首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change has advanced the phenology of many organisms. Migratory animals face particular problems because climate change in the breeding and the wintering range may be asynchronous, preventing rapid response to changing conditions. Advancement in timing of spring migration may have carry-over effects to other parts of the annual cycle, simply because advancement of one event in the annual cycle also advances subsequent events, gradually causing a general shift in the timing of the entire annual cycle. Such a phenotypic shift could generate accumulating effects over the years for individuals, but also across generations. Here we test this novel hypothesis of phenotypic response to climate change by using long-term data on the Arctic tern Sterna paradisaea. Mean breeding date advanced by almost three weeks during the last 70 years. Annual arrival date at the breeding grounds during a period of 47 years was predicted by environmental conditions in the winter quarters in the Southern Ocean near the Antarctic and by mean breeding date the previous year. Annual mean breeding date was only marginally determined by timing of arrival the current year, but to a larger extent by arrival date and breeding date the previous year. Learning affected arrival date as shown by a positive correlation between arrival date in year (i+1) relative to breeding date in year (i) and the selective advantage of early breeding in year (i). This provides a mechanism for changes in arrival date being adjusted to changing environmental conditions. This study suggests that adaptation to changing climatic conditions can be achieved through learning from year to year[Current Zoology 55(2):92-101,2009].  相似文献   

2.
Anthropogenic climate change has already altered the timing of major life-history transitions, such as the initiation of reproduction. Both phenotypic plasticity and adaptive evolution can underlie rapid phenological shifts in response to climate change, but their relative contributions are poorly understood. Here, we combine a continuous 38 year field survey with quantitative genetic field experiments to assess adaptation in the context of climate change. We focused on Boechera stricta (Brassicaeae), a mustard native to the US Rocky Mountains. Flowering phenology advanced significantly from 1973 to 2011, and was strongly associated with warmer temperatures and earlier snowmelt dates. Strong directional selection favoured earlier flowering in contemporary environments (2010-2011). Climate change could drive this directional selection, and promote even earlier flowering as temperatures continue to increase. Our quantitative genetic analyses predict a response to selection of 0.2 to 0.5 days acceleration in flowering per generation, which could account for more than 20 per cent of the phenological change observed in the long-term dataset. However, the strength of directional selection and the predicted evolutionary response are likely much greater now than even 30 years ago because of rapidly changing climatic conditions. We predict that adaptation will likely be necessary for long-term in situ persistence in the context of climate change.  相似文献   

3.
Climate-induced phenological shifts can influence population, evolutionary, and ecological dynamics, but our understanding of these phenomena is hampered by a lack of long-term demographic data. We use a multi-decade census of 5 salmonid species representing 14 life histories in a warming Alaskan stream to address the following key questions about climate change and phenology: How consistent are temporal patterns and drivers of phenology for similar species and alternative life histories? Are shifts in phenology associated with changes in phenotypic variation? How do phenological changes influence the availability of resource subsidies? For most salmonid species, life stages, and life histories, freshwater temperature influences migration timing – migration events are occurring earlier in time (mean = 1.7 days earlier per decade over the 3–5 decades), and the number of days over which migration events occur is decreasing (mean = 1.5 days per decade). Temporal trends in migration timing were not correlated with changes in intra-annual phenotypic variation, suggesting that these components of the phenotypic distribution have responded to environmental change independently. Despite commonalities across species and life histories, there was important biocomplexity in the form of disparate shifts in migration timing and variation in the environmental factors influencing migration timing for alternative life history strategies in the same population. Overall, adult populations have been stable during these phenotypic and environmental changes (λ ≈1.0), but the temporal availability of salmon as a resource in freshwater has decreased by nearly 30 days since 1971 due to changes in the median date of migration timing and decreases in intra-annual variation in migration timing. These novel observations advance our understanding of phenological change in response to climate warming, and indicate that climate change has influenced the ecology of salmon populations, which will have important consequences for the numerous species that depend on this resource.  相似文献   

4.
Many populations of migratory songbirds are declining or shifting in distribution. This is likely due to environmental changes that alter factors such as food availability that may have an impact on survival and/or breeding success. We tested the impact of experimentally supplemented food on the breeding success over three years of northern wheatears (Oenanthe oenanthe), a species in decline over much of Europe. The number of offspring fledged over the season was higher for food-supplemented birds than for control birds. The mechanisms for this effect were that food supplementation advanced breeding date, which, together with increased resources, allowed further breeding attempts. While food supplementation did not increase the clutch size, hatching success or number of chicks fledged per breeding attempt, it did increase chick size in one year of the study. The increased breeding success was greater for males than females; males could attempt to rear simultaneous broods with multiple females as well as attempting second broods, whereas females could only increase their breeding effort via second broods. Multiple brooding is rare in the study population, but this study demonstrates the potential for changes in food availability to affect wheatear breeding productivity, primarily via phenotypic flexibility in the number of breeding attempts. Our results have implications for our understanding of how wheatears may respond to natural changes in food availability due to climate changes or changes in habitat management.  相似文献   

5.
The timing of annual life‐history events affects survival and reproduction of all organisms. A changing environment can perturb phenological adaptations and an important question is if populations can evolve fast enough to track the environmental changes. Yet, little is known about selection and evolutionary potential of traits determining the timing of crucial annual events. Migratory species, which travel between different climatic regions, are particularly affected by global environmental changes. To increase our understanding of evolutionary potential and selection of timing traits, we investigated the quantitative genetics of arrival date at the breeding ground using a multigenerational pedigree of a natural great reed warbler (Acrocephalus arundinaceus) population. We found significant heritability of 16.4% for arrival date and directional selection for earlier arrival in both sexes acting through reproductive success, but not through lifespan. Mean arrival date advanced with 6 days over 20 years, which is in exact accordance with our predicted evolutionary response based on the breeder's equation. However, this phenotypic change is unlikely to be caused by microevolution, because selection seems mainly to act on the nongenetic component of the trait. Furthermore, demographical changes could also not account for the advancing arrival date. Instead, a strong correlation between spring temperatures and population mean arrival date suggests that phenotypic plasticity best explains the advancement of arrival date in our study population. Our study dissects the evolutionary and environmental forces that shape timing traits and thereby increases knowledge of how populations cope with rapidly changing environments.  相似文献   

6.
Climate change can influence many aspects of avian phenology and especially migratory shifts and changes in breeding onset receive much research interest in this context. However, changes in these different life‐cycle events in birds are often investigated separately and by means of ringing records of mixed populations. In this long‐term study on the willow warbler Phylloscopus trochilus, we investigated timing of spring and autumn migration in conjunction with timing of breeding. We made distinction among individuals with regard to age, sex, juvenile origin and migratory phase. The data set comprised 22‐yr of ringing records and two temporally separated data sets of egg‐laying dates and arrival of the breeding population close to the ringing site. The results reveal an overall advancement consistent in most, but not all, phenological events. During spring migration, early and median passage of males and females became earlier by between 4.4 to 6.3 d and median egg‐laying dates became earlier by 5 d. Male arrival advanced more, which may lead to an increase in the degree of protandry in the future. Among breeding individuals, only female arrival advanced in timing. In autumn, adults and locally hatched juvenile females did not advanced median passage, but locally hatched juvenile males appeared 4.2 d earlier. Migrating juvenile males and females advanced passage both in early and median migratory phase by between 8.4 to 10.1 d. The dissimilarities in the response between birds of different age, sex and migratory phase emphasize that environmental change may elicit intra‐specific selection pressures. The overall consistency of the phenological change in spring, autumn and egg‐laying, coupled with the unchanged number of days between median spring and autumn migration in adults, indicate that the breeding area residence has advanced seasonally but remained temporally constant.  相似文献   

7.
1. In structured populations, phenotypic change can result from changes throughout an individual's lifetime (phenotypic plasticity, age-related changes), selection and changes in population composition (environment- or density-driven fluctuations in age-structure). 2. The contribution of population dynamics to phenotypic change has often been ignored. However, for understanding trait dynamics, it is important to identify both the individual- and population-level mechanisms responsible for trait change, because they potentially reinforce or counteract each other. 3. We use 22 years of field data to investigate the dynamics of a sexually selected phenological trait, the timing of nuptial moult in superb fairy-wrens Malurus cyaneus. 4. We show that trait expression is both climate- and age-dependent, but that phenotypic plasticity in response to climate variability also varies with age. Old males can acquire nuptial plumage very early after high rainfall, but 1- to 2-year-olds cannot. However, males of all ages that defer moult to later in the year acquire nuptial plumage earlier when conditions are warmer. 5. The underlying mechanism appears to be that old males may risk moulting in the most challenging period of the year: in autumn, when drought restricts food abundance and during the cold winter. By contrast, young males always moult during the spring transition to benign - warmer and generally wetter - conditions. Temperature changes dominate this transition that heralds the breeding season, thereby causing both young and late-moulting older birds to be temperature sensitive. 6. Climate and age also affect trait dynamics via a population dynamical pathway. The same high rainfall that triggers early moulting in old males concurrently increases offspring recruitment and thereby reduces the average age of males in the population. Consequently, effects of rainfall on trait dynamics through phenotypic plasticity of old males are dampened by synchronous rejuvenation of the age-structure. 7. A long-term trend towards drier environments prompted phenotypic change because of plasticity, but this was masked by climate-driven demographic change (causing apparent stasis). This suggests a novel explanation for why trait change may fail to reflect the observed pattern of directional selection or phenotypic plasticity.  相似文献   

8.
1.?Climate warming has led to shifts in the seasonal timing of species. These shifts can differ across trophic levels, and as a result, predator phenology can get out of synchrony with prey phenology. This can have major consequences for predators such as population declines owing to low reproductive success. However, such trophic interactions are likely to differ between habitats, resulting in differential susceptibility of populations to increases in spring temperatures. A mismatch between breeding phenology and food abundance might be mitigated by dietary changes, but few studies have investigated this phenomenon. Here, we present data on nestling diets of nine different populations of pied flycatchers Ficedula hypoleuca, across their breeding range. This species has been shown to adjust its breeding phenology to local climate change, but sometimes insufficiently relative to the phenology of their presumed major prey: Lepidoptera larvae. In spring, such larvae have a pronounced peak in oak habitats, but to a much lesser extent in coniferous and other deciduous habitats. 2.?We found strong seasonal declines in the proportions of caterpillars in the diet only for oak habitats, and not for the other forest types. The seasonal decline in oak habitats was most strongly observed in warmer years, indicating that potential mismatches were stronger in warmer years. However, in coniferous and other habitats, no such effect of spring temperature was found. 3.?Chicks reached somewhat higher weights in broods provided with higher proportions of caterpillars, supporting the notion that caterpillars are an important food source and that the temporal match with the caterpillar peak may represent an important component of reproductive success. 4.?We suggest that pied flycatchers breeding in oak habitats have greater need to adjust timing of breeding to rising spring temperatures, because of the strong seasonality in their food. Such between-habitat differences can have important consequences for population dynamics and should be taken into account in studies on phenotypic plasticity and adaptation to climate change.  相似文献   

9.
Climate change induces an alteration in the life cycle of many poikilothermic organisms, resulting in changes in the structure and function of communities. Changes in voltinism in the pine moth Dendrolimus spectabilis (Butler), which is known to be univoltine in South Korea, were studied to elucidate the effects of climate change on their voltinism. The developmental stages of the pine moth were evaluated through field surveys, and the developmental rate was estimated at five different temperatures: 17, 20, 25, 28, and 32°C. Field surveys showed that the moths completed two generations per year, indicating that the phenology of the pine moth in this area had changed from univoltinism to bivoltinism. Laboratory experiments showed that increasing the temperature could induce a change in voltinism in the pine moth population. Generations of the bivoltine population displayed phenotypic plasticity: the fitness of the first generation was greater than that of the second generation with regard to size and fecundity. The difference in fitness between the first and second generations could be due to the influence of factors such as low food quality and heat stress on the second generation. Therefore, changes in thermal conditions due to climate change have offered this species the chance to develop a bivoltine population, but they have also exerted ecological costs, especially for the second generation of the pine moth.  相似文献   

10.
To predict how climate change will influence populations, it is necessary to understand the mechanisms, particularly microevolution and phenotypic plasticity, that allow populations to persist in novel environmental conditions. Although evidence for climate-induced phenotypic change in populations is widespread, evidence documenting that these phenotypic changes are due to microevolution is exceedingly rare. In this study, we use 32 years of genetic data (17 complete generations) to determine whether there has been a genetic change towards earlier migration timing in a population of pink salmon that shows phenotypic change; average migration time occurs nearly two weeks earlier than it did 40 years ago. Experimental genetic data support the hypothesis that there has been directional selection for earlier migration timing, resulting in a substantial decrease in the late-migrating phenotype (from more than 30% to less than 10% of the total abundance). From 1983 to 2011, there was a significant decrease-over threefold-in the frequency of a genetic marker for late-migration timing, but there were minimal changes in allele frequencies at other neutral loci. These results demonstrate that there has been rapid microevolution for earlier migration timing in this population. Circadian rhythm genes, however, did not show any evidence for selective changes from 1993 to 2009.  相似文献   

11.
Oil palm (Elaeis guineensis Jacq.) requires 19 years per cycle of phenotypic selection. The use of molecular markers may reduce the generation interval and the cost of oil-palm breeding. Our objectives were to compare, by simulation, the response to phenotypic selection, marker-assisted recurrent selection (MARS), and genomewide selection with small population sizes in oil palm, and assess the efficiency of each method in terms of years and cost per unit gain. Markers significantly associated with the trait were used to calculate the marker scores in MARS, whereas all markers were used (without significance tests) to calculate the marker scores in genomewide selection. Responses to phenotypic selection and genomewide selection were consistently greater than the response to MARS. With population sizes of N = 50 or 70, responses to genomewide selection were 4–25% larger than the corresponding responses to phenotypic selection, depending on the heritability and number of quantitative trait loci. Cost per unit gain was 26–57% lower with genomewide selection than with phenotypic selection when markers cost US $1.50 per data point, and 35–65% lower when markers cost $0.15 per data point. With population sizes of N = 50 or 70, time per unit gain was 11–23 years with genomewide selection and 14–25 years with phenotypic selection. We conclude that for a realistic yet relatively small population size of N = 50 in oil palm, genomewide selection is superior to MARS and phenotypic selection in terms of gain per unit cost and time. Our results should be generally applicable to other tree species that are characterized by long generation intervals, high costs of maintaining breeding plantations, and small population sizes in selection programs.  相似文献   

12.
Understanding the consequences of environmental change on ecological and evolutionary dynamics is inherently problematic because of the complex interplay between them. Using invertebrates in microcosms, we characterise phenotypic, population and evolutionary dynamics before, during and after exposure to a novel environment and harvesting over 20 generations. We demonstrate an evolved change in life‐history traits (the age‐ and size‐at‐maturity, and survival to maturity) in response to selection caused by environmental change (wild to laboratory) and to harvesting (juvenile or adult). Life‐history evolution, which drives changes in population growth rate and thus population dynamics, includes an increase in age‐to‐maturity of 76% (from 12.5 to 22 days) in the unharvested populations as they adapt to the new environment. Evolutionary responses to harvesting are outweighed by the response to environmental change (~ 1.4 vs. 4% change in age‐at‐maturity per generation). The adaptive response to environmental change converts a negative population growth trajectory into a positive one: an example of evolutionary rescue.  相似文献   

13.
The primary aim of plant breeders is to develop new cultivars in order to improve productivity and to combat threats from pests and diseases. Recent advances in genomics have been recognised as providing important tools for plant breeders in the form of molecular genetic markers that can be used to tag genes of interest. However, the cost-effective use of marker technology is dependent on the nature and timing of the use of such markers. A conventional potato breeding programme typically creates a large breeding population and then employs phenotypic recurrent selection over a number of generations to identify superior genotypes. Marker-assisted selection (MAS) provides the advantage of being applicable at the seedling or an early generation stage. We have analysed the cost of MAS and compared it to conventional screening, then modelled the respective costs against the breeding population size of the generation in which they would be applied to determine whether MAS in the early generations of a potato breeding programme would be cost-effective. As various potato breeding programmes employ different selection rates in early generations, these rates have also been modelled to determine the effect. Our results indicate that MAS could be applied cost-effectively in the second clonal generation for all models currently employed in potato breeding.  相似文献   

14.
Long‐distance migrants may respond to climate change in breeding, wintering or staging area by changing their phenology. The geographical variation in such responses (e.g. coastal vs. continental Europe) and the relative importance of climate at different spatial scales remain unclear. Here we analysed variation in first arrival dates (FADs) and laying dates of the Collared Flycatcher Ficedula albicollis in a central European population, from 1973 to 2002. The North Atlantic Oscillation (NAO) index correlated weakly with local temperature during the laying period. Decreasing spring temperatures until 1980 were associated with a trend towards later laying. The rate of warming (0.2 °C per year) and laying advancement (0.4 days per year) since 1980 are amongst the highest values reported elsewhere. This long‐term trend in laying date was largely explained by the change in climatic factors. The negative effect of local spring temperature on laying was relatively stronger than that of NAO. The number of clutches initiated on a particular day was marginally affected by the temperature 3 days prior to laying and the response of females to daily variation in temperature did not change over years. Correspondence between the average population‐level and the individual‐level responses of laying date to climate variation suggests that the advancement of laying was due to phenotypic plasticity. Despite warmer springs and advanced laying, FADs did not change over years and were not correlated with local spring temperature. Marginal evidence suggests later departure from wintering grounds and faster migration across staging areas in warmer conditions. Advancement of arrival was probably constrained by low local temperatures in early spring just before arrival that have not changed over years. The interval between first arrival and laying has declined since 1980 (0.5 days per year), but the increasing temperature during that period may have kept the food supply approximately unchanged.  相似文献   

15.
Numerous studies of wild animal species have documented that population level responses to environmental change are underpinned by individual level phenotypic plasticity. However, where the relationship between an individual trait and a climate variable occurs when both show a trend over time, phenotypic plasticity may be confounded by ageing. We investigated between and within individual change in laying date in the wandering albatross Diomedea exulans, a long‐lived species experiencing a dramatic decline in population size. Laying date has advanced over the last three decades. A mean‐centering analysis demonstrated that this pattern was driven by within‐individual changes as opposed to appearance or disappearance of phenotypes. Furthermore, a lack of between individual effect suggested the change resulted from ageing as opposed to phenotypic plasticity. Females varied significantly in rate of advance, such that those with low past reproductive rates exhibited a negative temporal trend in laying date, whereas birds with moderate to high past reproductive performance showed little change. The population trend was therefore driven by a subset with low past breeding success. An analysis of effects of timing of breeding on breeding success revealed stabilizing selection for relative laying date. Furthermore, current breeding success was positively related to past success rate, which suggests that there may be indirect selection against plasticity in this population. Our results show that population trends can arise from individual level change unrelated to prevailing environmental conditions, thus demonstrating the importance of longitudinal analyses in the interpretation of climate change effects.  相似文献   

16.
Global climate change affects ecosystems via several trophic levels. We investigated changes in the timing of breeding in the willow tit (Poecile montanus) and timing of its caterpillar food resource in relation to warming springs in a boreal forest. We used generalized linear mixed effect models to study the importance of synchrony between the timing of breeding in willow tits and the caterpillar food availability on the breeding success, measured as nestling survival rate and mean nestling weight. Both the timing of breeding and the timing of the caterpillar peak advanced during the last decades, and were well explained by spring temperatures. Unlike in most passerine populations studied, synchrony has improved with rising spring temperatures. However, it had only a modest although statistically significant positive influence on breeding success. Spring temperatures do not seem to be used as cues for the timing of caterpillar food availability by willow tits. We conclude that responses to climatic warming seem to be population, species and habitat specific, necessitating research in a wide range of taxa in different climatic zones.  相似文献   

17.
The developments in Norwegian sheep breeding since the early 1990s are reviewed. For the largest breeding population, the Norwegian White Sheep, results are presented for both genetic and phenotypic changes. Of the nine traits that make up the aggregate genotype, the largest gain per year, in per cent of the corresponding phenotypic average, was found for carcass grade (1.66%) and carcass weight (0.99%), number of lambs born at 1, 2 and 3 years of age (0.32% to 0.60%) and the maternal effect on weaning weight (0.26%). For fat grade, a genetic deterioration was estimated. This may be due to the too small weighting of this trait in the aggregate genotype and the true genetic parameters being somewhat different from the estimates in the prediction of breeding values. For lamb as well as ewe fleece weight, genetic change was close to zero - interpreted as mainly a correlated response to other traits in the aggregate genotype. Data for the two traits of fleece weight were, respectively, selected and few. Thus, phenotypic change was calculated for all traits except for fleece weight, and in addition for number of lambs at weaning, being indirectly selected for through number of lambs born. For all traits, with the exception of fat grade, advantageous phenotypic change was estimated. For weaning and carcass weight, the phenotypic change was less than the genetic change, while the opposite was observed for carcass and fat grade and number of lambs born. The latter traits can be more easily controlled by environmental actions, and the results thus exemplify the interdependency between environmental and genetic change.  相似文献   

18.
Phenological shifts and associated changes in the temporal match between trophic levels have been a major focus of the study of ecological consequences of climate change. Previously, the food peak has been thought to respond as an entity to warming temperatures. However, food peak architecture, that is, timings and abundances of prey species and the level of synchrony between them, determines the timing and shape of the food peak. We demonstrate this with a case example of three passerine prey species and their predator. We explored temporal trends in the timing, height, width, and peakedness of prey availabilities and explained their variation with food peak architecture and ambient temperatures of prebreeding and breeding seasons. We found a temporal match between the predator's breeding schedule and food availability. Temporal trends in the timing of the food peak or in the synchrony between the prey species were not found. However, the food peak has become wider and more peaked over time. With more peaked food availabilities, predator's breeding success will depend more on the temporal match between its breeding schedule and the food peak, ultimately affecting the timing of breeding in the predator population. The height and width of the food peak depended on the abundances and breeding season lengths of individual prey species and their reciprocal synchronies. Peakednesses of separate prey species' availability distributions alone explained the peakedness of the food peak. Timing and quantity of food production were associated with temperatures of various time periods with variable relevance in different prey species. Alternating abundances of early and late breeding prey species caused high annual fluctuation in the timing of the food peak. Interestingly, the food peak may become later even when prey species' schedules are advanced. Climate warming can thus produce unexpected changes in the food availabilities, intervening in trophic interactions.  相似文献   

19.
Long-term genetic improvement is measured by the selection response predicted from estimates of narrow-sense heritability. Accurate estimates of selection response require partitioning the change of population mean into genetic and environmental components. A selection experiment for cut-flower yield was conducted for 16 generations in the Davis population of gerbera (Gerbera hybrida, Compositae). Breeding values were estimated for individual plants in the population using the best linear unbiased prediction (BLUP) procedure. Genetic change in each generation was calculated from the breeding values of individual plants. The results of this study indicate that long-term selection was successful and necessary for the genetic improvement in cut-flower yield. Genetic improvement in mean breeding value over 16 generations was 33 flowers. Mean breeding values increased monotonically with an S-shape pattern while environmental effects fluctuated from generation to generation. Results predict that cut-flower yield in the Davis population of gerbera will continue to respond to selection.  相似文献   

20.
Climate change is profoundly affecting the phenology of many species. In migratory birds, there is evidence for advances in their arrival time at the breeding ground and their timing of breeding, yet empirical studies examining the interdependence between arrival and breeding time are lacking. Hence, evidence is scarce regarding how breeding time may be adjusted via the arrival‐breeding interval to help local populations adapt to local conditions or climate change. We used long‐term data from an intensively monitored population of the northern wheatear (Oenanthe oenanthe) to examine the factors related to the length of 734 separate arrival‐to‐breeding events from 549 individual females. From 1993 to 2017, the mean arrival and egg‐laying dates advanced by approximately the same amount (~5–6 days), with considerable between‐individual variation in the arrival‐breeding interval. The arrival‐breeding interval was shorter for: (a) individuals that arrived later in the season compared to early‐arriving birds, (b) for experienced females compared to first‐year breeders, (c) as spring progressed, and (d) in later years compared to earlier ones. The influence of these factors was much larger for birds arriving earlier in the season compared to later arriving birds, with most effects on variation in the arrival‐breeding interval being absent in late‐arriving birds. Thus, in this population it appears that the timing of breeding is not constrained by arrival for early‐ to midarriving birds, but instead is dependent on local conditions after arrival. For late‐arriving birds, however, the timing of breeding appears to be influenced by arrival constraints. Hence, impacts of climate change on arrival dates and local conditions are expected to vary for different parts of the population, with potential negative impacts associated with these factors likely to differ for early‐ versus late‐arriving birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号