首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colonies of the ponerine antPachycondyla tridentata from Malaysia occur with and without queens. In a total of 7 colonies we found more than 80% of the workers to be mated, irrespective of the presence or absence of queens. This is a hitherto unknown social organisation in ants. Queens and workers competed equally for reproduction. In the colonies investigated several ants were laying eggs. Behavioral observations revealed persistent dominance interactions between colony members. A few ants, but not necessarily a queen, occupied top positions. Removal of the most dominant ants led to a new hierarchy in which subordinate ants with developed ovaries were attacked significantly more frequently than non-reproductive ants. On the average, callows were more aggressive than older subordinate ants, displacing most of the older laying workers in one colony. Nestmate recognition tests revealed that non-reproductive ants were much more aggressive towards foreign ants than were ants with developed ovaries.  相似文献   

2.

Background  

Mutual policing is an important mechanism for reducing conflict in cooperative groups. In societies of ants, bees, and wasps, mutual policing of worker reproduction can evolve when workers are more closely related to the queen's sons than to the sons of workers or when the costs of worker reproduction lower the inclusive fitness of workers. During colony growth, relatedness within the colony remains the same, but the costs of worker reproduction may change. The costs of worker reproduction are predicted to be greatest in incipient colonies. If the costs associated with worker reproduction outweigh the individual direct benefits to workers, policing mechanisms as found in larger colonies may be absent in incipient colonies.  相似文献   

3.
Conflict over male parentage in social insects   总被引:2,自引:0,他引:2       下载免费PDF全文
Mutual policing is an important mechanism that maintains social harmony in group-living organisms by suppressing the selfish behavior of individuals. In social insects, workers police one another (worker-policing) by preventing individual workers from laying eggs that would otherwise develop into males. Within the framework of Hamilton's rule there are two explanations for worker-policing behavior. First, if worker reproduction is cost-free, worker-policing should occur only where workers are more closely related to queen- than to worker-produced male eggs (relatedness hypothesis). Second, if there are substantial costs to unchecked worker reproduction, worker-policing may occur to counteract these costs and increase colony efficiency (efficiency hypothesis). The first explanation predicts that patterns of the parentage of males (male parentage) are associated with relatedness, whereas the latter does not. We have investigated how male parentage varies with colony kin structure and colony size in 50 species of ants, bees, and wasps in a phylogenetically controlled comparative analysis. Our survey revealed that queens produced the majority of males in most of the species and that workers produced more than half of the males in less than 10% of species. Moreover, we show that male parentage does not vary with relatedness as predicted by the relatedness hypothesis. This indicates that intra- and interspecific variation in male parentage cannot be accounted for by the relatedness hypothesis alone and that increased colony efficiency is an important factor responsible for the evolution of worker-policing. Our study reveals greater harmony and more complex regulation of reproduction in social insect colonies than that expected from simple theoretical expectations based on relatedness only.  相似文献   

4.
Amsalem E  Hefetz A 《PloS one》2011,6(3):e18238
Social insects provide good model systems for testing trade-offs in decision-making because of their marked reproductive skew and the dilemma workers face when to reproduce. Attaining reproductive skew requires energy investment in aggression or fertility signaling, creating a trade-off between reproduction and dominance. This may be density-dependent because the cost of achieving dominance may be higher in larger groups. We investigated the effect of group-size in B. terrestris queenless workers on two major reproduction-dominance correlates: between-worker aggression, and pheromone production, aiming at mimicking decision-making during the transition of worker behavior from cooperation and sterility to aggressive reproductive competition in whole colonies. Despite the competition, reproductive division of labor in colonies can be maintained even during this phase through the production of a sterility signal by sterile workers that has an appeasement effect on dominant nestmates. Worker-worker aggression, ovary activation, and production of sterility-appeasement signals may therefore constitute components of a trade-off affecting worker reproduction decisions. By constructing queenless groups of different size and measuring how this affected the parameters above, we found that in all groups aggression was not evenly distributed with the α-worker performing most of the aggressive acts. Moreover, aggression by the α-worker increased proportionally with group-size. However, while in small groups the α-worker monopolized reproduction, in larger groups several workers shared reproduction, creating two worker groups: reproductives and helpers. It appears that despite the increase of aggression, this was evidently not sufficient for the α-worker to monopolize reproduction. If we compare the α-worker to the queen in full-sized colonies it can be hypothesized that worker reproduction in B. terrestris colonies starts due to a gradual increase in the worker population and the queen's inability to physically inhibit worker oviposition. This may shift the trade-off between cost and benefit of worker reproduction and trigger the competition phase.  相似文献   

5.
Protective ant-plant mutualisms that are exploited by non-defending parasitic ants represent prominent model systems for ecology and evolutionary biology. The mutualist Pseudomyrmex ferrugineus is an obligate plant-ant and fully depends on acacias for nesting space and food. The parasite Pseudomyrmex gracilis facultatively nests on acacias and uses host-derived food rewards but also external food sources. Integrative analyses of genetic microsatellite data, cuticular hydrocarbons and behavioral assays showed that an individual acacia might be inhabited by the workers of several P. gracilis queens, whereas one P. ferrugineus colony monopolizes one or more host trees. Despite these differences in social organization, neither of the species exhibited aggressive behavior among conspecific workers sharing a tree regardless of their relatedness. This lack of aggression corresponds to the high similarity of cuticular hydrocarbon profiles among ants living on the same tree. Host sharing by unrelated colonies, or the presence of several queens in a single colony are discussed as strategies by which parasite colonies could achieve the observed social organization. We argue that in ecological terms, the non-aggressive behavior of non-sibling P. gracilis workers--regardless of the route to achieve this social structure--enables this species to efficiently occupy and exploit a host plant. By contrast, single large and long-lived colonies of the mutualist P. ferrugineus monopolize individual host plants and defend them aggressively against invaders from other trees. Our findings highlight the necessity for using several methods in combination to fully understand how differing life history strategies affect social organization in ants.  相似文献   

6.
When ants from alien colonies encounter each other the stereotypic reaction is usually one of aggressive behavior. It has been shown that factors such as queen-derived cues or nest-odors modulate this reaction. Here we examined whether nest volatiles affect nestmate recognition by observing the reaction of nestmates towards individual workers under one of four regimes: completely isolated; isolated but receiving a constant airflow from the mother colony; as previous but with the passage of nest volatiles towards the isolated ants blocked by adsorption on a SuperQ column; or reversed airflow direction-from the isolated ants to the nest interior. Ants that had been completely isolated for three weeks were subjected to aggressive behavior, but not those that had continued to receive airflow from the mother colony. Adsorbing the nest volatiles from the airflow by SuperQ abolished this difference, with these ants now also being subjected to aggression, indicating that nest volatiles can modulate nestmate recognition. Reverse airflow also reduced the level of aggression but to a lesser extent than airflow directed from the mother colony. In queenless colonies the overall aggression was reduced under all regimes, and there was no effect of flow, suggesting that the volatiles involved are queen-borne. The SuperQ adsorbed volatiles originated from Dufour's gland secretions of both workers and queen, implicating them in the process. Cuticular hydrocarbon profiles were not affected by exposure to nest volatiles, suggesting that the latter either constitute part of the recognition cues or affect worker behavior via a different, as yet elusive mechanism.  相似文献   

7.
Theory predicts that when individuals live in groups or colonies, male–male aggression peaks at intermediate levels of local average relatedness. Assuming that aggression is costly and directed toward nonrelatives and that competition for reproduction acts within the colony, benefits of aggressive behavior are maximized in colonies with a mix of related and unrelated competitors because aggression hurts nonkin often, thereby favoring reproduction of kin. This leads to a dome‐shaped relation between male–male aggression and average relatedness. This prediction has been tested with bacteria in the laboratory, but not with organisms in the field. We study how male–male aggression varies with relatedness in the social spider mite Stigmaeopsis miscanthi. We sampled 25 populations across a wide geographic range between Taiwan and Japan, representing a gradient of high to low within‐population relatedness. For each population the weaponry of males was measured as the length of the first pair of legs, and male–male aggression was tested by placing pairs of nonsibling males together and scoring the frequency of male death over a given period. As these two morphological and behavioral variables correlate strongly, they both reflect the intensity of male–male conflict. Our data on the social spider mite show that male–male aggression as well as weapon size strongly peak at intermediate, average relatedness, thereby confirming theoretical predictions.  相似文献   

8.
A potential tragedy of the commons arises in social-insect colonies where workers are fertile if egg-laying workers decrease their contribution to other tasks. We studied worker ovary development and egg laying in relation to kin structure, colony size, and the presence of a queen in nine species (11 populations) of Formica ants. Workers were highly fertile and laid eggs in the presence of a queen in five out of the seven species where egg samples were obtained. Worker fertility correlated neither with colony size nor with kin structure, which suggests that colony-level costs and efficiency of policing precede relatedness as the most important conflict determinant. We conclude that careful quantification of the costs of worker reproduction and policing is essential for inferences about the tragedy of the commons.  相似文献   

9.
1. Patterns of aggression between ants from different nests influence colony and population structure. Several species of invasive ants lack colony boundaries over large expanses, forming ‘supercolonies’ with many nests among which workers can move without encountering aggression. 2. Bioassays of aggression were used to determine the colony structure of the invasive ant Myrmica rubra (L.) at eight sites in Massachusetts, the state where the species was first discovered in North America. To improve the ability to distinguish systematic patterns from background variability in aggressiveness, a repeated‐measures design was used and replicate assays for each pair of nests were conducted. 3. Aggressive responses showed that populations at all sites consisted of multiple distinct colonies. Patterns of aggression were repeatable and transitive, with few exceptions. Colonies were identified as clusters of nests whose workers showed little to no aggression towards one another but were aggressive towards conspecifics from more distant nests. 4. The degree of aggression varied considerably among different colony pairs but did not depend in any consistent way on the distance of separation or on whether colonies were neighbours. 5. Territories of neighbouring colonies abutted, indicating that they were restricted by intraspecific competition. Mapped territories ranged in size from 0.03 to 1.2 ha, but colonies at the study sites have not undergone the enormous expansions seen in introduced populations of some other species of invasive ants, and neighbouring colonies compete locally.  相似文献   

10.
Social insect colonies are like fortresses, well protected and rich in shared stored resources. This makes them ideal targets for exploitation by predators, parasites and competitors. Colonies of Myrmica rubra ants are sometimes exploited by the parasitic butterfly Maculinea alcon. Maculinea alcon gains access to the ants' nests by mimicking their cuticular hydrocarbon recognition cues, which allows the parasites to blend in with their host ants. Myrmica rubra may be particularly susceptible to exploitation in this fashion as it has large, polydomous colonies with many queens and a very viscous population structure. We studied the mutual aggressive behaviour of My. rubra colonies based on predictions for recognition effectiveness. Three hypotheses were tested: first, that aggression increases with distance (geographical, genetic and chemical); second, that the more queens present in a colony and therefore the less-related workers within a colony, the less aggressively they will behave; and that colonies facing parasitism will be more aggressive than colonies experiencing less parasite pressure. Our results confirm all these predictions, supporting flexible aggression behaviour in Myrmica ants depending on context.  相似文献   

11.
Males of a Neotropical eusocial wasp, Mischocyttarus mastigophorus , are dominant over their female nest mates. Mischocyttarus mastigophorus males behave aggressively toward females, while females rarely bite or chase males. Aggressive interactions between the sexes are behaviorally indistinguishable from dominance interactions among females. Males are long-lived as adults, and can reside on nests for periods of at least one month. Furthermore, males comprise a large proportion of post-emergence colony populations throughout much of the colony cycle. Males on the nest perform maintenance tasks at low rates, but contribute little other labor to their colonies. Males do not forage, but consume a disproportionate amount of the food (nectar and insect prey) collected by workers. Males in some colonies direct disproportionate amounts of aggression toward their queens, which may further contribute to males' food procurement. These data suggest that adult males represent a considerable energetic and labor cost to their colonies. I hypothesize that the dominance structure of M. mastigophorus directs food resources to adult males, with the function of increasing their longevity. Increased male longevity may be selectively advantageous in tropical species such as M. mastigophorus that found new colonies throughout much or all of the year. When females initiate new nests over much of the year, individual males' mating opportunities may be temporally distributed, favoring longer adult lifespans. Male dominance is predicted to occur in other populations of independent-founding Neotropical Polistinae with asynchronous colony foundation.  相似文献   

12.
Kin selection theory predicts potential conflict between queen and workers over male parentage in hymenopteran societies headed by one, singly mated queen, because each party is more closely related to its own male offspring. In ‘late-switching’ colonies of the bumblebee Bombus terrestris, i.e. colonies whose queens lay haploid eggs relatively late in the colony cycle, workers start to lay male eggs shortly after the queen lays the female eggs that will develop into new queens. It has been hypothesized that this occurs because workers recognize, via a signal given by the queen instructing female larvae to commence development as queens, that egg laying is now in their kin-selected interest. This hypothesis assumes that aggressive behaviour in egg-laying workers does not substantially reduce the production of new queens, which would decrease the workers' fitness payoff from producing males. We tested the hypothesis that reproductive activity inB. terrestris workers does not reduce the production of new queens. We used microsatellite genotyping to sex eggs and hence to select eight size-matched pairs of ‘late-switching’ colonies from a set of commercial colonies. From one colony of each pair we removed every egg-laying or aggressive worker observed. From the other colony, we simultaneously removed a nonegg-laying, nonaggressive worker. Removed workers were replaced with young workers from separate colonies at equal frequencies within the pair. There was no significant difference in queen productivity between colonies with reduced or normal levels of egg-laying or aggressive workers. Therefore, as predicted, reproductive B. terrestris workers did not significantly reduce the production of new queens.  相似文献   

13.
Parasites can induce alterations in host phenotypes in order to enhance their own survival and transmission. Parasites of social insects might not only benefit from altering their individual hosts, but also from inducing changes in uninfected group members. Temnothorax nylanderi ant workers infected with the tapeworm Anomotaenia brevis are known to be chemically distinct from nest-mates and do not contribute to colony fitness, but are tolerated in their colonies and well cared for. Here, we investigated how tapeworm- infected workers affect colony aggression by manipulating their presence in ant colonies and analysing whether their absence or presence resulted in behavioural alterations in their nest-mates. We report a parasite-induced shift in colony aggression, shown by lower aggression of uninfected nest-mates from parasitized colonies towards conspecifics, potentially explaining the tolerance towards infected ants. We also demonstrate that tapeworm-infected workers showed a reduced flight response and higher survival, while their presence caused a decrease in survival of uninfected nest-mates. This anomalous behaviour of infected ants, coupled with their increased survival, could facilitate the parasites'' transmission to its definitive hosts, woodpeckers. We conclude that parasites exploiting individuals that are part of a society not only induce phenotypic changes within their individual hosts, but in uninfected group members as well.  相似文献   

14.
In many species of social Hymenoptera, totipotency of workers induces potential conflicts over reproduction. However, actual conflicts remain rare despite the existence of a high reproductive skew. One of the current hypotheses assumes that conflicts are costly and thus selected against. We studied the costs of conflicts in 20 colonies of the queenless ant Diacamma sp. "nilgiri" by testing the effects of conflicts on labor and worker immunocompetence, two parameters closely linked to the indirect fitness of workers. In this species, the dominant female is the only mated worker (gamergate) and monopolizes reproduction. We experimentally induced conflicts by splitting each colony into two groups, a control group containing the gamergate and an orphaned group displaying aggressions until a new dominant worker arises. Immunocompetence was assessed by the clearance of Escherichia coli bacteria that we injected into the ants. Time budget analysis revealed a lower rate of labor and especially brood care in orphaned groups, supporting the existence of a cost of conflicts on labor. Fifteen days after splitting, a lower immunocompetence was also found in orphaned groups, which concerned workers involved and not involved in conflicts. We propose that this immunosuppression induced by conflicts could stem from stress and not directly from aggression.  相似文献   

15.
The role of the ant colony largely consists of non-reproductive tasks, such as foraging, tending brood, and defense. However, workers are vitally linked to reproduction through their provisioning of sexual offspring, which are produced annually to mate and initiate new colonies. Gynes (future queens) have size-associated variation in colony founding strategy (claustrality), with each strategy requiring different energetic investments from their natal colony. We compared the per capita production cost required for semi-claustral, facultative, and claustral gynes across four species of Pogonomyrmex harvester ants. We found that the claustral founding strategy is markedly expensive, costing approximately 70% more energy than that of the semi-claustral strategy. Relative to males, claustral gynes also had the largest differential investment and smallest size variation. We applied these investment costs to a model by Brown and Bonhoeffer (2003) that predicts founding strategy based on investment cost and foraging survivorship. The model predicts that non-claustral foundresses must survive the foraging period with a probability of 30–36% in order for a foraging strategy to be selectively favored. These results highlight the importance of incorporating resource investment at the colony level when investigating the evolution of colony founding strategies in ants.  相似文献   

16.
Slave-making ants reduce the fitness of surrounding host colonies through regular raids, causing the loss of brood and frequently queen and worker death. Consequently, hosts developed defenses against slave raids such as specific recognition and aggression toward social parasites, and indeed, we show that host ants react more aggressively toward slavemakers than toward nonparasitic competitors. Permanent behavioral defenses can be costly, and if social parasite impact varies in time and space, inducible defenses, which are only expressed after slavemaker detection, can be adaptive. We demonstrate for the first time an induced defense against slave-making ants: Cues from the slavemaker Protomognathus americanus caused an unspecific but long-lasting behavioral response in Temnothorax host ants. A 5-min within-nest encounter with a dead slavemaker raised the aggression level in T. longispinosus host colonies. Contrarily, encounters with nonparasitic competitors did not elicit aggressive responses toward non-nestmates. Increased aggression can be adaptive if a slavemaker encounter reliably indicates a forthcoming attack and if aggression increases postraid survival. Host aggression was elevated over 3 days, showing the ability of host ants to remember parasite encounters. The response disappeared after 2 weeks, possibly because by then the benefits of increased aggression counterbalance potential costs associated with it.  相似文献   

17.
Complex recognition systems underlie the social organization of many organisms. In social insects the acceptance of other individuals as nestmates can involve a variety of different cues, but the relative importance of these cues can change in relation to the fitness costs of accepting or rejecting other individuals. In this study we investigate the mechanisms that underlie recognition behaviour in Argentine ants (Linepithema humile). Introduced populations of Argentine ants are characterized by a social structure known as unicoloniality where intraspecific aggression is absent over large distances resulting in the formation of expansive supercolonies. Recent research has identified sites where multiple, mutually aggressive supercolonies co-occur allowing an examination of Argentine ant behaviour at territorial boundaries. We found that workers from different supercolonies always interact aggressively with one another, but that neighbours from different colonies (i.e., workers from nests located in the immediate vicinity of territory borders) consistently exhibited higher levels of aggression compared to those displayed by non-neighbours from different colonies (i.e., workers from nests located far enough away from a territory border so that interactions are unlikely). This difference in the level of aggression displayed between neighbours and between non-neighbours from different supercolonies cannot be explained by differences in relatedness or genetic similarity. Instead our findings suggest that direct contact between mutually antagonistic colonies is sufficient to elevate aggression. A laboratory experiment in which we manipulated the extent to which colonies with no prior history of contact could interact with one another, revealed that aggression increased after colonies were permitted to interact, but dropped after connections between colonies were severed. Moreover, the mere presence of an aggressive supercolony was sufficient to elicit elevated aggression. Overall these patterns are opposite to the “dear enemy” phenomenon and could be the result of the intense territorial aggression exhibited by established supercolonies of this species. Received 8 January 2007; revised 27 March 2007; accepted 28 March 2007.  相似文献   

18.
Reciprocal selection pressures in host-parasite systems drive coevolutionary arms races that lead to advanced adaptations in both opponents. In the interactions between social parasites and their hosts, aggression is one of the major behavioural traits under selection. In a field manipulation, we aimed to disentangle the impact of slavemaking ants and nest density on aggression of Temnothorax longispinosus ants. An early slavemaker mating flight provided us with the unique opportunity to study the influence of host aggression and demography on founding decisions and success. We discovered that parasite queens avoided colony foundation in parasitized areas and were able to capture more brood from less aggressive host colonies. Host colony aggression remained consistent over the two-month experiment, but did not respond to our manipulation. However, as one-fifth of all host colonies were successfully invaded by parasite queens, slavemaker nest foundation acts as a strong selection event selecting for high aggression in host colonies.  相似文献   

19.
Nestmate recognition is a key feature of social insects, as it preserves colony integrity. However, discrimination of non‐nestmates and nestmate recognition mechanisms are highly variable according to species and social systems. Here, we investigated the intraspecific level of aggression in the facultative polygynous and polydomous ant, Ectatomma tuberculatum Olivier (Hymenoptera: Formicidae: Ectatomminae), in a population with a strong genetic structure. We found that the intraspecific level of aggression was generally low in this population of E. tuberculatum. However, the level of aggression was significantly correlated with the geographical distance, suggesting that both genetic and environmental cues could be involved in nestmate recognition and discrimination mechanisms. Moreover, polydomy was confirmed by the absence of aggression between workers from nests at a distance of 3 m, while the level of aggression was significantly higher between workers from nests separated by a distance of 10 or 1300 m. Field experiments showed that the low level of aggression between neighbouring colonies was associated with shared foraging areas, which could suggest that familiarization processes may occur in this species. We propose that the particular social organization of this species, with secondary polygyny, polydomy, and budding, may have favoured a high acceptance threshold, because of the low probability of interactions with unrelated conspecifics, the high cost of erroneously rejecting nestmates, and the low cost of accepting non‐nestmate workers. The resulting open recognition system can thus allow privileged relationships between neighbouring colonies and promote the ecological dominance of E. tuberculatum in the mosaic of arboreal ants.  相似文献   

20.
Unlike the queens of other primitively eusocial species, Ropalidia marginata queens are strikingly docile and non-aggressive individuals, never at the top of the behavioural dominance hierarchy of their colonies. Nevertheless, these queens are completely successful at suppressing worker reproduction, suggesting that they do not use aggression but employ some other mechanism (e.g. pheromones) to do so. Upon removal of the queen from a colony, a single worker, the 'potential queen', immediately begins to display highly elevated levels of aggression towards her nest mates. This individual becomes the next docile queen if the original queen is not returned. We attempt to understand the function of the temporary and amplified dominance behaviour displayed by the potential queen. We find that the dominance behaviour shown by the potential queen is unrelated to the number of her nest mates, their dominance ranks or ovarian condition. This suggests that aggression may not be used to actively suppress other workers and counter threat. Instead we find evidence that dominance behaviour is required for the potential queen's rapid ovarian development, facilitating her speedy establishment as the sole reproductive individual in the colony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号