首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we examined the kinetics of interaction between mouse peritoneal macrophages (MPH) or human blood monocytes (HBM) with intracellular (amastigote [AMA]) forms of Trypanosoma cruzi. In electron microscopy studies, AMA were seen bound to the surface of unelicited MPH after 5 min of interaction, i.e., when the first observations were made. Internalization was visible after 8 min, and the AMA were never seen outside of phagocytic vacuoles. Signs of AMA damage were first seen after 4 hr. Amastigote disintegration was commonly observed 12 hr after their initial contact with MPH. Similar results were obtained with HBM. These kinetic patterns of AMA uptake and destruction were in agreement with the results of quantitative assays in which the number of AMA contained by 200 MPH and the percentage of infected MPH were measured. The extent of the release of 3H-labeled materials from MPH that had phagocytosed [3H]AMA was approximately 10, 90, and 99% of the total ingested radioactivity after 4, 12, and 24 hr of incubation, respectively. A comparison of the kinetic patterns of MPH interaction with noninvasive AMA and invasive trypomastigote (TRY) forms showed that, after internalization, both the percentage of AMA-containing MPH and the number of AMA per 200 MPH declined dramatically over a 70-hr incubation period, whereas the percentage of MPH infected by the TRY remained virtually constant and the number of organisms per 200 cells increased markedly. This contrast indicated that the AMA had been destroyed, whereas the TRY had managed to survive, transform into AMA, and multiply within MPH. AMA killing by MPH involved H2O2 but not other intermediates of oxygen reduction, because it was inhibited by catalase but not by scavengers of O2, OH ., and 1O2. AMA lost their viability when incubated with glucose and glucose oxidase, confirming their sensitivity to H2O2. Thus, MPH and HBM have the potential for participating in the clearance of T. cruzi AMA from chagasic tissue lesions.  相似文献   

2.
Mouse peritoneal macrophages (MPM) or human blood monocytes (HBM) co-cultured with intracellular (amastigote; AMA) forms of Trypanosoma cruzi in the presence of human lactoferrin (LF) took up greater numbers of organisms than in the absence of LF; the proportion of phagocytes taking up AMA was also significantly increased. Pretreatment of either MPM or AMA with LF also enhanced cell-parasite association. By immunofluorescence, HBM, MPM, and AMA were found to bind LF. By using 125I-labeled LF, each AMA was determined to have an average 1.1 X 10(6) surface receptors for LF. The enhancing effect of LF on cell-parasite association was inhibited when either rabbit anti-LF IgG or alpha-methyl mannoside (alpha-MM) was present during the incubation of MPM or AMA with LF, or when AMA pretreated with LF were then incubated with either of the LF blocking agents. Although these findings seemed to suggest that LF increased MPM-AMA association by bridging these cells, the LF effect was not inhibited when MPM pretreated with LF were subsequently incubated with either alpha-MM or anti-LF. Furthermore, LF stimulated phagocytosis, as denoted by a significant increase in latex particle uptake after LF treatment of MPM. The intracellular killing capacity of HBM or MPM was also stimulated by LF and was denoted by increased AMA destruction after LF treatments. The possibility that LF only appeared to increase the rate of AMA killing by simply promoting the engulfment of greater numbers of AMA that would then be destroyed intracellularly seemed unlikely because untreated MPM that had already taken up untreated AMA killed greater numbers of AMA when they were subsequently incubated with LF. The results of experiments with scavengers of oxygen reduction intermediates and of nitroblue tetrazolium reduction tests indicated that H2O2, O2- and 1O2 were involved in the killing of AMA by LF-treated MPM. These results suggest that LF, a glycoprotein secreted by neutrophils in greater than normal amounts during inflammation, may contribute to macrophage clearance of AMA released from infected host cells.  相似文献   

3.
The fate of Schistosoma mansoni (Trematoda) sporocysts in its molluscan host Biomphalaria glabrata (Gastropoda) is determined by circulating phagocytes (hemocytes). When the parasite invades a resistant snail, it is attacked and destroyed by hemocytes, whereas in a susceptible host it remains unaffected. We used 3 inbred strains of B. glabrata: 13-16-R1 and 10-R2, which are resistant to the PR-1 strain of S. mansoni, and M-line Oregon (MO), which is susceptible to PR-1. In an in vitro killing assay using plasma-free hemocytes from these strains, the rate of parasite killing corresponded closely to the rate by which S. mansoni sporocysts are killed in vivo. Hemocytes from resistant snails killed more than 80% of S. mansoni sporocysts within 48 hr, whereas sporocyst mortality in the presence of hemocytes from susceptible snails was <10%. Using this in vitro assay, we assessed the involvement of reactive oxygen species (ROS) produced by resistant hemocytes, during killing of S. mansoni sporocysts. Inhibition of NADPH oxidase significantly reduced sporocyst killing by 13-16-R1 hemocytes, indicating that ROS play an important role in normal killing. Reduction of hydrogen peroxide (H2O2) by including catalase in the killing assay increased parasite viability. Reduction of superoxide (O2-), however, by addition of superoxide dismutase or scavenging of hydroxyl radicals (*OH) and hypochlorous acid (HOCl) by addition of hypotaurine did not alter the rate of sporocyst killing by resistant hemocytes. We conclude that H2O2 is the ROS mainly responsible for killing.  相似文献   

4.
T. cruzi: sensitization to macrophage killing by eosinophil peroxidase   总被引:8,自引:0,他引:8  
In this study, we report that trypomastigotes of T. cruzi coated with eosinophil peroxidase (EPO) become sensitized to killing by normal macrophages that are unable to kill uncoated organisms. EPO bound to the surface of the organisms without affecting their extracellular viability. The intracellular killing of EPO-coated trypomastigotes could be inhibited by catalase and azide, suggesting that toxicity was mediated through the small amounts of hydrogen peroxide generated by the phagocytic event in normal macrophages and the peroxidatic activity of EPO. EPO-coated organisms could be killed in a cellfree system by the addition of H2O2 and either iodide, bromide, or chloride. Omission of H2O2 decreased but did not prevent the killing of trypanosomes by the cellfree system and this residual toxicity was abolished by catalase. This suggests that H2O2 generated by trypanosomes contributes to the death of EPO-coated organisms. EPO-coated organisms could also be killed extracellularly when exposed to normal macrophages at high parasite to cell ratios or when a high phagocytic load of another particle was given simultaneously. This effect could be inhibited by both azide and catalase, but not by superoxide dismutase. This suggests that enough H202 is released by phagocytosis of a high number of organisms to generate toxic concentrations of H2O2 outside the confines of the vacuolar system.  相似文献   

5.
Functional activity of enucleated human polymorphonuclear leukocytes   总被引:33,自引:2,他引:31       下载免费PDF全文
Enucleated human polymorphonuclear leukocytes (PMN) were prepared by centrifuging isolated, intact PMN over a discontinuous Ficoll gradient that contained 20 microM cytochalasin B. The enucleated cells (PMN cytoplasts) contained about one-third of the plasma membrane and about one-half of the cytoplasm present in intact PMN. The PMN cytoplasts contained no nucleus and hardly any granules. The volume of the PMN cytoplasts was about one-fourth of that of the original PMN. Greater than 90% of the PMN cytoplasts had an "outside-out" topography of the plasma membrane. Cytoplasts prepared from resting PMN did not generate superoxide radicals (O2-) or hydrogen peroxide. PMN cytoplasts incubated with opsonized zymosan particles or phorbol-myristate acetate induced a respiratory burst that was qualitatively (O2 consumption, O2- and H2O2 generation) and quantitatively (per unit area of plasma membrane) comparable with that of intact, stimulated PMN. Moreover, at low ratios of bacteria/cells, PMN cytoplasts ingested opsonized Staphylococcus aureus bacteria as well as did intact PMN. At higher ratios, the cytoplasts phagocytosed less well. The killing of these bacteria by PMN cytoplasts was slower than by intact cells. The chemotactic activity of PMN cytoplasts was very low. These results indicate that the PMN apparatus for phagocytosis, generation of bactericidal oxygen compounds, and killing of bacteria, as well as the mechanism for recognizing opsonins and activating PMN functions, are present in the plasma membrane and cytosol of these cells.  相似文献   

6.
The release of beta-glucuronidase and lysozyme from human polymorphonuclear leukocytes (PMN) engaged in phagocytosis and lysis of Trypanosoma cruzi epimastigotes was studied in the presence or absence of chagasic serum. Lysosomal enzyme release was enhanced when parasites were sensitized with serum from a chronic Chagas' patient, increased up to 3 hr of incubation at 28 C, and depended on the PMN:parasite ratio. The release of lysosomal enzymes was determined by the presence of 2 mM cyanide, 2 microM azide, 3 mM amobarbital, and 1 mM phenylbutazone. These drugs inhibited the killing of sensitized T. cruzi by interfering with the oxidative microbicidal mechanisms of PMN without affecting the uptake of the parasites. Lysosomal enzyme release occurred in the presence of cyanide and azide, indicating that in these cases the enzymatic release was unrelated to the killing of the parasites. Amobarbital and phenylbutazone, which stabilize PMN membranes, inhibited the release of beta-glucuronidase and lysozyme by PMN. The addition of 10 micrograms/ml of cytochalasin B inhibited the phagocytosis and killing of sensitized T. cruzi by PMN but increased the enzymatic release by effector cells. Since cytochalasin B did not affect the close contact between PMN and parasites, it appears that the enzymes released to the extracellular milieu were not toxic to noningested parasites. Furthermore, the lysosomal enzymes did not lyse bystander unsensitized parasites. Therefore, the release of lysosomal enzymes during the interaction of T. cruzi epimastigotes and PMN seems to be related to the triggering event of the phagocytic process and does not bear a cause-effect relationship with parasite death.  相似文献   

7.
Eimeria bovis and Toxoplasma gondii differ in their susceptibility to macrophages activated by lymphokines. Interferon-gamma can activate macrophages to totally inhibit E. bovis sporozoite development, whereas growth of T. gondii tachyzoites in macrophages is not totally affected. The susceptibility of these parasites to oxygen intermediates and their ability to evade the oxidative burst by macrophages were investigated in cell-free systems. Using a logistic model to assess growth inhibition, T. gondii growth was impaired by 50% at 10(-4.25) M (56 microM) H2O2, with 30 min as the optimum time for measuring inhibition. Preliminary results indicate that T. gondii follows mode-one and mode-two killing with relation to time after exposure to H2O2, implying a role for OH. and the induction of a DNA repair mechanism. The same model was used to assess inhibition of E. bovis growth that was more susceptible, being inhibited to 50% by 10(-5) M (10 microM) H2O2. Both parasites were susceptible to the effects of xanthine-xanthine oxidase that releases a full complement of oxygen intermediates (H2O2, OH., (1)O2, and O2-). Adding quenchers or scavengers to the system confirmed that T. gondii was susceptible to products of the interaction of O2- and H2O2 (OH. and (1)O2), and that E. bovis sporozoites were at least partially susceptible to H2O2 and O2-, but extremely susceptible to OH.. These data were supported by studies on scavenging enzymes present in the parasites. Toxoplasma gondii was rich in superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPO), and E. bovis had less catalase and SOD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effects of retinoic acid (RA; vitamin A acid) on macrophage function were investigated by measuring the capacities of mouse peritoneal macrophages to associate with (i.e., bind and internalize) and kill the unicellular parasite Trypanosoma cruzi. The presence of 10(-8) to 10(-6) M RA in co-cultures of macrophages and blood forms of the parasite markedly increased their interaction as evidenced by significant increases in both the percentage of phagocytes associating with parasites and the average number of parasites per 100 cells. A similar effect was produced when either the macrophages or the trypanosomes were pretreated with RA, suggesting that both cell types could contribute to the noted effect. Although RA might have enhanced parasite-macrophage association by binding to both, its ability to stimulate phagocytosis was independently evidenced by a significant increase in the uptake of latex particles. RA-treated macrophages also took up larger numbers of dead T cruzi, denoting that parasite viability (i.e., infectivity) was not necessary for the production of the RA effect. The minimum pretreatment time for RA to significantly stimulate macrophage association with T. cruzi was 30 min, although a 45-min pretreatment was necessary for a maximal effect to be seen under our experimental conditions. The RA effect was reversible because, once optimally induced, it remained demonstrable for only 30 to 60 min after removal of the reagent; however, the effect persisted for at least 3 hr if RA was not removed. Transglutaminase activity appeared to be involved in the RA effect, because the latter was abrogated when the macrophages were treated with RA in the presence of cystamine, methylamine, or monodansylcadaverine, all of which inhibit transglutaminase activity by different mechanisms. RA also increased the capacity of macrophages to kill parasites internalized before the treatment. This cytotoxic capacity was inhibited by catalase, indicating that H2O2 played a role in the killing mechanism. RA treatment significantly increased the proportion of macrophages capable of reducing nitroblue tetrazolium. The present results indicated that RA was capable of activating macrophages, leading to greater uptake and killing of a protozoan parasite.  相似文献   

9.
Experiments were done to determine 1) whether the respiratory burst of superoxide anion (O2-) production in polymorphonuclear leukocytes (PMN) is triggered during antibody-dependent killing of tumor cells and 2) whether O2- production is essential for cytotoxicity. Three parameters of the respiratory burst (1-14C-glucose oxidation, oxygen consumption, and O2- release) were increased 2.5- to 7.3-fold during killing of antibody-primed tumor cells by human PMN. Added catalase and superoxide dismutase did not inhibit lysis, possibly because these enzymes were unable to diffuse into the inter-plasma-membrane space between killer and target cells. Evidence for an O2- requirement for cytotoxicity was the fact that concentrations of amobarbital or phenylbutazone sufficient to inhibit the cyanide-insensitive respiration of PMN also inhibited cytotoxicity. Also, hypoxic conditions inhibited cytotoxicity from 29 to 73%. The requirement for oxygen was most likely related to O2- generation and not mitochondrial respiration since cyanide and azide, which inhibit mitochondrial respiration, increased cytotoxicity.  相似文献   

10.
The increased respiratory and hexose monophosphate activities noted in phagocytizing cells results in the formation of hydrogen peroxide. This is brought about by the oxidation of reduced nicotinamide adenine dinucleotide phosphate by its oxidase. Evidence is presented which indicates that this H(2)O(2) is involved in the intracellular killing of bacteria. When molecular oxygen was excluded from phagocytizing leukocytes by anaerobiosis, thus inhibiting H(2)O(2) formation, reduced intracellular killing was observed. In some cases the impairment of leukocytic bactericidal activity by anaerobiosis could be partially reversed by the addition of H(2)O(2). Exogenous catalase also could reduce intracellular killing. In addition, when leukocytic isolates were dialyzed so as to reduce endogenous H(2)O(2), the bactericidal activity of the leukocytes was significantly decreased under both aerobic and anaerobic conditions. These results occurred with both guinea pig and human leukocytes and with several test microorganisms.  相似文献   

11.
Han Y  Geng J  Qiu Y  Guo Z  Zhou D  Bi Y  Du Z  Song Y  Wang X  Tan Y  Zhu Z  Zhai J  Yang R 《DNA and cell biology》2008,27(8):453-462
The catalase or catalase-peroxidase activity commonly exists in many pathogens and plays an important role in resisting the oxidative burst of phagocytes helping the pathogen persistently colonize in the host. Yersinia pestis is a facultative pathogen and the causative agent of plague. KatY has been identified as a thermosensing antigen with modest catalase activity in this pathogen. Here Y. pestis KatA and KatY were experimentally confirmed as a monofunctional catalase and bifunctional catalase-peroxidase, respectively. Their expression induced by H2O2 was proven to be mediated by the oxidative regulator, OxyR. Expression of KatA changed with growth phases and was crucial to its traditional physiological role in protecting Y. pestis cells against toxicity of exogenous H2O2. KatY was regulated by temperature and H2O2, two major elements of phagolysosomal microenvironments. Consistent with the above results, gene expression of katY increased significantly during intracellular growth of Y. pestis compared with that in vitro growth. However, a DeltakatY mutant was fully virulent to mice, suggesting that KatY is not required for Y. pestis virulence.  相似文献   

12.
Schistosoma mansoni, a causative agent of schistosomiasis, resides in the hepatic portal circulation of their human host up to 30 years without being eliminated by the host immune attack. Production of an antioxidant "firewall," which would neutralize the oxidative assault generated by host immune defenses, is one proposed survival mechanism of the parasite. Schistosomes lack catalase, the main H2O2-neutralizing enzyme of many organisms, and their glutathione peroxidases are in the phospholipid class with poor reactivity toward H2O2. Evidence implicates peroxiredoxins (Prx) as providing the main enzymatic activity to reduce H2O2 in the parasite. Quantitative monitoring of Prx mRNAs during parasite life cycle indicated that Prx proteins are differentially expressed, with highest expression occurring in adult stages (oxidative resistant stages). Incubation of schistosomula with Prx1 double-stranded RNA knocked down total Prx enzymatic activity and resulted in lowered survival of cultured parasites compared with controls demonstrating that Prx are essential parasite proteins. These results represent the first report of lethal gene silencing in Schistosoma. Investigation of downstream effects of Prx silencing revealed an abrupt increase of lipid peroxides and the generation of several oxidized proteins. Using mass spectrometry, parasite albumin and actin were identified as the main oxidized proteins. Gene expression analysis showed that schistosome albumin was induced by oxidative stress. This study highlights Prx proteins as essential parasite proteins and potential new targets for anti-schistosome drug development and albumin as a novel, sacrificial oxidant scavenging protein in parasite redox regulation.  相似文献   

13.
The ability of bovine polymorphonuclear leucocytes (PMN) to release H2O2 was investigated. Resting PMN suspended in buffer released only small amounts of H2O2 which was appreciably increased during phagocytosis of heat killed coliforms. However, in the presence of bovine serum (BS), foetal calf serum (FCS) and milk whey (MW) no increase of H2O2 could be detected unless sodium azide (NaN2) was added. It appears that the enzyme content of these fluids (catalase and lactoperoxidase) consumed the released H2O2 and NaN2, which inactivates these enzymes, abolished this interference. Live organisms required BS or MW both for phagocytosis and for H2O2 production. Bovine IgG2 and, to a lesser extent, IgG1 but not SIgA or IgM stimulated the release of H2O2 independently of phagocytosis; this indicates the presence of receptors specific for IgG2 and IgG1 on the cell surface. Ingestion of casein micelles triggered the greatest burst of H2O2 production by cells suspended in buffer. In general, PMN isolated from blood were more active than cells isolated from milk. Since the extracellular release of H2O2 reflects the intracellular level of H2O2, the lower metabolic activity of milk PMN may contribute to the lesser intracellular bactericidal activity of milk leucocytes. The possibility that the release of H2O2 may activate extracellularly the lactoperoxidase system, known to be bactericidal in milk, is discussed.  相似文献   

14.
Antimycin A (AMA), an inhibitor of electron transport in mitochondria, has been used as a reactive oxygen species (ROS) generator in biological systems. Here, we investigated the in vitro effect of AMA on apoptosis in HeLa cells. AMA inhibited the growth of HeLa cells with an IC(50) of about 50 microM. AMA efficiently induced apoptosis, as evidenced by flow cytometric detection of sub-G1 DNA content, annexin V binding assay, and DAPI staining. This apoptotic process was accompanied by the loss of mitochondrial membrane potential (DeltaPsi(m)), Bcl-2 down-regulation, Bax up-regulation, and PARP degradation. All caspase inhibitors used in this experiment, especially pan-caspase inhibitor (Z-VAD), could rescue some HeLa cells from AMA-induced cell death. When we examined the changes of the ROS, H(2)O(2) or O(2) (.-), in AMA-treated cells, H(2)O(2) and O(2) (.-) were markedly increased. In addition, we detected the depletion of GSH content in AMA-treated cells. Pan-caspase inhibitor showing the efficient anti-apoptotic effect significantly reduced GSH depletion by AMA. Superoxide dismutase (SOD) and catalase did not reduce intracellular ROS, but these could strongly rescue the cells from apoptosis. However, these anti-apoptotic effects were not accompanied by the recovery of GSH depletion. Interestingly, catalase significantly decreased the CMF negative (GSH depletion) and propidium iodide (PI) positive cells, indicating that catalase strongly maintained the integrity of the cell membrane in CMF negative cells. Taken together, these results demonstrate that AMA potently generates ROS, induces the depletion of GSH content in HeLa cells, and strongly inhibits the growth of HeLa cells throughout apoptosis.  相似文献   

15.
The malarial life cycle involves repeated rounds of intraerythrocytic replication interspersed by host cell rupture which releases merozoites that rapidly invade fresh erythrocytes. Apical membrane antigen-1 (AMA1) is a merozoite protein that plays a critical role in invasion. Antibodies against AMA1 prevent invasion and can protect against malaria in vivo, so AMA1 is of interest as a malaria vaccine candidate. AMA1 is efficiently shed from the invading parasite surface, predominantly through juxtamembrane cleavage by a membrane-bound protease called SUB2, but also by limited intramembrane cleavage. We have investigated the structural requirements for shedding of Plasmodium falciparum AMA1 (PfAMA1), and the consequences of its inhibition. Mutagenesis of the intramembrane cleavage site by targeted homologous recombination abolished intramembrane cleavage with no effect on parasite viability in vitro. Examination of PfSUB2-mediated shedding of episomally-expressed PfAMA1 revealed that the position of cleavage is determined primarily by its distance from the parasite membrane. Certain mutations at the PfSUB2 cleavage site block shedding, and parasites expressing these non-cleavable forms of PfAMA1 on a background of expression of the wild type gene invade and replicate normally in vitro. The non-cleavable PfAMA1 is also functional in invasion. However - in contrast to the intramembrane cleavage site - mutations that block PfSUB2-mediated shedding could not be stably introduced into the genomic pfama1 locus, indicating that some shedding of PfAMA1 by PfSUB2 is essential. Remarkably, parasites expressing shedding-resistant forms of PfAMA1 exhibit enhanced sensitivity to antibody-mediated inhibition of invasion. Drugs that inhibit PfSUB2 activity should block parasite replication and may also enhance the efficacy of vaccines based on AMA1 and other merozoite surface proteins.  相似文献   

16.
Hydrogen peroxide mediated killing of bacteria   总被引:6,自引:0,他引:6  
Summary Polymorphonuclear leukocytes (PMN) or neutrophils have multiple systems available for killing ingested bacteria. Nearly each of these incorporates H2O2 indicating the essential nature of this reactive oxygen intermediate for microbicidal activity. Following ingestion of bacteria by PMN, H2O2 is formed by the respiratory burst which consumes O2 and generates H2O2 from O2–. H2O2 is deposited intracellularly near bacteria within phagocytic vacuoles where it can react with the MPO-H2O2-halide system to form toxic hyperchlorous acid (HOCl) and/or possibly singlet oxygen (1O2). H2O2 can also react with O2– and/or iron (Fe++) from lactoferrin or bacteria to form the highly toxic hydroxyl radical (1OH). These mechanisms appear important since deficiencies of H2O2 production, myeloperoxidase or lactoferrin frequently increases their owner's susceptibility to infection. In particular, examination of PMN from infection prone patients with chronic granulomatous disease (CGD) most clearly demonstrates the importance of H2O2 in killing of bacteria. CGD PMN lack the capacity to effectively generate H2O2 and subsequently have impaired ability to kill catalase positive (H2O2 producing) but not catalase negative (not H2O2 producing) bacteria. PMN also have catalase and glutathione peroxidase systems in their cytoplasms to protect themselves from the toxicity of H2O2. Finally, while H2O2 is critical for host defense, it can also be released extracellularly and thereby play a significant role in PMN mediated tissue injury.  相似文献   

17.
Role of leukotrienes in killing of Mycobacterium bovis by neutrophils   总被引:2,自引:0,他引:2  
The neutrophil (PMN) plays an important role in the phagocytosis and killing of microorganisms. Pro-inflammatory leukotrienes (LT) play an important role in various disease states. However LT elaborated by PMN have also been shown to be important in host defense, specifically phagocytosis and killing of microorganisms. Defective LT synthesis by phagocytes correlates with their reduced anti-microbial activity. Therefore, we determined if LT played an important role in the killing of Mycobacteria bovis (M. bovis) by PMN. Endogenous LT play a role in the killing of mycobacteria since the LT synthesis inhibitor MK-886 reversed the killing of M. bovis by PMN. Increased synthesis of LT occurred following incubation of PMN with M. bovis. Treatment with granulocyte-colony stimulating factor, which augments PMN LT synthesis, also boosted anti-microbial activity. Furthermore, exogenous LTB4 augmented dose-dependent killing of M. bovis by PMN. In conclusion, LT play a vital role in promoting mycobactericidal actions of PMN.  相似文献   

18.
A method for recording O2 concentrations in nonconducting organic media with the Clark oxygen electrode was developed. Spontaneous oxidation of Na2S2O4 and the enzymatic reduction of NaBO3 or H2O2 by bovine liver catalase trapped in hydrated micelles of dioctylsulfosuccinate (AOT)/toluene were used as model systems. O2 titration with the above systems showed that air-saturated 1.6 M H2O/0.2 M AOT/toluene media contain seven times more O2 (1.4 mM) than aqueous solutions (0.2 mM). The measured Km values of catalase for NaBO3 and H2O2 in organic media were Kmov = 15 and 17 mM, respectively, whereas in aqueous buffer the values were 45 and 54 mM. In the toluene media, catalase activity increased with the W0 (H2O/AOT molar ratio) of the micellar preparation, reaching maximal activity at W0 = 10-12; under this condition, the catalytic center activity (Kp) of H2O2 was 7 x 10(6) min-1, similar to that obtained in the aqueous buffer (H2O2 = 7 x 10(6) min-1). It was found that the optimal pH for catalase in toluene media (pH 8.0) was shifted 1.0 unit compared to that in the aqueous buffer (pH 7.0). On the other hand, catalase was severely inhibited by NaN3 in both media. Thus, polarography based on the Clark oxygen electrode seems to be an easy, rapid, and sensitive technique for studying enzyme reactions consuming or evolving O2 in apolar media.  相似文献   

19.
Malaria is one of the most debilitating and life threatening diseases in tropical regions of the world. Over 500 million clinical cases occur, and 2-3 million people die of the disease each year. Because Plasmodium lacks genuine glutathione peroxidase and catalase, the two major antioxidant enzymes in the eukaryotic cell, malaria parasites are likely to utilize members of the peroxiredoxin (Prx) family as the principal enzymes to reduce peroxides, which increase in the parasite cell due to metabolism and parasitism during parasite development. In addition to its function of protecting macromolecules from H(2)O(2), Prx has also been reported to regulate H(2)O(2) as second messenger in transmission of redox signals, which mediate cell proliferation, differentiation, and apoptosis. In the malaria parasite, several lines of experimental data have suggested that the parasite uses Prxs as multifunctional molecules to adapt themselves to asexual and sexual development. In this review, we summarize the accumulated knowledge on the Prx family with respect to their functions in mammalian cells and their possible function(s) in malaria parasites.  相似文献   

20.
The anti-inflammatory drug phenylbutazone has been found to inhibit both engulfment and intracellular killing of E. coli by guinea pig peritoneal polymorphonuclear (PMN) leukocytes. The bactericidal activity of leukocytic homogenates was also inhibited by the drug. Addition of the drug at various time intervals to a phagocytic reacting system caused an almost immediate cessation of bactericidal activity. Metabolic studies showed that the drug sharply curtailed glucose-l-(14)C and (14)C-formate oxidation of both resting and phagocytizing PMN leukocytes. These data indicated an effect upon the hexose monophosphate shunt and H(2)O(2) formation. Further investigation showed that the sites of inhibition were on glucose-6-phosphate and 6-phosphogluconate dehydrogenase. These inhibitions resulted in decreased H(2)O(2) production. It is suggested that H(2)O(2) activates lysosomes and subsequently complexes with the lysosomal enzyme, myeloperoxidase. This complex is a potent bactericidal agent in the phagocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号