首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
MicroRNAs are prevalent regulators of gene expression, controlling most of the proteome in multicellular organisms. To generate the functional small RNAs, precise processing steps are required. In animals, microRNA biogenesis is initiated by Microprocessor that minimally consists of the Drosha enzyme and its partner, DGCR8. This first step is critical for selecting primary microRNAs, and many RNA-binding proteins and regulatory pathways target both the accuracy and efficiency of microRNA maturation. Structures of Drosha and DGCR8 in complex with primary microRNAs elucidate how RNA structural features rather than sequence provide the framework for substrate recognition. Comparing multiple states of Microprocessor and the closely related Dicer homologs shed light on the dynamic protein-RNA complex assembly and disassembly required to recognize RNAs with diverse sequences via common structural features.  相似文献   

3.
4.

Background

MicroRNAs are required for maintenance of pluripotency as well as differentiation, but since more microRNAs have been computationally predicted in genome than have been found, there are likely to be undiscovered microRNAs expressed early in stem cell differentiation.

Methodology/Principal Findings

SOLiD ultra-deep sequencing identified >107 unique small RNAs from human embryonic stem cells (hESC) and neural-restricted precursors that were fit to a model of microRNA biogenesis to computationally predict 818 new microRNA genes. These predicted genomic loci are associated with chromatin patterns of modified histones that are predictive of regulated gene expression. 146 of the predicted microRNAs were enriched in Ago2-containing complexes along with 609 known microRNAs, demonstrating association with a functional RISC complex. This Ago2 IP-selected subset was consistently expressed in four independent hESC lines and exhibited complex patterns of regulation over development similar to previously-known microRNAs, including pluripotency-specific expression in both hESC and iPS cells. More than 30% of the Ago2 IP-enriched predicted microRNAs are new members of existing families since they share seed sequences with known microRNAs.

Conclusions/Significance

Extending the classic definition of microRNAs, this large number of new microRNA genes, the majority of which are less conserved than their canonical counterparts, likely represent evolutionarily recent regulators of early differentiation. The enrichment in Ago2 containing complexes, the presence of chromatin marks indicative of regulated gene expression, and differential expression over development all support the identification of 146 new microRNAs active during early hESC differentiation.  相似文献   

5.
6.
Computational identification of microRNA targets   总被引:16,自引:0,他引:16  
Recent experiments have shown that the genomes of organisms such as worm, fly, human, and mouse encode hundreds of microRNA genes. Many of these microRNAs are thought to regulate the translational expression of other genes by binding to partially complementary sites in messenger RNAs. Phenotypic and expression analysis suggests an important role of microRNAs during development. Therefore, it is of fundamental importance to identify microRNA targets. However, no experimental or computational high-throughput method for target site identification in animals has been published yet. Our main result is a new computational method that is designed to identify microRNA target sites. This method recovers with high specificity known microRNA target sites that have previously been defined experimentally. Based on these results, we present a simple model for the mechanism of microRNA target site recognition. Our model incorporates both kinetic and thermodynamic components of target recognition. When we applied our method to a set of 74 Drosophila melanogaster microRNAs, searching 3'UTR sequences of a predefined set of fly mRNAs for target sites which were evolutionary conserved between D. melanogaster and Drosophila pseudoobscura, we found that many key developmental body patterning genes such as hairy and fushi-tarazu are likely to be translationally regulated by microRNAs.  相似文献   

7.
MicroRNA is a special type of regulatory molecules modulating gene expression. Circulating microRNAs found in blood and other biological body fluids are now considered as potential biomarkers of human pathology. Quantitative changes of particular microRNAs have been recognized in many oncological diseases and other disorders. A recently developed method of droplet digital PCR (ddPCR) possesses a number of advantages making this method the most suitable for verification and validation of perspective microRNA markers of various human pathologies. These advantages include high accuracy and reproducibility of microRNA quantification as well as possibility of direct high-throughput determination of the absolute number of microRNA copies within a wide dynamic range. The present review considers microRNA biogenesis, the origin of circulating microRNAs, and methods used for their quantification. The special technical features of ddPCR, which make this method especially attractive for studying microRNAs as biomarkers of human pathologies and for basic research devoted to aspects of gene regulation by microRNA molecules, are also discussed.  相似文献   

8.
9.
Krol J  Krzyzosiak WJ 《IUBMB life》2004,56(2):95-100
One of the biggest surprises at the beginning of the 'post-genome era' was the discovery of numerous genes encoding microRNAs. They were found in genomes of such diverse organisms as Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, and Homo sapiens which implies their important role in multicellular life evolution. The number of microRNA genes is estimated to be nearly 1% of that of protein-coding genes. Their products, tiny RNAs, are thought to regulate gene expression during development, organogenesis, and very likely during many other processes, by hybridizing to their target mRNAs. The cellular functions of mRNAs that are regulated by microRNAs are only beginning to be revealed, and details of this regulation mechanism are still poorly understood. In this article we discuss the possible mechanisms of microRNA biogenesis with special emphasis on their structural aspects. We have focused on the factors and effects that may be responsible for the existing length differences between different microRNAs, and for the observed length heterogeneity within some individual microRNA species.  相似文献   

10.
11.
MicroRNAs are short (approximately 22 nt) regulatory RNA molecules that play key roles in metazoan development and have been implicated in human disease. First discovered in Caenorhabditis elegans, over 2500 microRNAs have been isolated in metazoans and plants; it has been estimated that there may be more than a thousand microRNA genes in the human genome alone. Motivated by the experimental observation of strong conservation of the microRNA let-7 among nearly all metazoans, we developed a novel methodology to characterize the class of such strongly conserved sequences: we identified a non-redundant set of all sequences 20 to 29 bases in length that are shared among three insects: fly, bee and mosquito. Among the few hundred sequences greater than 20 bases in length are close to 40% of the 78 confirmed fly microRNAs, along with other non-coding RNAs and coding sequence.  相似文献   

12.
13.
The discovery of microRNAs has brought in another level of intricacy in gene regulation. These microRNAs are small non-coding RNAs that have dual ability to act as repressors or inducers of gene activity. MicroRNAs have been implicated in a wide spectrum of biological processes and their expressions have been found to be dysregulated in several diseases. Recently, microRNAs have emerged as a new area of interest in renal development and pathology. MicroRNA profilings have revealed a number of microRNAs that are specific to the kidney or restricted to certain regions of the organ suggesting possible exclusive roles therein. Recently, knockout studies have shown that these riboregulators are critical for normal renal growth and functional renal system. Individual microRNAs have also been identified in renal disease models including kidney cancers, diabetic nephropathy and polycystic kidney disease. Several mechanisms of modulating microRNA activity have also been introduced in recent years. Further progress in the understanding of microRNA activity, identification of microRNA signatures in different states as well as advancement of microRNA manipulation techniques will be valuable for kidney research.  相似文献   

14.
15.
16.
MicroRNAs是一组21-25 nt长的非编码蛋白质的短序列RNA,能通过碱基配对与mRNA分子的3′非翻译区相结合来降解mRNA或抑制靶基因的翻译。MicroRNAs的主要功能是调控基因的表达,在生物体的生长、发育及疾病发生中扮演着重要的角色。最初绝大多数microRNA都是通过大量的克隆和测序发现的,信息学只用来验证克隆的序列是否具有发夹结构,然而这些方法无法检测低丰度或组织特异性的microRNAs。目前依赖计算机的精密的microRNAs预测技术和有效的生物学鉴定技术在mi- croRNAs的识别及其功能的阐明方面起着极其重要的作用。本文主要对microRNAs的生物信息学预测及鉴定技术进行综述。  相似文献   

17.
18.
19.
MicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer -dependent and -independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号