共查询到20条相似文献,搜索用时 15 毫秒
1.
Wallgren M Adén J Pylypenko O Mikaelsson T Johansson LB Rak A Wolf-Watz M 《Journal of molecular biology》2008,379(4):845-858
Understanding the mechanisms that dictate protein stability is of large relevance, for instance, to enable design of temperature-tolerant enzymes with high enzymatic activity over a broad temperature interval. In an effort to identify such mechanisms, we have performed a detailed comparative study of the folding thermodynamics and kinetics of the ribosomal protein S16 isolated from a mesophilic (S16meso) and hyperthermophilic (S16thermo) bacterium by using a variety of biophysical methods. As basis for the study, the 2.0 Å X-ray structure of S16thermo was solved using single wavelength anomalous dispersion phasing. Thermal unfolding experiments yielded midpoints of 59 and 111 °C with associated changes in heat capacity upon unfolding (ΔCp0) of 6.4 and 3.3 kJ mol− 1 K− 1, respectively. A strong linear correlation between ΔCp0 and melting temperature (Tm) was observed for the wild-type proteins and mutated variants, suggesting that these variables are intimately connected. Stopped-flow fluorescence spectroscopy shows that S16meso folds through an apparent two-state model, whereas S16thermo folds through a more complex mechanism with a marked curvature in the refolding limb indicating the presence of a folding intermediate. Time-resolved energy transfer between Trp and N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl iodoacetamide of proteins mutated at selected positions shows that the denatured state ensemble of S16thermo is more compact relative to S16meso. Taken together, our results suggest the presence of residual structure in the denatured state ensemble of S16thermo that appears to account for the large difference in quantified ΔCp0 values and, in turn, parts of the observed extreme thermal stability of S16thermo. These observations may be of general importance in the design of robust enzymes that are highly active over a wide temperature span. 相似文献
2.
A F45W mutant of yeast ubiquitin has been used as a model system to examine the effects of nonnative local interactions on protein folding and stability. Mutating the native TLTGK G-bulged type I turn in the N-terminal beta-hairpin to NPDG stabilizes a nonnative beta-strand alignment in the isolated peptide fragment. However, NMR structural analysis of the native and mutant proteins shows that the NPDG mutant is forced to adopt the native beta-strand alignment and an unfavorable type I NPDG turn. The mutant is significantly less stable (approximately 9 kJ mol(-1)) and folds 30 times slower than the native sequence, demonstrating that local interactions can modulate protein stability and that attainment of a nativelike beta-hairpin conformation in the transition state ensemble is frustrated by the turn mutations. Surprising, alcoholic cosolvents [5-10% (v/v) TFE] are shown to accelerate the folding rate of the NPDG mutant. We conclude, backed-up by NMR data on the peptide fragments, that even though nonnative states in the denatured ensemble are highly populated and their stability further enhanced in the presence of cosolvents, the simultaneous increase in the proportion of nativelike secondary structure (hairpin or helix), in rapid equilibrium with nonnative states, is sufficient to accelerate the folding process. It is evident that modulating local interactions and increasing nonnative secondary structure propensities can change protein stability and folding kinetics. However, nonlocal contacts formed in the global cooperative folding event appear to determine structural specificity. 相似文献
3.
4.
We focus on the various aspects of the physics related to the stability of proteins. We review the pure thermodynamic aspects of the response of a protein to pressure and temperature variations and discuss the respective stability phase diagram. We relate the experimentally observed shape of this diagram to the low degree of correlation between the fluctuations of enthalpy and volume changes associated with the folding-denaturing transition and draw attention to the fact that one order parameter is not enough to characterize the transition. We discuss in detail microscopic aspects of the various contributions to the free energy gap of proteins and put emphasis on how a cosolvent may either enlarge or diminish this gap. We review briefly the various experimental approaches to measure changes in protein stability induced by cosolvents, denaturants, but also by pressure and temperature. Finally, we discuss in detail our own molecular dynamics simulations on cytochrome c and show what happens under high pressure, how glycerol influences structure and volume fluctuations, and how all this compares with experiments. 相似文献
5.
Sel'nikova OP Polishchuk EI Vasiurenko ZP Ruban NM 《Zhurnal mikrobiologii, epidemiologii, i immunobiologii》2005,(6):10-14
Y. pestis, Y. pseudotuberculosis, Y. enterocolitica, Y. frederiksenii, Y. intermedia, Y. kristensenii and Y. ruckeri grown at 4 degrees C were characterized by fatty acid composition with a high content of C16:1 and C18:1, as well as the proportion of saturated to nonsaturated fatty acids equal to, on the average, 2.0. In Yersinia lipopolysaccharides a relatively high level of C16:1 and C12:0 was observed with the prevalence of 3-OH-C14:0. In the fatty-acid spectra of both cells and lipopolysaccharides no essential difference was noted. Thus, during growth at low temperature differences, earlier detected in the studied Yersinia species grown at 37 degrees C and making it possible to divide 7 Yersinia species into 2 groupes, were completely leveled. These results confirmed the close phylogenetic relationship between the Yersinia species under study and were indicative of more pronounced biological community of Yersinia under the conditions of growth at low temperature. 相似文献
6.
7.
Manipulation of temperature and illumination conditions for enhanced beta-carotene production by mutant 32 of Rhodotorula glutinis 总被引:1,自引:0,他引:1
AIMS: Enhancement in the production of beta-carotene by the hyper producer mutant 32 of Rhodotorula glutinis by manipulation of temperature and illumination. METHODS AND RESULTS: Growth and beta-carotene production was investigated in a 1 litre fermenter at different temperature and illumination conditions. The optimum temperature for growth and beta-carotene production was 30 and 20 degrees C, respectively. At 30 degrees C, beta-carotene production was 125 +/- 2 mg l-1 and accounted for 66% of the total carotenoids in 72 h; at 20 degrees C, it was 250 +/- 7 mg l-1 and accounted for 92% of total carotenoid content. Continuous illumination of the fermenter by 1000 lx white light hampered growth as well as carotenoid synthesis. At 30 degrees C, illuminating the fermenter in late logarithmic phase resulted in a 58% increase in beta-carotene production with a concurrent decrease in torulene; at 20 degrees C, however, it showed no appreciable increase. SIGNIFICANCE AND IMPACT OF THE STUDY: Proper manipulation of culture conditions enhanced beta-carotene production by R. glutinis which makes it a significant source of beta-carotene. 相似文献
8.
I. Horváth L. Vigh Ph. R. van Hasselt J. Woltjes P. J. C. Kuiper 《Physiologia plantarum》1983,57(4):532-536
The lipid composition of leaves has been investigated in different genotypes of cucumber ( Cucumis sativus L.), which differ in temperature requirement for cultivation. In addition the effects of hardening by low but non-chilling temperature, soil heating and grafting (on the chilling-resistant C. ficifolia L.) on lipid composition have been studied. Content and composition of phospholipids and sterols were determined as well as phospholipid/sterol ratio, and fatty acid composition of total lipids and the different phospholipids.
The effects of genetic differentiation and of the various culture treatments on lipid composition of the leaves were very different. Genetic differentiation was evident as higher levels of Iinolenic acid in several phospholipids in the more cold-tolerant cultivars. Hardening the plants by low temperature resulted in a higher phospholipid level (especially phosphatidyl choline), more unsaturated phospholipid, and lowering of the sterol/phiospholipid ratio, all properties which may contribute to a higher membrane fluidity and lower growth temperature limit. Soil healing reduced the phospholipid level of the leaves slightly, and a higher content of 3- trans -hexadece-noic acid in phosphatidyl glycerol was observed. Grafting cucumber on the cold-resistant rootstock of C. ficifolia also raised the level of trans -hexadecenoic acid in phosphatidyl glycerol. The role of this fatty acid in the functioning of the chloroplast is discussed. 相似文献
The effects of genetic differentiation and of the various culture treatments on lipid composition of the leaves were very different. Genetic differentiation was evident as higher levels of Iinolenic acid in several phospholipids in the more cold-tolerant cultivars. Hardening the plants by low temperature resulted in a higher phospholipid level (especially phosphatidyl choline), more unsaturated phospholipid, and lowering of the sterol/phiospholipid ratio, all properties which may contribute to a higher membrane fluidity and lower growth temperature limit. Soil healing reduced the phospholipid level of the leaves slightly, and a higher content of 3- trans -hexadece-noic acid in phosphatidyl glycerol was observed. Grafting cucumber on the cold-resistant rootstock of C. ficifolia also raised the level of trans -hexadecenoic acid in phosphatidyl glycerol. The role of this fatty acid in the functioning of the chloroplast is discussed. 相似文献
9.
Karagüler NG Sessions RB Moreton KM Clarke AR Holbrook JJ 《Biotechnology letters》2004,26(14):1137-1140
An homology model of Candida methylica formate dehydrogenase (cm FDH) was constructed based on the Pseudomonas sp. 101 formate dehydrogenase (ps FDH) structure. In wild type cm FDH, Thr169 and Thr226 can form hydrogen bonds with each other. We measured the interaction energy between the two threonines independent of other interactions in the proteins by using a so-called double mutant cycle and assessing the protein stability from the concentration of guanidine hydrochloride needed to denature 50% of the molecules. We conclude that the hydrogen bonds stabilize the wild type protein by -4 kcal mol(-1). 相似文献
10.
The kinetics of folding of the two forms of unfolded ribonuclease A have been measured as a function of solvent viscosity by adding either glycerol or sucrose. The aim is to find out if either reaction is rate limited by segmental motion whose rate depends on external friction. The fast folding reaction (U2 ? N) is known to be the direct folding process, and the slow folding reaction (U1 ? N) is known to be rate limited by an interconversion between two forms (U1 ? U2) which are present after unfolding in strongly denaturing conditions. No dependence on solvent viscosity is found, either for the direct folding reaction or for the interconversion reaction. Each folding reaction has also been tested to see if its rate depends on the concentration of one or more partly folded intermediates, by adding denaturants destabilize any partly folded structures. Different guanidine salts are used as denaturants to vary the denaturing effectiveness of the salt while holding the guanidinium ion concentration constant. The rates both of the direct folding reaction and of the interconversion reaction decrease in relation to the denaturing effectiveness of the salt. However, there is a basic difference between the responses of the fast and slow folding reactions to low concentrations of denaturants. Although each folding reaction produces native protein, there is an 800-fold decrease in the rate of the fast folding reaction in 1M guanidine thiocyanate and only a 13-fold decrease in the rate of the slow folding reaction. This is consistent with the fast reaction being the direct folding process and the slow reaction being rate limited by the initial conversion of the slowrefolding to the fast-refolding form. Both the lack of viscosity dependence and the effects of denaturants indicate that the formation of structure is rate limiting in the direct folding reaction, U2 ? N. The failure to find a viscosity dependence for the interconversion reaction, U1 ? U2, indicates that in this reaction also friction-limited segmental motion is not the rate-limiting process. Since the U1 ? U2 interconversion still occurs when the polypeptide chain is completely unfolded, the surprising result is that its rate in refolding conditions depends significantly on a reaction intermediate which is “denatured” by guanidine salts. 相似文献
11.
Much of the recent effort in protein folding has focused on the possibility that residual structures in the unfolded state may provide an initiating site for protein folding. This hypothesis is difficult to test because of the weak stability and dynamic behavior of these structures. This problem has been simplified for intestinal fatty acid binding protein (IFABP) by incorporating fluorinated aromatic amino acids during synthesis in Escherichia coli. Only the labeled residues give signals by (19)F NMR, and the 1D spectra can be assigned in both the native and unfolded states by site-directed mutagenesis. One of the two tryptophans (W82), one of the four tyrosines (Y70), and at least four of the eight phenylalanines (including F68 and F93) of IFABP are involved in a structure that is significantly populated at concentrations of urea that unfold the native structure by fluorescence and CD criteria. These residues are nonlocal in sequence and also contact each other in the native structure. Thus, a template of nativelike hydrophobic contacts in the unfolded state may serve as an initiating site for folding this beta-sheet protein. 相似文献
12.
Kojadinovic M Sirinelli A Wadhams GH Armitage JP 《Applied and environmental microbiology》2011,77(12):4082-4088
We developed a new set of software tools that enable the speed and response kinetics of large numbers of tethered bacterial cells to be rapidly measured and analyzed. The software provides precision, accuracy, and a good signal-to-noise ratio combined with ease of data handling and processing. The software was tested on the single-cell chemosensory response kinetics of large numbers of Rhodobacter sphaeroides cells grown under either aerobic or photoheterotrophic conditions and either in chemostats or in batch cultures, allowing the effects of growth conditions on responses to be accurately measured. Aerobically and photoheterotrophically grown R. sphaeroides exhibited significantly different chemosensory response kinetics and cell-to-cell variability in their responses to 100 μM propionate. A greater proportion of the population of aerobically grown cells responded to a 100 μM step decrease in propionate; they adapted faster and showed less cell-to-cell variability than photosynthetic populations. Growth in chemostats did not significantly reduce the measured cell to cell variability but did change the adaptation kinetics for photoheterotrophically grown cells. 相似文献
13.
Haruo Sato 《Ecological Research》1988,3(2):131-144
A 40-day culture experiment of water hyacinth was made in 4 different water temperatures, 15, 20, 25 and 30°C, which were
combined with 4 levels of concentration of culture solution, 1/3, 1, 3 and 9-fold of the standard solution containing 28 ppm
of totalN and 7.7 ppm of totalP. The optimum condition for obtaining the maximum plant growth shifted from 30°C: 3-fold condition in the early stage to 20–25°C:
3-fold condition in the later stages of the experiment. The relation between the fresh weight biomass per 100-l tank,w, and the concentration of culture solution,f, was expressed successfully by a reciprocal equation,1/w=A F/f+A F
′f/(1-f/C F)+B F, in whichA
f,A
f′, andB
f are time dependent coefficients andC
f is the upper limit of the concentration to permit plant growth which can change with time. The relation betweenw and water temperature,T, was expressed by another reciprocal equation,1/w=A T/e
aT+A T′ebT+B T, in whicha andb are constants andAt
At′ andB
t are time dependent coefficients. The latter formulation shows that the temperature can be breated as an exponential factor,
and it suggests the possibility of the growth coefficient of the logistic growth equation, ψ, being affected by temperature. 相似文献
14.
It is of practical interest to investigate the effect of nitrates on bacterial metabolic regulation of both fermentation and energy generation, as compared to aerobic and anaerobic growth without nitrates. Although gene level regulation has previously been studied for nitrate assimilation, it is important to understand this metabolic regulation in terms of global regulators. In the present study, therefore, we measured gene expression using DNA microarrays, intracellular metabolite concentrations using CE-TOFMS, and metabolic fluxes using the (13)C-labeling technique for wild-type E. coli and the ΔarcA (a global regulatory gene for anoxic response control, ArcA) mutant to compare the metabolic state under nitrate conditions to that under aerobic and anaerobic conditions without nitrates in continuous culture conditions at a dilution rate of 0.2 h(-1). In wild-type, although the measured metabolite concentrations changed very little among the three culture conditions, the TCA cycle and the pentose phosphate pathway fluxes were significantly different under each condition. These results suggested that the ATP production rate was 29% higher under nitrate conditions than that under anaerobic conditions, whereas the ATP production rate was 10% lower than that under aerobic conditions. The flux changes in the TCA cycle were caused by changes in control at the gene expression level. In ΔarcA mutant, the TCA cycle flux was significantly increased (4.4 times higher than that of the wild type) under nitrate conditions. Similarly, the intracellular ATP/ADP ratio increased approximately two-fold compared to that of the wild-type strain. 相似文献
15.
16.
17.
Stability distribution in the phage lambda-DNA double helix: a correlation between physical and genetic structure 总被引:1,自引:0,他引:1
Statistical analyses on the positional correlation of physical-stability and base-sequence distribution maps with genetic map are made for the whole DNA (48502 bases) of lambda-phage. The susceptibility to a double-helix unfolding perturbation and the fraction of the transient opening of a particular region of the double helix are adopted to define this physical stability. The principal features obtained are: A) The DNA double strand of protein coding regions is found to have homostabilizing propensity around a defined stability which is characteristic to each individual gene. B) The stability of the double helix in non-protein coding region fluctuates, on average over the whole region, more than that in protein coding region. C) Boundary regions of protein coding and non-protein coding regions are regions of high stability-fluctuation. Stability especially fluctuates at the protein-coding-region side of the boundary. Contrary to the quiet feature of the interior part of protein coding region rather noisy part exists at its edge. D) One frequently opening region coincides with the attaching site for the site specific recombination between phage and bacterial DNA. There are two possible ways to explain the noisy feature in the stability distribution in non-protein coding regions: 1) The region has been used as the locus of recombination as evolution took place. Thus DNAs which were homostabilized around a different value characteristic to each individual DNA, have been joined there many times, so that the noise has accumulated as a remnant of evolutional history; and/or 2) the base-composition homogenizing or double-helix homostabilizing mechanism does not work in unneeded region such as non-protein coding region or introns. Since corresponding characteristics have been found in our previous analyses on other viral and globin-gene DNAs, the rules mentioned above may be comprehensively extended to other DNAs. 相似文献
18.
Staphylococcal LukF and Hlg2 are water-soluble monomers of gamma-haemolysin that assemble into oligomeric pores on the erythrocyte membranes. Here, we have created double-cysteine LukF mutants, in which single disulphide bonds connect either the prestem domain and the cap domain (V12C-T136C, Cap-Stem), or two beta-strands within the prestem domain (T117C-T136C, Stem-Stem) to control pore assembly of gamma-haemolysin at intermediate stages. The disulphide-trapped mutants were inactive in erythrocyte lysis, but gained full haemolytic activity if the disulphide bonds were reduced. The disulphide bonds blocked neither the membrane binding ability nor the intermediate prepore oligomerization, but efficiently inhibited the transition from prepores to pores. The prepores of Cap-Stem were dissociated into monomers in 1% SDS. In contrast, the prepores of Stem-Stem were stable in SDS and had ring-shaped structures similar to those of wild-type LukF, as observed by transmission electron microscopy. The transition of both mutants from prepores to pores could even be achieved by reducing disulphide bonds at low temperature (2 degrees C), whereas prepore oligomerization was effectively inhibited by low temperature. Finally, real-time transition of Stem-Stem from prepores to pores on ghost cells, visualized using a Ca2+-sensitive fluorescent indicator (Rhod2), was shown by the sequential appearance of fluorescence spots, indicating pore-opening events. Taken together, these data indicate that the prepores are legitimate intermediates during gamma-haemolysin pore assembly, and that conformational changes around residues 117 and 136 of the prestem domain are essential for pore formation, but not for membrane binding or prepore oligomerization. We propose a mechanism for gamma-haemolysin pore assembly based on the demonstrated intermediates. 相似文献
19.
Kudiasheva AG Shishkina LN Zagorskaia NG Shevchenko OG Ivashevskaia EV 《Radiatsionnaia biologiia, radioecologiia / Rossi?skaia akademiia nauk》2000,40(3):327-333
The effect of the increased natural radiation background (within some areas in Komi Republic) and man-caused radioactive contamination in the Chernobyl NPP accident zone on the composition of liver phospholipids in Microtus oeconomus inhabiting these areas was studied. The significant changes in the liver lipid composition in rodents inhabiting both the Chernobyl accident zone and the areas with the increased natural radiation background were found. The maximal changes in the liver phospholipid composition were revealed during the first year after the accident. The reverse dependence between the phosphatidyl choline/phosphatidyl ethanolamine ratio and the ratio between the sum of more readily oxidizable phospholipids and the sum of more poorly oxidizable ones was found. However, the slope of corresponding curves significantly depends on the radioactive state in the area of the population inhabitance. The conclusion about high sensitivity of the lipid composition of hepatocytes in Microtus oeconomus both to the impact of the man-caused radioactive contamination and the increased level of the natural radioactivity was drawn. 相似文献