首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alcohols denature the native state of proteins, and also stabilize the alpha-helical conformation in unfolded proteins and peptides. Among various alcohols, trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) are often used because of their high potential to induce such effects. However, the reason why TFE and HFIP are more effective than other alcohols is unknown. Using CD, we studied the effects of TFE and HFIP as well as reference alcohols, i.e., methanol, ethanol, and isopropanol, on the conformation of bovine beta-lactoglobulin and the bee venom melittin at pH 2. Upon addition of alcohols, beta-lactoglobulin exhibited a transformation from the native state, consisting of beta-sheets, to the alpha-helical state, whereas melittin folded from the unfolded state to the alpha-helical state. In both cases, the order of effectiveness of alcohols was shown to be: HFIP > TFE > isopropanol > ethanol > methanol. The alcohol-induced transitions were analyzed assuming a two-state mechanism to obtain the m value, a measure of the dependence of the free energy change on alcohol concentration. Comparison of the m values indicates that the high potential of TFE can be explained by the additive contribution of constituent groups, i.e., F atoms and alkyl group. On the other hand, the high potential of HFIP is more than that expected from the additive effects, suggesting that the cooperative formation of micelle-like clusters of HFIP is important.  相似文献   

2.
Solid-state 31P- and 13C-NMR spectra were recorded in melittin-lecithin vesicles composed of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Highly ordered magnetic alignments were achieved with the membrane surface parallel to the magnetic field above the gel-to-liquid crystalline phase transition temperature (Tc). Using these magnetically oriented vesicle systems, dynamic structures of melittin bound to the vesicles were investigated by analyzing the 13C anisotropic and isotropic chemical shifts of selectively 13C-labeled carbonyl carbons of melittin under the static and magic-angle spinning conditions. These results indicate that melittin molecules adopt an alpha-helical structure and laterally diffuse to rotate rapidly around the membrane normal with tilt angles of the N-terminal helix being -33 degrees and -36 degrees and those of the C-terminal helix being 21 degrees and 25 degrees for DLPC and DPPC vesicles, respectively. The rotational-echo double-resonance method was used to measure the interatomic distance between [1-13C]Val8 and [15N]Leu13 to further identify the bending alpha-helical structure of melittin to possess the interhelical angles of 126 degrees and 119 degrees in DLPC and DPPC membranes, respectively. These analyses further lead to the conclusion that the alpha-helices of melittin molecules penetrate the hydrophobic cores of the bilayers incompletely as a pseudo-trans-membrane structure and induce fusion and disruption of vesicles.  相似文献   

3.
Whereas melittin at micromolar concentrations is unfolded under conditions of low salt at neutral pH, it transforms to a tetrameric alpha-helical structure under several conditions, such as high peptide concentration, high anion concentration, or alkaline pH. The anion- and pH-dependent stabilization of the tetrameric structure is similar to that of the molten globule state of several acid-denatured proteins, suggesting that tetrameric melittin might be a state similar to the molten globule state. To test this possibility, we studied the thermal unfolding of tetrameric melittin using far-UV CD and differential scanning calorimetry. The latter technique revealed a broad but distinct heat absorption peak. The heat absorption curves were consistent with the unfolding transition observed by CD and were explainable by a 2-state transition mechanism between the tetrameric alpha-helical state and the monomeric unfolded state. From the peptide or salt-concentration dependence of unfolding, the heat capacity change upon unfolding was estimated to be 5 kJ (mol of tetramer)-1 K-1 at 30 degrees C and decreased with increasing temperature. The observed change in heat capacity was much smaller than that predicted from the crystallographic structure (9.2 kJ (mol of tetramer)-1 K-1), suggesting that the hydrophobic residues of tetrameric melittin in solution are exposed in comparison with the crystallographic structure. However, the results also indicate that the structure is more ordered than that of a typical molten globule state. We consider that the conformation is intermediate between the molten globule state and the native state of globular proteins.  相似文献   

4.
Human serum albumin (HSA) exists in a molten-globule like state at low pH (pH 2.0). We studied the effects of trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) on the acid-denatured state of HSA by far-UV circular dichroism (CD), near-UV CD, tryptophan fluorescence, and 1-anilinonaphthalene-8-sulfonic acid (ANS) binding. At pH 2.0, these alcohols induced the formation of alpha-helical structure as evident from the increase in mean residue ellipticity (MRE) value at 222 nm. On addition of different alcohols, HSA exhibited a transition from the acid-denatured state to the alpha-helical state and loss of ANS-binding sites reflected by the decrease in ANS fluorescence at 480 nm. However, the concentration range required to bring about the transition varied greatly among different alcohols. HFIP was found to have highest potential whereas methanol was least effective in inducing the transition. The order of effectiveness of alcohols was shown to be: HFIP > TFE > 2-chloroethanol > tert-butanol > isopropanol > ethanol > methanol as evident from the Cm values. The near-UV CD spectra and tryptophan fluorescence showed the differential effects of halogenated alcohols with those of alkanols. A comparison of the m values, showing the dependence of Delta GH on alcohol concentration, suggests that the helix stabilizing potential of different alcohols is due to the additive effect of different constituent groups present whereas remarkably higher potential of HFIP involves some other factor in addition to the contribution of constituent groups.  相似文献   

5.
Y Goto  Y Hagihara 《Biochemistry》1992,31(3):732-738
It is known that, while melittin at micromolar concentrations is unfolded under conditions of low ionic strength at neutral pH, it adopts a tetrameric alpha-helical structure under conditions of high ionic strength, at alkaline pH, or at high peptide concentrations. To understand the mechanism of the conformational transition of melittin, we examined in detail the conformation of melittin under various conditions by far-UV circular dichroism at 20 degrees C. We found that the helical conformation is also stabilized by strong acids such as perchloric acid. The effects of various acids varied largely and were similar to those of the corresponding salts, indicating that the anions are responsible for the salt- or acid-induced transitions. The order of effectiveness of various monovalent anions was consistent with the electroselectivity series of anions toward anion-exchange resins, indicating that the anion binding is responsible for the salt- or acid-induced transitions. From the NaCl-, HCl-, and alkaline pH-induced conformational transitions, we constructed a phase diagram of the anion- and pH-dependent conformational transition. The phase diagram was similar in shape to that of acid-denatured apomyoglobin [Goto, Y., & Fink, A.L. (1990) J. Mol. Biol. 214, 803-805] or that of the amphiphilic Lys, Leu model polypeptide [Goto, Y., & Aimoto, S. (1991) J. Mol. Biol. 218, 387-396], suggesting a common mechanism of the conformational transition. The anion-, pH-, and peptide concentration-dependent conformational transition of melittin was explained on the basis of an equation in which the conformational transition is linked to proton and anion binding to the titratable groups.  相似文献   

6.
Alcohol-induced changes of beta-lactoglobulin-retinol-binding stoichiometry   总被引:2,自引:0,他引:2  
It has been demonstrated using CD that ethanol induces important secondary structure changes of beta-lactoglobulin. CD spectra indicate that beta-lactoglobulin secondary structure, which is mainly composed of beta-strands, becomes mostly alpha-helical under the influence of the solvent polarity changes. The midpoint of beta-strand/alpha-helix transition in beta-lactoglobulin is observed at dielectric constant approximately 60 (35% ethanol; v/v). According to CD measurements, the ethanol-dependent secondary structure changes are reversible. The alkylation of lysines epsilon-NH2 in beta-lactoglobulin weakens the central beta-barrel structure, since the beta-strand/alpha-helix transition midpoint of alkylated beta-lactoglobulin is shifted to lower ethanol concentration (25% ethanol; v/v). beta-Lactoglobulin structural changes are triggering the dissociation of the beta-lactoglobulin-retinol complex as judged from complete quenching of its fluorescence in ethanol concentration greater than 30% (v/v). However, in 20% ethanol (v/v), beta-lactoglobulin still retains most of its native secondary structure as shown by CD and, in this condition, one beta-lactoglobulin molecule binds an additional second retinol molecule. This suggests that the highly populated species observed around 20% ethanol (v/v) might represent an intermediate state able to bind two molecules of retinol.  相似文献   

7.
Contribution of proline-14 to the structure and actions of melittin   总被引:3,自引:0,他引:3  
The structure and dynamic properties of bee venom melittin and a synthetic analogue, [Ala14]-melittin (melittin P14A), are compared, using high resolution 1H nuclear magnetic resonance (NMR) spectroscopy and amide exchange measurements in methanol. P14A is shown to adopt a regular, stable alpha-helical conformation in solution without the flexibility around the Pro-14 residue found in melittin. P14A has twice the hemolytic activity of melittin but is less able to induce voltage-dependent ion conductance in planar bilayers. The results indicate that helix flexibility afforded by the Pro-14 residue promotes the ability of melittin to adopt the transbilayer associates thought to underlie ion translocation.  相似文献   

8.
Organic solvents may induce non-native structures of proteins that mimic folding intermediates and/or conformations that occur in proximity to biological membranes. Here we systematically investigate the effects of simple (i.e., MeOH and EtOH) and fluorinated (i.e., trifluoroethanol, TFE) alcohols on the secondary structure and thermodynamic stability of two complementary model proteins using a combination of circular dichroism, fluorescence, and Fourier transform infrared (FTIR) detection methods. The selected proteins are alpha-helical Borrelia burgdorferi VlsE and beta-sheet human mitochondrial co-chaperonin protein 10 (cpn10). We find that switches between VlsE's native and non-native superhelical and beta-sheet structures readily occur (pH 7, 20 degrees C). The pathway depends on the alcohol: addition of MeOH induces a transition to a superhelical structure that is followed by conversion to beta-structure, whereas EtOH only unfolds the protein. TFE unfolds VlsE at low percentages but promotes the formation of a superhelical state upon further additions. For cpn10, both MeOH and TFE additions govern initial unfolding; however, further additions of MeOH result in the formation of a non-native beta-structure, whereas subsequent additions of TFE induce a superhelical structure. EtOH additions promptly unfold and precipitate cpn10. Both VlsE's and cpn10's non-native structures exhibit high stability toward chemical and thermal perturbations. This study demonstrates that in response to different alcohols, polypeptides can readily adopt both alpha- and beta-enriched conformations. The biological significance of these findings is discussed.  相似文献   

9.
Alcohol based cosolvents, such as trifluoroethanol (TFE) have been used for many decades to denature proteins and to stabilize structures in peptides. Nuclear magnetic resonance spectroscopy and site directed mutagenesis have recently made it possible to characterize the effects of TFE and of other alcohols on polypeptide structure and dynamics at high resolution. This review examines such studies, particularly of hen lysozyme and beta-lactoglobulin. It presents an overview of what has been learnt about conformational preferences of the polypeptide chain, the interactions that stabilize structures and the nature of the denatured states. The effect of TFE on transition states and on the pathways of protein folding and unfolding are also reviewed. Despite considerable progress there is as yet no single mechanism that accounts for all of the effects TFE and related cosolvents have on polypeptide conformation. However, a number of critical questions are beginning to be answered. Studies with alcohols such as TFE, and 'cosolvent engineering' in general, have become valuable tools for probing biomolecular structure, function and dynamics.  相似文献   

10.
In mixed alcohol-water solvents, bovine beta-lactoglobulin undergoes a cooperative transition from beta-sheet to a high alpha-helix content conformer. We report here the characterization of beta-lactoglobulin by compressibility and spectroscopy measurements during this transconformation. Both the volume and compressibility increase as a function of alcohol concentration, up to maximal values which depend on the chemical nature of the three alcohols used: hexafluoroisopropanol, trifluoroethanol, and isopropanol. The order of effectiveness of alcohols in inducing the compressibility transition is identical to that previously reported for circular dichroism and thus independent of the observation technique. The highly cooperative sigmoidal curves found by compressibility determination match closely those obtained by circular dichroism at 222 nm, indicating a correlation between the two phenomena measured by the two different techniques. The presence of an equilibrium intermediate form was shown by the interaction of beta-lactoglobulin with 8-anilino-1-naphthalene sulfonic acid, a probe widely used to detect molten-globule states of proteins. It was correlated with the plateau region of the volume curves and with the inflexion points of the sigmoidal compressibility curves. Ultrasound characterization of proteins can be carried out in optically transparent or nontransparent media.  相似文献   

11.
Unger T  Oren Z  Shai Y 《Biochemistry》2001,40(21):6388-6397
The amphipathic alpha-helical structure is a common motif found in membrane binding polypeptides including cell lytic peptides, antimicrobial peptides, hormones, and signal sequences. Numerous studies have been undertaken to understand the driving forces for partitioning of amphipathic alpha-helical peptides into membranes, many of them based on the antimicrobial peptide magainin 2 and the non-cell-selective cytolytic peptide melittin, as paradigms. These studies emphasized the role of linearity in their mode of action. Here we synthesized and compared the structure, biological function, and interaction with model membranes of linear and cyclic analogues of these peptides. Cyclization altered the binding of melittin and magainin analogues to phospholipid membranes. However, at similar bound peptide:lipid molar ratios, both linear and cyclic analogues preserved their high potency to permeate membranes. Furthermore, the cyclic analogues preserved approximately 75% of the helical structure of the linear peptides when bound to membranes. Biological activity studies revealed that the cyclic melittin analogue had increased antibacterial activity but decreased hemolytic activity, whereas the cyclic magainin 2 analogue had a marked decrease in both antibacterial and hemolytic activities. The results indicate that the linearity of the peptides is not essential for the disruption of the target phospholipid membrane, but rather provides the means to reach it. In addition, interfering with the coil-helix transition by cyclization, while maintaining the same sequence of hydrophobic and positively charged amino acids, allows a separated evaluation of the hydrophobic and electrostatic contributions to binding of peptides to membranes.  相似文献   

12.
The interaction of bee melittin with lipid bilayer membranes   总被引:8,自引:0,他引:8  
The influence of melittin and the related 8-26 peptide on the stability and electrical properties of bilayer lipid membranes is reported. Melittin, unlike the 8-26 peptide, has a dramatic influence on lipid membranes, causing rupture at dilute concentrations. The circular dichroism of melittin demonstrated that under physiological conditions, in water, melittin is in extended conformation, which is enhanced in aqueous ethanol. However in 'membrane-like' conditions it is essentially alpha-helical. Secondary structure predictions were used to locate possible alpha-helical nucleation centres and a model of melittin was built according to these predictions. It is postulated that melittin causes a wedge effect in membranes.  相似文献   

13.
We used fluorescence energy transfer to examine the effects of solvent composition on the distribution of distances between the single tryptophan residue of melittin (residue 19) to the N-terminal alpha-amino group, which was labeled with a dansyl residue. The tryptophan intensity decays, with and without the dansyl acceptor, were measured by the frequency-domain method. The data were analyzed by a least-squares algorithm which accounts for correlation between the parameters. A wide distribution of tryptophan to dansyl distances was found for the random-coil state, with a Gaussian half-width of 25 A. Increasing concentrations of methanol, which were shown to induce and alpha-helical conformation, resulted in a progressive decrease in the width of the distribution, reaching a limiting half-width of 3 A at 80% (v/v) methanol. The distance from the indole moiety of Trp-19 to the dansyl group in 80% (v/v) methanol/water was found to be 25 A, as assessed from the center of the distance distribution. A distance of 24-25 A was recovered from the X-ray crystal structure of the tetramer, which is largely alpha-helical. At low ionic strength (less than 0.01) the CD spectra revealed a small fraction or amount of alpha-helix for melittin in water, which implies a small fraction of residual structure. This residual structure is apparently lost in guanidine hydrochloride as demonstrated by a further broadening in the distribution of distances. These results demonstrate the usefulness of frequency-domain measurements of resonance transfer for resolution of conformational distributions of proteins.  相似文献   

14.
The effects of several amphipathic peptides on HIV-1 production in persistently infected cells are described. Melittin, a 26 amino acid alpha-helical amphipathic peptide, reduces HIV-1 production dose-dependently, whereas other amphipathic peptides do not. Six melittin derivatives which retain the alpha-helical portion have similar effects as melittin. The reduction of viral infectivity is not due to an effect of melittin on the virus particles but to an intracellular action of the peptide, which is readily taken up into cells, as shown by quantitative ELISA. Western blots of cells from melittin-treated cultures suggest that the processing of the gag/pol precursor is impaired.  相似文献   

15.
Characterization of conformational transition and folding intermediates is central to the study of protein folding. We studied the effect of various alcohols (trifluoroethanol (TFE), butanol, propanol, ethanol and methanol) and salts (K(3)FeCN(6), Na(2)SO(4), KClO(4) and KCl) on the acid-induced state of alpha-chymotrypsinogen A, a predominantly beta-sheet protein, at pH 2.0 by near-UV circular dichroism (CD), far-UV CD and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence measurements. Addition of alcohols led to an increase in ellipticity value at 222 nm indicating the formation of alpha-helical structure. The order of effectiveness of alcohols was shown to be TFE>butanol>propanol>ethanol>methanol. ANS fluorescence data showed a decrease in fluorescence intensity on alcohol addition, suggesting burial of hydrophobic patches. The near-UV CD spectra showed disruption of tertiary structure on alcohol addition. No change in ellipticity was observed on addition of salts at pH 2.0, whereas in the presence of 2 M urea, salts were found to induce a molten globule-like state as evident from the increases in ellipticity at 222 nm and ANS fluorescence indicating exposure of hydrophobic regions of the protein. The effectiveness in inducing the molten globule-like state, i.e. both increase in ellipticity at 222 nm and increase in ANS fluorescence, followed the order K(3)FeCN(6)>Na(2)SO(4)>KClO(4)>KCl. The loss of signal in the near-UV CD spectrum on addition of alcohols indicating disordering of tertiary structure results suggested that the decrease in ANS fluorescence intensity may be attributed to the unfolding of the ANS binding sites. The results imply that the alcohol-induced state had characteristics of an unfolded structure and lies between the molten globule and the unfolded state. Characterization of such partially folded states has important implications for protein folding.  相似文献   

16.
Fourier transform infrared (FTIR) spectroscopy has been applied to investigate the secondary structure of proteins and polypeptides in halogenated alcohols. Each alcohol studied was able, as a pure liquid, to induce conversion of the beta-sheet protein concanavalin A into a predominantly alpha-helical configuration. In 2H2O/alcohol mixtures, helicogenisis was also apparent, decreasing in the order dichloroethanol greater than bromoethanol greater than trifluoroethanol greater than chloroethanol greater than fluoroethanol. At concentrations below those found to be helicogenic, disruption of the protein secondary structure by the alcohols resulted in pronounced aggregation. At concentrations insufficient to cause noticeable disruptions of the secondary structure at room temperature, the thermal stability of the protein was greatly reduced. We suggest the helicogenic effect exhibited by halogenated alcohols to be related to a combination of a relatively low dielectric constant and a high dipole moment, the latter causing disruption of the internal hydrogen bond networks and the former causing refolding to a helical configuration. The results presented here highlight the risk of using halogenated alcohols, both as solvents for proteins and as a test of the intrinsic capacity of proteins and peptides to adopt helical secondary structures.  相似文献   

17.
C Altenbach  W L Hubbell 《Proteins》1988,3(4):230-242
Spin-labeled derivatives of the bee venom protein, melittin, were obtained by reacting on the average one of the four amino groups of the protein with succinimidyl-2,2,5,5-tetramethyl-3-pyrroline-1-oxyl-3-carboxylate. All 16 statistically possible reaction products with 0, 1, 2, 3 or 4 spin labels per protein were then separated in a single pass with reversed phase high performance liquid chromatography. With the help of trypsin digestion and diode array detection it was possible to assign the primary structure of all 16 eluting fractions. All fractions with only one spin label per protein were purified for electron paramagnetic resonance measurements. The labeling sites cover different regions of the protein: one is at the N-terminus, one at lysine-7, and two are near the C-terminus at lysine-21 and lysine-23, respectively. This set of specifically labeled melittins was used to study the structure and dynamics of melittin in aqueous solutions and when bound to neutral or negatively charged membranes. In aqueous solution a reduction in rotational correlation time and appearance of spin-spin interaction was observed during salt-induced transition from a random coil monomer to a mostly alpha-helical tetramer. Membrane binding to phospholipid bilayers in low or high ionic strength was reflected only in a further decrease in mobility. The absence of any spin interaction in the membrane-bound state suggests that melittin is monomeric under these conditions. All derivatives were able to detect these structural changes, but melittin labeled at the N-terminal amino group was especially valuable. Because of postulated intramolecular hydrogen bonding, this label reflects directly the motion of the entire protein or tetramer. Broadening experiments with chromium oxalate show that all labeled sites are at least partially exposed to the aqueous phase when melittin is bound to membranes. This suggests that an alpha-helical melittin monomer binds to membranes with its axis parallel to the membrane surface.  相似文献   

18.
Gerig JT 《Biophysical journal》2004,86(5):3166-3175
Fluorinated alcohols can induce peptides and proteins to take up helical conformations. Nuclear Overhauser effect (NOE) spectroscopy experiments and analysis of C(alpha)H proton chemical shifts show that the conformation of melittin in 35% hexafluoro-2-propanol/water is alpha-helical from residues Ile-2 to Val-8 and from Leu-13 to Gln-25. As has been found in other solvent systems, the two helical regions are not colinear; the interhelix angle (73 +/- 15 degrees ) in 35% 1,1,1,3,3,3-hexafluoro-2-propanol/water is smaller than the angle found in other fluoroalcohol-water mixtures or in the crystal. Intermolecular (1)H(19)F and (1)H(1)H nuclear Overhauser effects were used to explore interaction of solvent components with melittin dissolved in this solvent mixture. The NOEs observed indicate that fluoroalcohol and water molecules are both tightly bound to the peptide in the vicinity of the interhelix bend. For the remainder of the molecule, solute-solvent NOEs are consistent with preferential solvation of the peptide by the fluoroalcohol component of the solvent mixture.  相似文献   

19.
Free amphipathic peptides and peptides bound to dimyristoylphosphatidylcholine (DMPC) were studied directly at the air/water interface using polarization modulation infrared reflection absorption spectroscopy (PMIRRAS). Such differential reflectivity measurements proved to be a sensitive and efficient technique to investigate in situ the respective conformations and orientations of lipid and peptide molecules in pure and mixed films. Data obtained for melittin, a natural hemolytic peptide, are compared to those of L15K7, an ideally amphipathic synthetic peptide constituted by only apolar Leu and polar Lys residues. For pure peptidic films, the intensity, shape, and position of the amide I and II bands indicate that the L15K7 peptide adopts a totally alpha-helical structure, whereas the structure of melittin is mainly alpha-helical and presents some unordered domains. The L15K7 alpha-helix axis is oriented essentially parallel to the air-water interface plane; it differs for melittin. When injected into the subphase, L15K7 and melittin insert into preformed expanded DMPC monolayers and can be detected by PMIRRAS, even at low peptide content (> 50 DMPC molecules per peptide). In such conditions, peptides have the same secondary structure and orientation as in pure peptidic films.  相似文献   

20.
When pea lectin was exposed to a low pH range, it was found that the secondary structure of the lectin resisted conformational changes to a large extent up to pH 2.4 and below this pH, a sharp transition was observed which could be due to the presence of 27 acidic amino acid residues present in the protein. The effects of 1,1,1,3,3,3 hexafluoro-isopropanol (HFIP) and 2,2,2-Trifluoroethanol (TFE) on the conformation of pea lectin at pH 2.4 were studied using circular dichroism and fluorescence spectroscopy. Analysis varying the TFE concentration showed that up to 80% TFE (v/v) protein retained the residual beta-structure accompanied by a loss in tertiary structure. A similar conformation is presumed to exist at 4% HFIP (v/v), with an increase in HFIP concentration structural rearrangements occurred and a transition from beta-structure to alpha-helical structure started from 12% HFIP which completed at 30% HFIP. Our studies show the occurrence of a common intermediate in the folding pathway of pea lectin induced by two different fluoroalcohols, which differ in their mode of action to stabilize the secondary structure of a given protein. While TFE was not found to induce any alpha-helical structure, HFIP caused the transition of pea lectin, which is predominantly a beta-sheet protein, to a structure rich in alpha-helical contacts. Thus, our results also point out the possibility of a non-hierarchical model of protein folding in lectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号