agar method. In addition, the pretreatment of cells with 5-iodo-2'-deoxyuridine (IDU) prior to the quantification of enteroviruses by the double-layer plaque assay provides significantly higher recoveries than the use of IDU does with the other methods of quantification.  相似文献   

9.
Methods facilitating research in malaria are of pivotal relevance. Flow cytometry offers the possibility of rapid enumeration of parasitemia. It relies on staining the parasite DNA to distinguish between infected and non-infected red blood cell (RBC) populations. Unfortunately, in rodents abundant reticulocyte RNA interferes with the application of the method. This results in time-consuming sample preparation protocols that offer no clear advantage over microscopic counting. We re-evaluated the use of the DNA/RNA discriminating vital fluorochrome acridine orange (AO) for rapid flow cytometric enumeration of parasitemia in rodents. Whole blood from rodents infected with Plasmodium berghei and Plasmodium yoelii was stained with AO and analyzed by flow cytometer. A newly developed two-channel (FL1/FL3) detection method was compared with conventional one-channel (FL1) detection and microscopic counting. The new AO two-channel detection method clearly discriminated between infected and non-infected RBC populations. It showed to be linear above parasitemias of 0.3%. Sample processing time amounted to approximately 5 min. It is shown that AO can be used for rapid, precise, and accurate enumeration of parasitemia in rodents. Due to its ease of handling the method might find widespread application in malaria research.  相似文献   

10.
Lymphocytic choriomeningitis virus (LCMV), a natural murine pathogen, is a member of the Arenavirus family, may cause atypical meningitis in humans, and has been utilized extensively as a model pathogen for the study of virus-induced disease and immune responses. Historically, viral titers have been quantified by a standard plaque assay, but for non-cytopathic viruses including LCMV this requires lengthy incubation, so results cannot be obtained rapidly. Additionally, due to specific technical constraints of the plaque assay including the visual detection format, it has an element of subjectivity along with limited sensitivity. In this study, we describe the development of a FACS-based assay that utilizes detection of LCMV nucleoprotein (NP) expression in infected cells to determine viral titers, and that exhibits several advantages over the standard plaque assay. We show that the LCMV-NP FACS assay is an objective and reproducible detection method that requires smaller sample volumes, exhibits a ~20-fold increase in sensitivity to and produces results three times faster than the plaque assay. Importantly, when applied to models of acute and chronic LCMV infection, the LCMV-NP FACS assay revealed the presence of infectious virus in samples that were determined to be negative by plaque assay. Therefore, this technique represents an accelerated, enhanced and objective alternative method for detection of infectious LCMV that is amenable to adaptation for other viral infections as well as high throughput diagnostic platforms.  相似文献   

11.
Double-Layer Plaque Assay for Quantification of Enteroviruses   总被引:1,自引:1,他引:0       下载免费PDF全文
We describe here a double-layer plaque assay for the quantification of enteroviruses, combining a monolayer plaque assay and a suspended-cell plaque assay. The double-layer assay provides significantly greater counts than other methods of virus quantification of both suspensions of pure culture viruses and naturally occurring viruses. The counts obtained by this method are approximately one order of magnitude greater than those obtained with the more commonly used method, the monolayer plaque assay. We conclude that the methods available for quantifying viruses rank in efficiency as follows: double-layer plaque assay ≥ suspended-cell plaque assay > counting cytopathogenic virus adsorbed to cellulose nitrate membrane filters ≥ most probable number of cytopathogenic units > monolayer plaque assay. Moreover, the double-layer plaque assay allows the use of two different cell lines in the two layers. Using the human colonic carcinoma cell line CaCo2 facilitates the recovery of a greater number and diversity of naturally occurring enteroviruses in water than the monolayer agar method. In addition, the pretreatment of cells with 5-iodo-2′-deoxyuridine (IDU) prior to the quantification of enteroviruses by the double-layer plaque assay provides significantly higher recoveries than the use of IDU does with the other methods of quantification.  相似文献   

12.
As the use of adenoviral vectors in gene therapy protocols increases, there is a corresponding need for rapid, accurate, and reproducible titer methods. Multiple methods currently exist for determining titers of recombinant adenoviral vector, including optical absorbence, electron microscopy, fluorescent focus assay, and the “gold standard” plaque assay. This paper introduces a novel flow cytometric method for direct titer determination that relies on the expression of the green fluorescent protein (GFP), a tracking marker incorporated into several adenoviral vectors. This approach was compared to the plaque assay using 10−4-to 10−6-fold dilutions of a cesium-chloride-purified, GFP expressing adenovirus (AdEasy+GFP+GAL). The two approaches yielded similar titers: 3.25±1.85×109 PFU/mL versus 3.46±0.76×109 green fluorescent units/(gfu/mL). The flow cytometric method is complete within 24 h in contrast to the 7×10 days required by the plaque assay. These results indicate that the GFU/mL is an alternative functional titer method for fluorescent-tagged adenoviral vectors.  相似文献   

13.
A sensitive assay for adenovirus quantitation in vitro was developed using the flow microsphere immunoassay (FMIA) approach. Polystyrene microspheres were covalently coated with purified anti-adenoviral antibodies and incubated with virus-containing samples. After incubation, the samples were stained with DNA-specific fluorescent dyes, and microsphere-associated fluorescence was quantitated with a flow cytometer. The adsorption of virus to microspheres was examined under different experimental conditions. The flow cytometric assay was determined to be as accurate in detecting adenovirus as titering on 293 cells. The proposed method can be used to quantify virus in viral stocks and in biological samples.  相似文献   

14.
15.
Quantification of viral infectious units is traditionally measured by methods based on forming plaques in semisolid media (PFU) or endpoint dilution of a virus-containing solution (TCID50), methods that are laborious, time-consuming and take on average 3–7 days to carry out. Quantitative real-time PCR is an established method to quantify nucleic acids at high accuracy and reproducibility, routinely used for virus detection and identification. In the present study, a procedure was developed using a two-step real-time PCR and the SYBR Green detection method to study whether there are correlations between TCID50/ml, PFU/ml and Ct values generated by real-time PCR enabling rapid and efficient calculation of titer equivalents when working with viruses in the research laboratory. In addition, an external standard with known concentrations was included using in vitro transcribed viral RNA, thus allowing the calculation of the amount of RNA copies needed for various applications (i.e. per plaque or TCID50).The results show that there is a correlation between the three quantification methods covering a wide range of concentration of viruses. Furthermore, a general regression line between TCID50 and Ct values was obtained for all viruses included in the study, which enabled recording titer equivalents using real-time PCR. Finally, by including an external standard, the amount of RNA genomes generating one TCID50 or PFU for each enterovirus serotype included was determined.  相似文献   

16.
For a eukaryotic virus to successfully infect and propagate in cultured cells several events must occur: the virion must identify and bind to its cellular receptor, become internalized, uncoat, synthesize viral proteins, replicate its genome, assemble progeny virions, and exit the host cell. While these events are taking place, intrinsic host defenses activate in order to defeat the virus, e.g., activation of the interferon system, induction of apoptosis, and attempted elicitation of immune responses via chemokine and cytokine production. As a first step in developing an imaging methodology to facilitate direct observation of such complex host/virus dynamics, we have designed an immunofluorescence-based system that extends the traditional plaque assay, permitting simultaneous quantification of the rate of viral spread, as indicated by the presence of a labeled viral protein, and cell death in vitro, as indicated by cell loss. We propose that our propagation and cell death profiles serve as phenotypic read-outs, complementing genetic analysis of viral strains. As our virus/host system we used vesicular stomatitis virus (VSV) propagating in hamster kidney epithelial (BHK-21) and murine astrocytoma (DBT) cell lines. Viral propagation and death profiles were strikingly different in these two cell lines, displaying both very different initial titer and cell age effects. The rate of viral spread and cell death tracked reliably in both cell lines. In BHK-21 cells, the rate of viral propagation, as well as maximal spread, was relatively insensitive to initial titer and was roughly linear over several days. In contrast, viral plaque expansion in DBT cells was contained early in the infections with high titers, while low titer infections spread in a manner similar to the BHK-21 cells. The effect of cell age on infection spread was negligible in BHK-21 cells but not in DBTs. Neither of these effects was clearly observed by plaque assay.  相似文献   

17.
18.
A method for the rapid detection and quantification of Newcastle disease virus (NDV) produced in an animal cell culture-based production system was developed to enhance the speed of the NDV vaccine manufacturing process. A SYBR Green I-based real-time RT-PCR was designed with a conventional, inexpensive RT-PCR kit targeting the F gene of the NDV LaSota strain. The method developed in this study was validated for specificity, accuracy, precision, linearity, limit of detection (LOD), limit of quantification (LOQ), and robustness. The validation results satisfied the predetermined acceptance criteria. The validated method was used to quantify virus samples produced in an animal cell culture-based production system. The method was able to quantify the NDV samples from mid- or late-production phases, but not effective on samples from the early-production phase. For comparison with other quantifiable methods, immunoblotting, plaque assay, and tissue culture infectious dose 50 (TCID50) assay were also performed with the NDV samples. The results demonstrated that the real-time RT-PCR method is suitable for the rapid quantification of virus particles produced in an animal cell-culture-based production system irrespective of viral infectivity.  相似文献   

19.
A novel and rapid method for the total particles quantification of murine leukemia virus derived retroviral vectors pseudotyped with vesicular stomatitis virus-G glycoprotein was developed using high performance liquid chromatography. Virus particles were detected by absorbance at 260 nm and quantified using a calibration curve generated from highly purified and concentrated viral stock characterized by negative stain electron microscopy. The method requires Benzonase digestion and concentration of the supernatant prior to analysis. The virus eluted in 12.55 min at a flow rate of 1 mL/min in 20 mM Tris-Cl, pH 7.4 + 1.1 M NaCl. The limits of detection and quantification of this assay were 4.71 x 10(8) and 1.57 x 10(9) viral particles/mL, respectively. Linearity was between 3.0 x 10(9) and 1.0 x 10(11) viral particles/mL with a correlation coefficient of 0.9923 and a slope of 6 x 10(-6). The assay precision was <5% and <10% for intra- and inter-day analysis, respectively. This assay was used for the total particles quantification of a 7-day, large-scale perfusion culture production of a retroviral vector grown in 293 cells expressing the beta-galactosidase gene.  相似文献   

20.
One of the challenges facing researchers working with viruses and gene therapy vectors is the need to rapidly assay for infectious virus. Current methods used to titer many viruses are cumbersome and are not amenable to handling large numbers of samples. Here we describe the development of an assay that can rapidly quantify infectious viruses and gene therapy vectors. The assay relies on biological amplification of viral sequences and hybridization of labeled probes to immobilized nucleic acid from infected cells. The amplification of the viral genome makes this a highly sensitive method. The assay is configured in a high-throughput format that has been used to detect recombinant adeno-associated virus (AAV), wild-type AAV and infectious adenovirus. The assay is quantitative, and can be used to titer virus preparations with or without a known standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号