首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review focuses on the role of Toll-like receptors (TLRs) in lupus and on possibilities to treat lupus using TLR modulating inhibitory oligodeoxynucleotides (INH-ODNs). TLRs bridge innate and adaptive immune responses and may play an important role in the pathogenesis of systemic lupus erythematosus. Of particular interest are TLR3, -7, -8, and -9, which are localized intracellularly. These TLRs recognize single-stranded or double-stranded RNA or hypomethylated CpG-DNA. Exposure to higher order CpG-DNA ligands or to immune complexed self-RNA triggers activation of autoreactive B cells and plasmacytoid dendritic cells. INH-ODNs were recently developed that block all downstream signaling events in TLR9-responsive cells. Some of these INH-ODNs can also target TLR7 signaling pathways. Based on their preferential cell reactivity, we classify INH-ODNs into class B and class R. Class B ('broadly reactive') INH-ODNs target a broad range of TLR-expressing cells. Class R ('restricted') INH-ODNs easily form DNA duplexes or higher order structures, and are preferentially recognized by autoreactive B cells and plasmacytoid dendritic cells, rather than by non-DNA specific follicular B cells. Both classes of INH-ODNs can block animal lupus. Hence, therapeutic application of these novel INH-ODNs in human lupus, particularly class R INH-ODNs, may result in more selective and disease-specific immunosuppression.  相似文献   

2.
Activation of TLR7 and TLR9 by endogenous RNA- or DNA-containing ligands, respectively, is thought to contribute to the complicated pathophysiology of systemic lupus erythematosus (SLE). These ligands induce the release of type-I interferons by plasmacytoid dendritic cells and autoreactive antibodies by B-cells, both responses being key events in perpetuating SLE. We recently described the development of inhibitory oligonucleotides (INH-ODN), which are characterized by a phosphorothioate backbone, a CC(T)XXX3–5GGG motif and a chemical modification of the G-quartet to avoid the formation of higher order structures via intermolecular G-tetrads. These INH-ODNs were equally or significantly more efficient to impair TLR7- and TLR9-stimulated murine B-cells, macrophages, conventional and plasmacytoid dendritic cells than the parent INH-ODN 2088, which lacks G-modification. Here, we evaluate the inhibitory/therapeutic potential of our set of G-modified INH-ODN on human immune cells. We report the novel finding that G-modified INH-ODNs efficiently inhibited the release of IFN-α by PBMC stimulated either with the TLR7-ligand oligoribonucleotide (ORN) 22075 or the TLR9-ligand CpG-ODN 2216. G-modification of INH-ODNs significantly improved inhibition of IL-6 release by PBMCs and purified human B-cells stimulated with the TLR7-ligand imiquimod or the TLR9-ligand CpG-ODN 2006. Furthermore, inhibition of B-cell activation analyzed by expression of activation markers and intracellular ATP content was significantly improved by G-modification. As observed with murine B-cells, high concentrations of INH-ODN 2088 but not of G-modified INH-ODNs stimulated IL-6 secretion by PBMCs in the absence of TLR-ligands thus limiting its blocking efficacy. In summary, G-modification of INH-ODNs improved their ability to impair TLR7- and TLR9-mediated signaling in those human immune cells which are considered as crucial in the pathophysiology of SLE.  相似文献   

3.
Common variable immune deficiency (CVID) is a primary immune deficiency characterized by low levels of serum immune globulins, lack of Ab, and reduced numbers of CD27+ memory B cells. Although T, B, and dendritic cell defects have been described, for the great majority, genetic causes have not been identified. In these experiments, we investigated B cell and plasmacytoid dendritic cell activation induced via TLR9, an intracellular recognition receptor that detects DNA-containing CpG motifs from viruses and bacteria. CpG-DNA activates normal B cells by the constitutively expressed TLR9, resulting in cytokine secretion, IgG class switch, immune globulin production, and potentially, the preservation of long-lived memory B cells. We found that CpG-DNA did not up-regulate expression of CD86 on CVID B cells, even when costimulated by the BCR, or induce production of IL-6 or IL-10 as it does for normal B cells. TLR9, found intracytoplasmically and on the surface of oligodeoxynucleotide-activated normal B cells, was deficient in CVID B cells, as was TLR9 mRNA. TLR9 B cell defects were not related to proportions of CD27+ memory B cells. CpG-activated CVID plasmacytoid dendritic cells did not produce IFN-alpha in normal amounts, even though these cells contained abundant intracytoplasmic TLR9. No mutations or polymorphisms of TLR9 were found. These data show that there are broad TLR9 activation defects in CVID which would prevent CpG-DNA-initiated innate immune responses; these defects may lead to impaired responses of plasmacytoid dendritic cells and loss of B cell function.  相似文献   

4.
Toll-like receptors (TLRs) have a crucial role in the early detection of pathogen-associated molecular patterns and the subsequent activation of the adaptive immune response. Whether TLRs also have an important role in the recognition of endogenous ligands has been more controversial. Numerous in vitro studies have documented activation of both autoreactive B cells and plasmacytoid dendritic cells by mammalian TLR ligands. The issue of whether these in vitro observations translate to an in vivo role for TLRs in either the initiation or the progression of systemic autoimmune disease is a subject of intense research; data are beginning to emerge showing that this is the case.  相似文献   

5.
6.
Polyclonal B cell activation promotes immunity without the loss of tolerance. Our data show that during activation of the innate immune system, B cell tolerance to Smith Ag Sm is maintained by dendritic cells (DCs) and macrophages (MPhi). TLR4-activated myeloid DCs and MPhi, but not plasmacytoid or lymphoid DCs, repressed autoreactive B cells through the secretion of soluble mediators, including IL-6. Although IL-6 promotes plasma cell differentiation of B cells acutely stimulated by Ag, we show that it repressed cells that were chronically exposed to self-Ag. This mechanism of tolerance was not limited to Smith Ag-specific B cells as hen egg lysozyme- and p-azophenylarsonate-specific B cells were similarly affected. Our data define a tolerogenic role for MPhi and DCs in regulating autoreactive B cells during activation of the innate immune system.  相似文献   

7.
8.
Detailed information of human B cell activation via TLR may lead to a better understanding of B cell involvement in autoimmunity and malignancy. In this study we identified a fundamental difference in the regulation of TLR7- and TLR9-mediated B cell stimulation: whereas the induction of polyclonal naive B cell proliferation by the TLR7 ligands resiquimod (R848) and loxoribine required the presence of plasmacytoid dendritic cells (PDCs), activation via the TLR9 ligand CpG was independent of PDCs. We found that PDC-derived type I IFN enhanced TLR7 sensitivity of B cells by selectively up-regulating TLR7 expression. In contrast the expression levels of TLR9 and of other TLRs studied remained unchanged. In the presence of type I IFN, TLR7 ligation triggered polyclonal B cell expansion and B cell differentiation toward Ig-producing plasma cells; notably, this occurred independently of T cell help and B cell Ag. Human B cells did not respond to ligands of other TLRs including TLR2, TLR4 and TLR6 with and without type I IFN. In conclusion, our results reveal a distinct regulation of TLR7 and TLR9 function in human B cells and highlight TLR7 and TLR9 as unique targets for therapeutic intervention in B cell-mediated immunity and disease.  相似文献   

9.
TLRs initiate the host immune response to microbial pathogens by activating cells of the innate immune system. Dendritic cells (DCs) can be categorized into two major groups, conventional DCs (including CD8(+) and CD8(-) DCs) and plasmacytoid DCs. In mice, these subsets of DCs express a variety of TLRs, with conventional DCs responding in vitro to predominantly TLR3, TLR4, TLR5, and TLR9 ligands, and plasmacytoid DCs responding mainly to TLR7 and TLR9 ligands. However, the in vivo requirement of DCs to initiate immune responses to specific TLR agonists is not fully known. Using mice depleted of >90% of CD11c(+) MHC class II(+) DCs, we demonstrate that cellular recruitment, including CD4(+) T cell and CX5(+)DX5(+) NK cell recruitment to draining lymph nodes following the footpad administration of TLR4 and TLR5 agonists, is dramatically decreased upon reduction of DC numbers, but type I IFN production can partially substitute for DCs in response to TLR3 and TLR7 agonists. Interestingly, TLR ligands can activate T cells and NK cells in the draining lymph nodes, even with reduced DC numbers. The findings reveal considerable plasticity in the response to TLR agonists, with TLR4 and TLR5 agonists sharing the requirement of DCs for subsequent lymph node recruitment of NK and T cells.  相似文献   

10.
IL-1R-associated kinases (IRAKs) are important mediators of MyD88-dependent signaling by the TLR/IL-1R superfamily and facilitate inflammatory responses. IRAK4 and IRAK1 function as active kinases and as scaffolds for protein-protein interactions. We report that although IRAK1/4 kinase activity is essential for human plasmacytoid dendritic cell (pDC) activation, it is dispensable in B, T, dendritic, and monocytic cells, which is in contrast with an essential active kinase role in comparable mouse cell types. An IRAK1/4 kinase inhibitor abrogated TLR7/9-induced IFN-α responses in both mouse and human pDCs, but other human immune cell populations activated via TLR7/9 or IL-1R were refractory to IRAK4 kinase inhibition. Gene ablation experiments using small interfering RNA demonstrated an essential scaffolding role for IRAK1 and IRAK4 in MyD88-dependent signaling. Finally, we demonstrate that autoimmune patient (systemic lupus erythematosus and rheumatoid arthritis) serum activates both pDC and B cells, but IRAK1/4 kinase inhibition affects only the pDC response, underscoring the differential IRAK1/4 functional requirements in human immune cells. These data reveal important species differences and elaborate cell type requirements for IRAK1/4 kinase activity.  相似文献   

11.
Toll-like receptors (TLR) are employed by the innate immune system to detect microbial pathogens based on conserved microbial pathogen molecules. For example, TLR9 is a receptor for CpG-containing microbial DNA, and its activation results in the production of cytokines and type I interferons from human B cells and plasmacytoid dendritic cells, respectively. Both are required for mounting an efficient antibacterial or antiviral immune response. These effects are mimicked by synthetic CpG oligodeoxynucleotides (ODN). Although several hyporesponsive TLR9 variants have been reported, their functional relevance in human primary cells has not been addressed. Here we report a novel TLR9 allele, R892W, which is hyporesponsive to CpG ODN and acts as a dominant-negative in a cellular model system. The R892W variant is characterized by increased MyD88 binding and defective co-localization with CpG ODN. Whereas primary plasmacytoid dendritic cells isolated from a heterozygous R892W carrier responded normally to CpG by interferon-α production, carrier B cells showed impaired IL-6 and IL-10 production. This suggests that heterozygous carriage of a hyporesponsive TLR9 allele is not associated with complete loss of TLR9 function but that TLR9 signals elicited in different cell types are regulated differently in human primary cells.  相似文献   

12.
The TLRs 7, 8, and 9 stimulate innate immune responses upon recognizing pathogen nucleic acids. U-rich RNA sequences were recently discovered that stimulate human TLR7/8-mediated or murine TLR7-mediated immune effects. In this study we identified single-stranded RNA sequences containing defined sequence motifs that either preferentially activate human TLR8-mediated as opposed to TLR7- or TLR7/8-mediated immune responses. The identified TLR8 RNA motifs signal via TLR8 and fail to induce IFN-alpha from TLR7-expressing plasmacytoid dendritic cells but induce the secretion of Th1-like and proinflammatory cytokines from TLR8-expressing immune cells such as monocytes or myeloid dendritic cells. In contrast, RNA sequences containing the TLR7/8 motif signal via TLR7 and TLR8 and stimulate cytokine secretion from both TLR7- and TLR8-positive immunocytes. The TLR8-specific RNA sequences are able to trigger cytokine responses from human and bovine but not from mouse, rat, and porcine immune cells, suggesting that these species lack the capability to respond properly to TLR8 RNA ligands. In summary, we describe two classes of single-stranded TLR7/8 and TLR8 RNA agonists with diverse target cell and species specificities and immune response profiles.  相似文献   

13.
CD1d-restricted invariant NK T (iNKT) cells and dendritic cells (DCs) have been shown to play crucial roles in various types of immune responses, including TLR9-dependent antiviral responses initiated by plasmacytoid DCs (pDCs). However, the mechanism by which this occurs is enigmatic because TLRs are absent in iNKT cells and human pDCs do not express CD1d. To explore this process, pDCs were activated with CpG oligodeoxyribonucleotides, which stimulated the secretion of several cytokines such as type I and TNF-alpha. These cytokines and other soluble factors potently induced the expression of activation markers on iNKT cells, selectively enhanced double-negative iNKT cell survival, but did not induce their expansion or production of cytokines. Notably, pDC-derived factors licensed iNKT cells to respond to myeloid DCs: an important downstream cellular target of iNKT cell effector function and a critical contributor to the initiation of adaptive immune responses. This interaction supports the notion that iNKT cells can mediate cross-talk between DC subsets known to express mutually exclusive TLR and cytokine profiles.  相似文献   

14.
Autoreactive B cells may become activated in a T-independent manner via synergistic engagement of the BCR and TLRs. Using the VH3H9 Ig H chain transgene to track anti-chromatin B cells, we demonstrate that VH3H9/Vlambda1 anti-chromatin B cells proliferate in response to stimulatory oligodeoxynucleotides containing CpG motifs, suggesting that these autoreactive B cells are responsive to TLR9 signaling. Strikingly, some VH3H9 B cells, but not the well-characterized VH3H9/Vlambda1 B cells, proliferate spontaneously in culture medium. This proliferation is blocked by inhibitory CpG oligodeoxynucleotides, implicating the TLR9 (or possibly TLR7) pathway. Most hybridomas generated from the proliferating cells are polyreactive, and one exhibits binding to nuclear Ags but not to the other Ags tested. Thus, B cells carrying autoreactive and/or polyreactive specificities may be susceptible to T cell-independent activation via dual engagement of the BCR and TLRs.  相似文献   

15.
16.
TLRs expressed by a variety of cells, including epithelial cells, B cells, and dendritic cells, are important initiators of the immune response following stimulation with various microbial products. Several of the TLRs require the adaptor protein, MyD88, which is an important mediator for the immune response following Toxoplasma gondii infection. Previously, TLR9-mediated innate immune responses were predominantly associated with ligation of unmethylated bacterial CpG DNA. In this study, we show that TLR9 is required for the Th1-type inflammatory response that ensues following oral infection with T. gondii. After oral infection with T. gondii, susceptible wild-type (WT; C57BL/6) but not TLR9(-/-) (B6 background) mice develop a Th1-dependent acute lethal ileitis; TLR9(-/-) mice have higher parasite burdens than control WT mice, consistent with depressed IFN-gamma-dependent parasite killing. A reduction in the total T cell and IFN-gamma-producing T cell frequencies was observed in the lamina propria of the TLR9(-/-) parasite-infected mice. TLR9 and type I IFN production was observed by cells from infected intestines in WT mice. TLR9 expression by dendritic cell populations is essential for their expansion in the mesenteric lymph nodes of infected mice. Infection of chimeric mice deleted of TLR9 in either the hemopoietic or nonhemopoietic compartments demonstrated that TLR9 expression by cells from both compartments is important for efficient T cell responses to oral infection. These observations demonstrate that TLR9 mediates the innate response to oral parasite infection and is involved in the development of an effective Th1-type immune response.  相似文献   

17.
The Toll-like receptor (TLR)9 is critical for the recognition of immunostimulatory CpG motifs but may cooperate with other TLRs. We analyzed TLR1-10 mRNA expression by using quantitative real-time PCR in highly purified subsets of human PBMC and determined the sensitivity of these subsets to CpG oligodeoxynucleotides (ODN). TLR1 and TLR6 were expressed in all cell types examined. TLR10 was highly expressed in B cells and weakly expressed in plasmacytoid dendritic cells (PDC). High expression of TLR2 was characteristic for monocytes. PDC and B cells expressed marked levels of TLR7 and TLR9 and were directly sensitive to CpG ODN. In CpG ODN-stimulated PDC and B cells, TLR9 expression rapidly decreased, as opposed to TLR7, which was up-regulated in PDC and decreased in B cells. In monocytes, NK cells, and T cells, TLR7 was absent. Despite low expression of TLR9, monocytes, NK cells, and T cells did not respond to CpG ODN in the absence of PDC but were activated in the presence of PDC. In conclusion, our studies provide evidence that PDC and B cells, but not monocytes, NK cells, or T cells, are primary targets of CpG ODN in peripheral blood. The characteristic expression pattern of TLR1-10 in cellular subsets of human PBMC is consistent with the concept that TLR9 is essential in the recognition of CpG ODN in PDC and B cells. In addition, selective regulation of TLR7 expression in PDC and B cells by CpG ODN revealed TLR7 as a candidate TLR potentially involved in modulating the recognition of CpG motifs.  相似文献   

18.
19.
TLR9 recognizes DNA sequences containing hypomethylated CpG motifs and is a component of the innate immune system highly conserved during eukaryotic evolution. Previous reports suggested that the expression of TLR9 is restricted to plasmacytoid dendritic cells and B lymphocytes. Our results indicate that low levels of TLR9 are present on the cell surface of freshly isolated human monocytes, and expression is greatly increased by infection with Yersinia pestis. Enhanced cell surface TLR9 coincided with elevated levels of cytoplasmic TLR9 and recruitment of MyD88. Infected monocytes differentiated into mature dendritic cells, expressed IFN-alpha, and stimulated proliferative and cytotoxic T cell responses specific to Y. pestis. Furthermore, uninfected B cells and monocytes both increased cell surface TLR9, CD86, and HLA-DR in response to treatment with CpG-containing oligonucleotides, whereas cell surface TLR9 was down-modulated on infected dendritic cells by the addition of agonist oligonucleotide. Our results suggest that increased expression of TLR9 on the surface of infected cells may serve a role as an activation signal to other cells of the immune system.  相似文献   

20.
Mouse mammary tumor virus (MMTV) is a milk-borne retrovirus that exploits the adaptive immune system. It has recently been shown that MMTV activates B cells via Toll-like receptor 4 (TLR4), a molecule involved in innate immune responses. Here, we show that direct virus binding to TLR4 induced maturation of bone marrow-derived dendritic cells and up-regulated expression of the MMTV entry receptor (CD71) on these cells. In vivo, MMTV increased the number of dendritic cells in neonatal Peyer's patches and their expression of CD71; both these effects were dependent on TLR4. Thus, retroviral signaling through TLRs plays a critical role in dendritic-cell participation during infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号