首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schizophrenia is a serious neuropsychiatric illness affecting about 1% of the world’s population. Family, twin and adoption studies have demonstrated that 65%―85% of the susceptibility to schizophrenia can be attributed to genes. On the basis of genetic model-ing of epidemiological data and recent results of a number of whole-genome screens for susceptibility genes, schizophrenia has been considered a complex disorder. A number of genes with small to moderate effects are involved in combinat…  相似文献   

2.
李俊宁  许琪  沈岩  季梁 《遗传》2006,28(4):403-406
精神分裂症是由多基因相互作用导致的复杂疾病。对其易感基因,儿茶酚氧位甲基转移酶基因(COMT)的众多报道充满了矛盾。在对偏执型精神分裂症研究中,我们用多基因座关联分析法研究了4个涉及神经递质多巴胺代谢的基因之间的相互作用。分析结果支持如下假说:COMT-136-BclIVal108/158Met有调控作用。当前者的基因型是CC时,后者的易感等位基因型是MetA);而当前者的基因型是GG时,后者的易感等位基因型是ValG)。这一新的假说可以解释此前单基因座分析对Val108/158Met(COMT)的截然相反的报道,同时也显示了多基因座分析对复杂疾病研究的必要性。   相似文献   

3.
Performance alterations in executive function have been studied as potential endophenotypes for several neuropsychiatric diseases. Planning is an important component of executive function and has been shown to be affected in diseases such as attention deficit hyperactivity disorder, schizophrenia, obsessive–compulsive disorder and Parkinson’s disease. Several genes related to dopaminergic systems, such as COMT, have been explored as candidates for influencing planning performance. The circadian clock gene PERIOD3 (PER3) has been shown to be associated with several complex behaviors in humans and could be involved in different signaling mechanisms. In this study, we evaluated the possible association between a functional polymorphism in the PER3 gene (PER3-VNTR, rs57875989) and performance in a commonly used test of planning (Tower of London, TOL) in 229 healthy subjects from Bogotá, Colombia. PER3-VNTR genotyping was carried out with conventional PCR and all participants completed the TOL test using the computerized Psychology Experiment Building Language (PEBL) battery. A linear regression model was used for the analysis of association with the SNPStats program. We found that 4/4 genotype carriers showed a better performance and made fewer moves, in comparison to 4/5 and 5/5 genotype carriers (p?=?0.003). These results appear to be independent from effects of this polymorphism on self-reported average hours of sleep during work days in our sample. This is the first evidence of an association between PER3-VNTR and planning performance in a sample of healthy subjects and our results are consistent from previous findings for alterations in other cognitive domains. Future studies examining additional genes could lead to the identification of novel molecular underpinnings of planning in healthy subjects and in patients with neuropsychiatric disorders.  相似文献   

4.
Genes of the immune system are relevant to the etiology of schizophrenia. However, to our knowledge, no large-scale studies, using molecular methods, have been undertaken to investigate the role of highly polymorphic immunoglobulin GM (γ marker) genes in this disorder. In this investigation, we aimed to determine whether particular GM genotypes were associated with susceptibility to schizophrenia. Using a matched case–control study design, we analyzed DNA samples from 798 subjects—398 patients with schizophrenia and 400 controls—obtained from the U.S. National Institute of Mental Health Repository. GM alleles were determined by the TaqMan® genotyping assay. The GM 3/3; 23?/23? genotype was highly significantly associated with susceptibility to schizophrenia (p = 0.0002). Subjects with this genotype were over three times (OR 3.4; 95 % CI 1.7–6.7) as likely to develop schizophrenia as those without this genotype. Our results show that immunoglobulin GM genes are risk factors for the development of schizophrenia. Since GM alleles have been implicated in gluten sensitivity and in immunity to neurotropic viruses associated with cognitive impairment, the results presented here may help unify these two disparate areas of pathology affected in this disorder.  相似文献   

5.
Parkinson's disease (PD) is a neurodegenerative disorder associated with α-synuclein aggregation and dopaminergic neuron loss in the midbrain. There is evidence that psychological stress promotes PD progression by enhancing glucocorticoids-related oxidative damage, however, the mechanisms involved are unknown. The present study demonstrated that plasma membrane phospholipid peroxides, as determined by phospholipidomics, triggered ferroptosis in dopaminergic neurons, which in turn contributed to stress exacerbated PD-like motor disorder in mice overexpressing mutant human α-synuclein. Using hormonomics, we identified that stress stimulated corticosteroid release and promoted 15-lipoxygenase-1 (ALOX15)-mediated phospholipid peroxidation. ALOX15 was upregulated by α-synuclein overexpression and acted as a fundamental risk factor in the development of chronic stress-induced parkinsonism and neurodegeneration. Further, we demonstrated the mechanism by which corticosteroids activated the PKC pathway and induced phosphatidylethanolamine-binding protein-1 (PEBP1) to form a complex with ALOX15, thereby facilitating ALOX15 to locate on the plasma membrane phospholipids. A natural product isolated from herbs, leonurine, was screened with activities of inhibiting the ALOX15/PEBP1 interaction and thereby attenuating membrane phospholipid peroxidation. Collectively, our findings demonstrate that stress increases the susceptibility of PD by driving membrane lipid peroxidation of dopaminergic neurons and suggest the ALOX15/PEBP1 complex as a potential intervention target.  相似文献   

6.
Complex neurodevelopmental disorders, such as schizophrenia, autism, attention deficit (hyperactivity) disorder, (manic) depressive illness and addiction, are thought to result from an interaction between genetic and environmental factors. Association studies on candidate genes and genome-wide linkage analyses have identified many susceptibility chromosomal regions and genes, but considerable efforts to replicate association have been surprisingly often disappointing. Here, we summarize the current knowledge of the genetic contribution to complex neurodevelopmental disorders, focusing on the findings from association and linkage studies. Furthermore, the contribution of the interaction of the genetic with environmental and epigenetic factors to the aetiology of complex neurodevelopmental disorders as well as suggestions for future research are discussed.Key Words: Neurodevelopmental disorders, susceptibility genes, environmental factors, gene-environment interactions, association studies, linkage analysis.  相似文献   

7.
The present study detected two single nucleotide polymorphisms (SNPs) at the PLA2G4D locus, rs2459692 and rs4924618, to investigate a genetic association between the PLA2G4D gene and schizophrenia. A total of 236 Chinese parent-offspring trios of Han descent were recruited for the genetic analysis. The transmission disequilibrium test (TDT) did not show allelic association either for rs2459692 (chi(2) = 0.217, P = 0.641) or for rs4924618 (chi(2) = 0.663, P = 0.416). To see the combined effect of the PLA2G4D locus with the other three PLA2G4 genes, we applied the above two SNPs as a conditional marker to test the pair-wise combination for a disease association. The conditioning on allele (COA) test revealed a weak association for the rs2459692-PLA2G4A combination (chi(2) = 6.03, df = 2, P = 0.049), the rs2459692-PLA2G4B combination (chi(2) = 7.16, df = 3, P = 0.028) and the rs4924618-PLA2G4C combination (chi(2) = 7.01, df = 2, P = 0.03), whereas the conditioning on genotype (COG) test showed a weak association only for the rs4924618-PLA2G4C combination (chi(2) = 8.52, df = 3, P = 0.036). Because we performed a multi-locus analysis in this study, the weak association shown by the conditional tests could make little biological sense. In conclusion, the PLA2G4D gene may not be involved in a susceptibility to schizophrenia.  相似文献   

8.
There is substantial evidence found in the literature that supports the fact that the presence of oxidative stress may play an important role in the pathophysiology of schizophrenia. The glutathione S-transferases (GSTs) forms one of the major detoxifying groups of enzymes responsible for eliminating products of oxidative stress. Interindividual differences observed in the metabolism of xenobiotics have been attributed to the genetic polymorphism of genes coding for enzymes involved in detoxification. Thus, in this study we investigated the association of glutathione S-transferase Mu-1 (GSTM1) and glutathione S-transferase theta-1 (GSTT1) gene deletion polymorphisms and schizophrenia in a Tunisian population. A case–control study including 138 schizophrenic patients and 123 healthy controls was enrolled. The GSTM1 and GSTT1 polymorphisms were analyzed by multiplex polymerase chain reaction (PCR). No association was found between the GSTM1 genotype and schizophrenia, whereas the prevalence of the GSTT1 active genotype was significantly higher in the schizophrenic patients (57.2%) than in the controls (45.5%) with (OR = 0.6, IC 0.37–0.99, p = 0.039). Thus, we noted a significant association between schizophrenia and GSTT1 active genotype. Furthermore, the combination of the GSTM1 and GSTT1 null genotypes showed a non-significant trend to an increased risk of schizophrenia. The present finding indicated that GSTT1 seems to be a candidate gene for susceptibility to schizophrenia in at least Tunisian population.  相似文献   

9.
Alzheimer’s disease is a complex neurodegenerative disorder. Several genes have been suggested as Alzheimer’s susceptibility factors, the apolipoprotein E (APOE) gene being an established susceptibility gene and the genes coding angiotensin-converting enzyme (ACE) and apolipoprotein C1 (APOC1) being considered possible candidate genes for the disease. The objective of this study was to investigate the association of ACE and APOC1 gene polymorphisms with susceptibility to Alzheimer’s disease and dementia in general, both alone and combined with the APOE gene. Forty-seven patients with dementia in general (35 of them with Alzheimer’s disease) and 85 controls were investigated. The haplotypes E*3/317*ins and E*4/317*ins of APOE/APOC1 genes were significantly more frequent in the groups with Alzheimer′s disease and dementia in general (P < 0.001). The frequency of the ACE*ins allele was also greater in the groups with Alzheimer’s disease and dementia in general (P = 0.022; P = 0.045), but genotype frequencies were only different in groups without the E*4/317*ins haplotype (P = 0.012 for Alzheimer’s disease; P = 0.04 for dementia). Our data point to important genetic interactions involved in these diseases.  相似文献   

10.
Epigenetic mechanisms can mediate gene-environment interactions relevant for complex disorders. The BDNF gene is crucial for development and brain plasticity, is sensitive to environmental stressors, such as hypoxia, and harbors the functional SNP rs6265 (Val66Met), which creates or abolishes a CpG dinucleotide for DNA methylation. We found that methylation at the BDNF rs6265 Val allele in peripheral blood of healthy subjects is associated with hypoxia-related early life events (hOCs) and intermediate phenotypes for schizophrenia in a distinctive manner, depending on rs6265 genotype: in ValVal individuals increased methylation is associated with exposure to hOCs and impaired working memory (WM) accuracy, while the opposite is true for ValMet subjects. Also, rs6265 methylation and hOCs interact in modulating WM-related prefrontal activity, another intermediate phenotype for schizophrenia, with an analogous opposite direction in the 2 genotypes. Consistently, rs6265 methylation has a different association with schizophrenia risk in ValVals and ValMets. The relationships of methylation with BDNF levels and of genotype with BHLHB2 binding likely contribute to these opposite effects of methylation. We conclude that BDNF rs6265 methylation interacts with genotype to bridge early environmental exposures to adult phenotypes, relevant for schizophrenia. The study of epigenetic changes in regions containing genetic variation relevant for human diseases may have beneficial implications for the understanding of how genes are actually translated into phenotypes.  相似文献   

11.
Schizophrenia-associated anomalies in gene expression in postmortem brain can be attributed to a combination of genetic and environmental influences. Given the small effect size of common variants, it is likely that we may only see the combined impact of some of these at the pathway level in small postmortem studies. At the gene level, however, there may be more impact from common environmental exposures mediated by influential epigenomic modifiers, such as microRNA (miRNA). We hypothesise that dysregulation of miRNAs and their alteration of gene expression have significant implications in the pathophysiology of schizophrenia. In this study, we integrate changes in cortical gene and miRNA expression to identify regulatory interactions and networks associated with the disorder. Gene expression analysis in post-mortem prefrontal dorsolateral cortex (BA 46) (n = 74 matched pairs of schizophrenia, schizoaffective, and control samples) was integrated with miRNA expression in the same cohort to identify gene–miRNA regulatory networks. A significant gene–miRNA interaction network was identified, including miR-92a, miR-495, and miR-134, which converged with differentially expressed genes in pathways involved in neurodevelopment and oligodendrocyte function. The capacity for miRNA to directly regulate gene expression through respective binding sites in BCL11A, PLP1, and SYT11 was also confirmed to support the biological relevance of this integrated network model. The observations in this study support the hypothesis that miRNA dysregulation is an important factor in the complex pathophysiology of schizophrenia.  相似文献   

12.

Background

Hypofunction of the glutamate N-Methyl-d-aspartate (NMDA) receptor has been implicated in the pathophysiology of schizophrenia. p250GAP is a brain-enriched NMDA receptor-interacting RhoGAP. p250GAP is involved in spine morphology, and spine morphology has been shown to be altered in the post-mortem brains of patients with schizophrenia. Schizotypal personality disorder has a strong familial relationship with schizophrenia. Several susceptibility genes for schizophrenia have been related to schizotypal traits.

Methods

We first investigated the association of eight linkage disequilibrium-tagging single-nucleotide polymorphisms (SNPs) that cover the p250GAP gene with schizophrenia in a Japanese sample of 431 schizophrenia patients and 572 controls. We then investigated the impact of the risk genetic variant in the p250GAP gene on schizotypal personality traits in 180 healthy subjects using the Schizotypal Personality Questionnaire.

Results

We found a significant difference in genotype frequency between the patients and the controls in rs2298599 (χ2 = 17.6, p = 0.00015). The minor A/A genotype frequency of rs2298599 was higher in the patients (18%) than in the controls (9%) (χ2 = 15.5, p = 0.000083). Moreover, we found that subjects with the rs2298599 risk A/A genotype, compared with G allele carriers, had higher scores of schizotypal traits (F1,178 = 4.08, p = 0.045), particularly the interpersonal factor (F1,178 = 5.85, p = 0.017).

Discussion

These results suggest that a genetic variation in the p250GAP gene might increase susceptibility not only for schizophrenia but also for schizotypal personality traits. We concluded that the p250GAP gene might be a new candidate gene for susceptibility to schizophrenia.  相似文献   

13.
14.

Background  

Purely epistatic multi-locus interactions cannot generally be detected via single-locus analysis in case-control studies of complex diseases. Recently, many two-locus and multi-locus analysis techniques have been shown to be promising for the epistasis detection. However, exhaustive multi-locus analysis requires prohibitively large computational efforts when problems involve large-scale or genome-wide data. Furthermore, there is no explicit proof that a combination of multiple two-locus analyses can lead to the correct identification of multi-locus interactions.  相似文献   

15.

Background

Schizophrenia is a highly heritable disease with a polygenic mode of inheritance. Many studies have contributed to our understanding of the genetic underpinnings of schizophrenia, but little is known about how interactions among genes affect the risk of schizophrenia. This study aimed to assess the associations and interactions among genes that confer vulnerability to schizophrenia and to examine the moderating effect of neuropsychological impairment.

Methods

We analyzed 99 SNPs from 10 candidate genes in 1,512 subject samples. The permutation-based single-locus, multi-locus association tests, and a gene-based multifactorial dimension reduction procedure were used to examine genetic associations and interactions to schizophrenia.

Results

We found that no single SNP was significantly associated with schizophrenia. However, a risk haplotype, namely A-T-C of the SNP triplet rsDAO7-rsDAO8-rsDAO13 of the DAO gene, was strongly associated with schizophrenia. Interaction analyses identified multiple between-gene and within-gene interactions. Between-gene interactions including DAO*DISC1 , DAO*NRG1 and DAO*RASD2 and a within-gene interaction for CACNG2 were found among schizophrenia subjects with severe sustained attention deficits, suggesting a modifying effect of impaired neuropsychological functioning. Other interactions such as the within-gene interaction of DAO and the between-gene interaction of DAO and PTK2B were consistently identified regardless of stratification by neuropsychological dysfunction. Importantly, except for the within-gene interaction of CACNG2, all of the identified risk haplotypes and interactions involved SNPs from DAO.

Conclusions

These results suggest that DAO, which is involved in the N-methyl-d-aspartate receptor regulation, signaling and glutamate metabolism, is the master gene of the genetic associations and interactions underlying schizophrenia. Besides, the interaction between DAO and RASD2 has provided an insight in integrating the glutamate and dopamine hypotheses of schizophrenia.  相似文献   

16.
Age-related macular degeneration (AMD) is a complex disorder of the eye and the third leading cause of blindness worldwide. With a multifactorial etiology, AMD results in progressive loss of central vision affecting the macular region of the eye in elderly. While the prevalence is relatively higher in the Caucasian populations, it has gradually become a major public health issue among the non-Caucasian populations (including Indians) as well due to senescence, rapidly changing demographics and life-style factors. Recent genome-wide association studies (GWAS) on large case-control cohorts have helped in mapping genes in the complement cascade that are involved in the regulation of innate immunity with AMD susceptibility. Genes involved with mitochondrial oxidative stress and extracellular matrix regulation also play a role in AMD pathogenesis. Majority of the associations observed in complement (CFH, CFB, C2 and C3) and other (ARMS2 and HTRA1) genes have been replicated in diverse populations worldwide. Gene-gene (CFH with ARMS2 and HTRA1) interactions and correlations with environmental traits (smoking and body mass index) have been established as significant covariates in AMD pathology. In this review, we have provided an overview on the underlying molecular genetic mechanisms in AMD worldwide and highlight the AMD-associated-candidate genes and their potential role in disease pathogenesis.  相似文献   

17.
Genome‐wide studies have identified allele A (adenine) of single nucleotide polymorphism (SNP) rs1006737 of the calcium‐channel CACNA1C gene as a risk factor for both schizophrenia (SZ) and bipolar disorder (BD) as well as allele A for rs1344706 in the ZNF804A gene. These illnesses have also been associated with white matter abnormalities, reflected by reductions in fractional anisotropy (FA), measured using diffusion tensor imaging (DTI). We assessed the impact of the CACNA1C psychosis risk variant on FA in SZ, BD and health. 230 individuals (with existing ZNF804A rs1344706 genotype data) were genotyped for CACNA1C rs1006737 and underwent DTI. FA data was analysed with tract‐based spatial statistics and threshold‐free cluster enhancement significance correction (P < 0.05) to detect effects of CACNA1C genotype on FA, and its potential interaction with ZNF804A genotype and with diagnosis, on FA. There was no significant main effect of the CACNA1C genotype on FA, nor diagnosis by genotype(s) interactions. Nevertheless, when inspecting SZ in particular, risk allele carriers had significantly lower FA than the protective genotype individuals, in portions of the left middle occipital and parahippocampal gyri, right cerebellum, left optic radiation and left inferior and superior temporal gyri. Our data suggests a minor involvement of CACNA1C rs1006737 in psychosis via conferring susceptibility to white matter microstructural abnormalities in SZ. Put in perspective, ZNF804A rs1344706, not only had a significant main effect, but its SZ‐specific effects were two orders of magnitude more widespread than that of CACNA1C rs1006737.  相似文献   

18.
Schizophrenia is a severe and heritable neuropsychiatric disorder, which arises due to a combination of common genetic variation, rare loss of function variation, and copy number variation. Functional genomic evidence has been used to identify candidate genes affected by this variation, which revealed biological pathways that may be disrupted in schizophrenia. Understanding the contributions of these pathways are critical next steps in understanding schizophrenia pathogenesis. A number of genes involved in endocytosis are implicated in schizophrenia. In this review, we explore the history of endosomal trafficking in schizophrenia and highlight new endosomal candidate genes. We explore the function of these candidate genes and hypothesize how their dysfunction may contribute to schizophrenia.  相似文献   

19.
Schizophrenia is a chronic debilitating neuropsychiatric disorder with complex etiopathology. Growing evidence suggests a significant role of chronic low grade inflammation in the pathophysiology of schizophrenia. Multiple immunological, genetic polymorphism and gene expression studies have established crucial roles of certain pro-inflammatory cytokines in the immune-mediated risk of schizophrenia. Although genetic studies suggest some variants within the pro-inflammatory IL-1β, IL-6, and TNF-α genes conferring risk to schizophrenia, the results however have been contradictory in various populations. In the present investigation, promoter SNPs of IL-6 (?174 G > C) and TNF-α (?238 G > A) genes have been studied to evaluate whether these variants contribute to schizophrenia susceptibility in Indian Bengalee population. Genotyping of the above SNPs was done in 100 well characterized and confirmed cases of paranoid schizophrenia and equal number of healthy donors belonging to the same ethnic group by using ABI 3730 Genetic Analyzer. No significant differences in genotype as well as allele frequencies were observed for IL-6 and TNF-α variants between the patient and control groups.  相似文献   

20.
Several putative schizophrenia susceptibility genes have recently been reported, but it is not clear whether these genes are associated with schizophrenia in general or with specific disease subtypes. In a previous study, we found an association of the neuregulin 1 (NRG1) gene with non-deficit schizophrenia only. We now report an association study of four schizophrenia candidate genes in patients with and without deficit schizophrenia, which is characterized by severe and enduring negative symptoms. Single-nucleotide polymorphisms (SNPs) were genotyped in the DTNBP1 (dysbindin), G72/G30 and RGS4 genes, and the relatively unknown PIP5K2A gene, which is located in a region of linkage with both schizophrenia and bipolar disorder. The sample consisted of 273 Dutch schizophrenia patients, 146 of whom were diagnosed with deficit schizophrenia and 580 controls. The strongest evidence for association was found for the A-allele of SNP rs10828317 in the PIP5K2A gene, which was associated with both clinical subtypes (P = 0.0004 in the entire group; non-deficit P = 0.016, deficit P = 0.002). Interestingly, this SNP leads to a change in protein composition. In RGS4, the G-allele of the previously reported SNP RGS4-1 (single and as part of haplotypes with SNP RGS4-18) was associated with non-deficit schizophrenia (P = 0.03) but not with deficit schizophrenia (P = 0.79). SNPs in the DTNBP1 and G72/G30 genes were not significantly associated in any group. In conclusion, our data provide further evidence that specific genes may be involved in different schizophrenia subtypes and suggest that the PIP5K2A gene deserves further study as a general susceptibility gene for schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号