共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding covalent modifications of proteins by lipids: where cell biology and biophysics mingle 总被引:5,自引:0,他引:5
Much effort has been expended on the in vitro characterization of enzymes that covalently attach lipids to proteins. Less information is available about properties conferred on modified proteins by their attached lipid groups, but biophysical studies of simple model systems have begun to shed light on this issue. Recent evidence suggests that the specificity of lipid modifications may be dependent upon the intracellular compartmentalization of the lipid and protein substrates of lipidating enzymes. The function and targeting of their lipidated products appear to be regulated dynamically through addition or subtraction of lipid moieties, other covalent or noncovalent modifications, as well as several devices that at this point can only be inferred. This field of research illustrates the necessity of integrating cell-biological and biophysical perspectives. 相似文献
2.
Roche E Jones J Arribas MI Leon-Quinto T Soria B 《Bioorganic & medicinal chemistry》2006,14(19):6466-6474
The use of small specific molecules has been instrumental in the modulation of stem cell proliferation and differentiation to obtain insulin-containing cells. Examples include nutrients (glucose, nicotinamide and retinoic acid), acids (butyrate), alkaloids (cyclopamine and conophylline) and pharmacological agents (LY294002 and wortmannin). These molecules, alone or in combination with specific growth factors and hormones, will likely provide key information to design specific culture media in order to obtain customized cells for implantation in diabetes. In addition, the study of such molecules will help to understand the mechanisms involved in stem cell biology as well as contribute to the design of specific drugs for islet repair and regeneration in diabetes. 相似文献
3.
Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells 总被引:28,自引:0,他引:28
Membrane subdomains have been implicated in T cell signaling, although their properties and mechanisms of formation remain controversial. Here, we have used single-molecule and scanning confocal imaging to characterize the behavior of GFP-tagged signaling proteins in Jurkat T cells. We show that the coreceptor CD2, the adaptor protein LAT, and tyrosine kinase Lck cocluster in discrete microdomains in the plasma membrane of signaling T cells. These microdomains require protein-protein interactions mediated through phosphorylation of LAT and are not maintained by interactions with actin or lipid rafts. Using a two color imaging approach that allows tracking of single molecules relative to the CD2/LAT/Lck clusters, we demonstrate that these microdomains exclude and limit the free diffusion of molecules in the membrane but also can trap and immobilize specific proteins. Our data suggest that diffusional trapping through protein-protein interactions creates microdomains that concentrate or exclude cell surface proteins to facilitate T cell signaling. 相似文献
4.
5.
6.
7.
Lisette T. Arnaud Natura Myeku Maria E. Figueiredo-Pereira 《Journal of neurochemistry》2009,110(1):328-342
Neurofibrillary tangles (NFT) are a hallmark of Alzheimer's disease. The major neurofibrillary tangle component is tau that is truncated at Asp421 (Δtau), hyperphosphorylated and aggregates into insoluble paired helical filaments. Alzheimer's disease brains also exhibit signs of inflammation manifested by activated astrocytes and microglia, which produce cytotoxic agents among them prostaglandins. We show that prostaglandin (PG) J2, an endogenous product of inflammation, induces caspase-mediated cleavage of tau, generating Δtau, an aggregation prone form known to seed tau aggregation prior to neurofibrillary tangle formation. The initial event observed upon PGJ2-treatment of human neuroblastoma SK-N-SH cells was the build-up of ubiquitinated (Ub) proteins indicating an early disruption of the ubiquitin-proteasome pathway. Apoptosis kicked in later, manifested by caspase activation and caspase-mediated cleavage of tau at Asp421 and poly (ADP-ribose) polymerase. Furthermore, cathepsin inhibition stabilized Δtau suggesting its lysosomal clearance. Upon PGJ2-treatment tau accumulated in a large perinuclear aggregate. In rat E18 cortical neuronal cultures PGJ2-treatment also generated Δtau detected in dystrophic neurites. Levels of Δtau were diminished by caspase 3 knockdown using siRNA. PGD2, the precursor of PGJ2, produced some Δtau. PGE2 generated none. Our data suggest a potential sequence of events triggered by the neurotoxic product of inflammation PGJ2 leading to tau pathology. The accumulation of Ub proteins is an early response. If cells fail to overcome the toxic effects induced by PGJ2, including accumulation of Ub proteins, apoptosis kicks in triggering caspase activation and tau cleavage, the clearance of which by cathepsins could be compromised culminating in tau pathology. Our studies are the first to provide a mechanistic link between inflammation and tau pathology. 相似文献
8.
Variable apoptotic response of NSCLC cells to inhibition of the MEK/ERK pathway by small molecules or dominant negative mutants 总被引:7,自引:0,他引:7
To evaluate the role of the MEK/ERK pathway in NSCLC survival, we analyzed NSCLC cell lines that differed in tumor histology and status of p53, Rb, and K-ras. Constitutive ERK1/2 activity was demonstrated in 17 of 19 cell lines by maintenance of ERK1/2 phosphorylation with serum deprivation. Phosphorylation of ERK1/2 correlated with phosphorylation of MEK1/2 and p90RSK, but was inversely correlated with phosphorylation of c-Raf at S259. With serum deprivation, the MEK inhibitors, PD98059 and U0126, inhibited ERK1/2 activity but did not increase apoptosis. PD98059 and U0126 induced cell cycle arrest in G(0)/G(i) in cells with the highest levels of ERK1/2 activity, which correlated with induction of p27 but not p21. To confirm the cytostatic response to MEK inhibitors, we performed transient transfections with dominant negative forms of MEK or ERK. Surprisingly, dominant negative MEK and ERK mutants increased apoptosis without affecting cell cycle or p27 levels. When combined with paclitaxel, MEK inhibitors had no effect on apoptosis. In contrast, dominant negative ERK2 potentiated paclitaxel-induced apoptosis. Our studies show that constitutive ERK1/2 activity in NSCLC cells promotes cellular survival and chemotherapeutic resistance. Moreover, our data are the first to demonstrate divergent cellular responses to inhibition of the MEK/ERK pathway by small molecule inhibitors or dominant negative mutants. 相似文献
9.
Recruitment of cells in the small intestine into rapid cell cycle by small doses of external gamma or internal beta-radiation 总被引:1,自引:0,他引:1
S Tsubouchi C S Potten 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1985,48(3):361-369
Epithelial cell recruitment was examined in mouse ileum after external gamma-irradiation (50 cGy) or internal beta-irradiation (0.148 MBq/g of [3H]thymidine), using the per cent-labelled-mitoses method and by analysing the distribution of mitotic cells in the crypts. In the presumptive stem cell zone at the lower cell positions of the crypt, the slowly cycling cells decreased their cell cycle 6 or 12 hours after a dose of 50 cGy. In the higher cell positions, a slight shortening of the cell cycle was also observed. After administration of a high dose of [3H]thymidine, dormant (G0) cells also entered the cell cycle in the lower cell positions. The results suggest that stem cells in the crypt may react to irradiation in two ways: first, by shortening the cell cycle in cycling cells; secondly, by an entry into the cell cycle by other dormant cells. There was destruction of some cycling stem cells before any recruitment. The data support the idea that the stem cell population in the crypt is heterogeneous. 相似文献
10.
Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria 总被引:28,自引:0,他引:28
Mironov AS Gusarov I Rafikov R Lopez LE Shatalin K Kreneva RA Perumov DA Nudler E 《Cell》2002,111(5):747-756
11.
Sancricca C Mirabella M Gliubizzi C Broccolini A Gidaro T Morosetti R 《World journal of stem cells》2010,2(3):39-49
Over the last years, the existence of different stem cells with myogenic potential has been widely investigated. Besides the classical skeletal muscle progenitors represented by satellite cells, numerous multipotent and embryologically unrelated progenitors with a potential role in muscle differentiation and repair have been identified. In order to conceive a therapeutic approach for degenerative muscle disorders, it is of primary importance to identify an ideal stem cell endowed with all the features for a possible use in vivo. Among all emerging populations, vessel-associated stem cells are a novel and promising class of multipotent progenitors of mesodermal origin and with high myogenic potential which seem to best fit all the requirements for a possible cell therapy. In vitro and in vivostudies have already tested the effectiveness and safety of vessel-associated stem cells in animal models. This leads to the concrete possibility in the future to start pilot human clinical trials, hopefully opening the way to a turning point in the treatment of genetic and acquired muscle disorders. 相似文献
12.
Henness S Davey MW Harvie RM Banyer J Wasinger V Corthals G Davey RA 《Radiation research》2004,161(5):495-503
Small cell lung cancer (SCLC) initially responds well to chemotherapy and fractionated radiotherapy, but resistance to these treatments eventually develops in the vast majority of cases. To understand how resistance develops in the H69 SCLC cell line, we compared the changes in gene expression associated with 37.5 Gy fractionated X-ray treatment that produced the stable radiation- and drug-resistant H69/R38 cell subline to the changes associated with a single 4- or 8-Gy X-ray treatment. Gene expression was determined by suppression subtractive hybridization combined with Northern blot analysis and two-dimensional (2D) protein electrophoresis. Stable radiation and drug resistance was associated with coordinate changes in the expression of genes of the cytoskeleton, protein synthesis, cell cycle, redox/stress and metabolic pathways. The pattern of these changes was remarkably similar to the changes seen 24 h after a single X-ray treatment of the H69 cells but differed from the changes in expression associated with a single X-ray treatment of the resistant H69/ R38 cells. Stable radiation and drug resistance may be caused by the constitutive expression of those genes transiently expressed by sensitive cells in response to a single X-ray dose. The repeated treatments received during fractionated irradiation may promote the change from a transient to a constitutive pattern of gene expression. 相似文献
13.
Passive membrane permeability to small molecules and ions in transformed mammalian cells: probable role of surface phosphorylation 总被引:1,自引:0,他引:1
N R Makan 《Journal of cellular physiology》1981,106(1):49-61
Addition of ATP to medium surrounding intact, transformed 3T3 cells causes the formation of aqueous channels in the plasma membrane. This effect of extracellular ATP is sharply dependent on the pH and temperature of the incubation medium, and is inhibited by low levels of La3+ or ruthenium red; inhibition is also obtained with concentrations of Mg2+ ions that exceed a ratio of Mg/ATP of one. The effect of ATP on membrane channel formation is unaffected by chelators of metal ions or by prior modification of the cell surface with various surface-active enzymes or sulfhydryl reagents. Under conditions which favor aqueous channel formation, incubation of intact 3T6 cells with ATP (gamma-32P) leads to phosphorylation of two membrane components with apparent molecular weight of 40,000 (40K) and 110,000 (110K) daltons; the 110K component which is unaffected by trypsin under normal conditions is rendered trypsin-sensitive by the phosphorylation reaction, probably as a result of a conformational change. Conditions which inhibit aqueous channel formation also inhibit phosphorylation of the 110K protein and decrease the labeling of the 40K component. These results indicate the probable role of cell surface phosphorylation, involving one or both of these components, in the formation of aqueous channels in transformed 3T3 cells. Aqueous channel formation by extracellular ATP is not associated with gross unfolding of the cell surface as revealed by lactoperoxidase-catalyzed iodination of the 3T6 cell surface. 相似文献
14.
Signal transduction pathways leading to cell cycle arrest and apoptosis induction in cancer cells by Allium vegetable-derived organosulfur compounds: a review 总被引:10,自引:0,他引:10
Epidemiological studies continue to support the premise that dietary intake of Allium vegetables (e.g., garlic, onions and so forth) may lower the risk of various types of cancer. Anticarcinogenic effect of Allium vegetables is attributed to organosulfur compounds (OSCs) that are generated upon processing of these vegetables. Preclinical studies have provided convincing evidence to indicate that Allium vegetable-derived OSCs including diallyl sulfide, diallyl disulfide and diallyl trisulfide are highly effective in affording protection against cancer in laboratory animals induced by a variety of chemical carcinogens. Inhibition of carcinogen activation through modulation of cytochrome P450-dependent monooxygenases and/or acceleration of carcinogen detoxification via induction of phase II enzymes (glutathione transferases, quinone reductase, etc.) are believed to be responsible for protective effects of OSCs against chemically induced cancers. More recent studies have indicated that some naturally occurring OSC analogues can suppress proliferation of cancer cells in culture and inhibit growth of transplanted tumor xenografts in vivo by inducing apoptosis and/or by perturbing cell cycle progression. This review summarizes current knowledge on signal transduction pathways leading to perturbations in cell cycle progression and apoptosis induction by OSCs. 相似文献
15.
Bacterial cell division is mediated by a set of proteins that assemble to form a large multiprotein complex called the divisome. Recent studies in Bacillus subtilis and Escherichia coli indicate that cell division proteins are involved in multiple cooperative binding interactions, thus presenting a technical challenge to the analysis of these interactions. We report here the use of an E. coli artificial septal targeting system for examining the interactions between the B. subtilis cell division proteins DivIB, FtsL, DivIC, and PBP 2B. This technique involves the fusion of one of the proteins (the “bait”) to ZapA, an E. coli protein targeted to mid-cell, and the fusion of a second potentially interacting partner (the “prey”) to green fluorescent protein (GFP). A positive interaction between two test proteins in E. coli leads to septal localization of the GFP fusion construct, which can be detected by fluorescence microscopy. Using this system, we present evidence for two sets of strong protein-protein interactions between B. subtilis divisomal proteins in E. coli, namely, DivIC with FtsL and DivIB with PBP 2B, that are independent of other B. subtilis cell division proteins and that do not disturb the cytokinesis process in the host cell. Our studies based on the coexpression of three or four of these B. subtilis cell division proteins suggest that interactions among these four proteins are not strong enough to allow the formation of a stable four-protein complex in E. coli in contrast to previous suggestions. Finally, our results demonstrate that E. coli artificial septal targeting is an efficient and alternative approach for detecting and characterizing stable protein-protein interactions within multiprotein complexes from other microorganisms. A salient feature of our approach is that it probably only detects the strongest interactions, thus giving an indication of whether some interactions suggested by other techniques may either be considerably weaker or due to false positives. 相似文献
16.
The three disulfide bonds of the gene-3-protein of the phage fd are essential for the conformational stability of this protein, and it unfolds when they are removed by reduction or mutation. Previously, we used an iterative in vitro selection strategy to generate a stable and functional form of the gene-3-protein without these disulfides. It yielded optimal replacements for the disulfide bonds as well as several stabilizing second-site mutations. The best selected variant showed a higher thermal stability compared with the disulfide-bonded wild-type protein. Here, we investigated the molecular basis of this strong stabilization by solving the crystal structure of this variant and by analyzing the contributions to the conformational stability of the selected mutations individually. They could mostly be explained by improved side-chain packing. The R29W substitution alone increased the midpoint of the thermal unfolding transition by 14 deg and the conformational stability by about 25 kJ mol− 1. This key mutation (i) removed a charged side chain that forms a buried salt bridge in the disulfide-containing wild-type protein, (ii) optimized the local packing with the residues that replace the C46-C53 disulfide and (iii) improved the domain interactions. Apparently, certain residues in proteins indeed play key roles for stability. 相似文献
17.
18.
19.
Prechtel AT Turza NM Theodoridis AA Steinkasserer A 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(9):5454-5464
Mature human dendritic cells (mDCs) are the most powerful APCs known today, having the unique ability to induce primary immune responses. One of the best known surface markers for mDCs is the glycoprotein CD83, which is strongly up-regulated during maturation, together with costimulatory molecules such as CD80 and CD86. When CD83 surface expression was inhibited by interference with the messenger RNA export or by infection with certain viruses, DCs showed a dramatically reduced capability to induce T cell proliferation. However, in these cases side effects on other cellular functions cannot be excluded completely. In this study we present an efficient method to specifically influence CD83 surface expression by the use of RNA interference. We used small-interfering RNA targeted against CD83 and carefully evaluated an electroporation protocol for the delivery of the duplex into the cells. Furthermore, we identified freshly prepared immature DCs as the best target for the application of a CD83 knockdown and we were also able to achieve a long lasting silencing effect for this molecule. Finally, we were able to confirm that CD83 functions as an enhancer during the stimulation of T cells, significantly increases DC-mediated T cell proliferation, and goes hand in hand with clear changes in cytokine expression during T cell priming. These results were obtained for the first time without the use of agents that might cause unwanted side effects, such as low m.w. inhibitors or viruses. Therefore, this method presents a suitable way to influence DC biology. 相似文献
20.
Pido-Lopez J Whittall T Wang Y Bergmeier LA Babaahmady K Singh M Lehner T 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(3):1671-1679
Apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like-3G (A3G) is an intracellular innate antiviral factor that deaminates retroviral cytidine to uridine. In an attempt to harness the anti-HIV effect of A3G, we searched for an agent that would up-regulate A3G and identify the receptors involved. Stimulation of cell surface CCR5 with CCL3 and CD40 with CD40L or both molecules with microbial 70-kDa heat shock protein (HSP)70 up-regulated A3G mRNA and protein expression in human CD4(+) T cells and monocyte-derived dendritic cells (DC), demonstrated by real-time PCR and Western blots, respectively. The specificity of CCR5 and CD40 stimulation was established by inhibition with TAK 779 and mAb to CD40, as well as using human embryonic kidney 293 cells transfected with CCR5 and CD40, respectively. A dose-dependent increase of A3G in CCL3- or HSP70-stimulated CD4(+) T cells was associated with inhibition in HIV-1 infectivity. To differentiate between the inhibitory effect of HSP70-induced CCR5 binding and that of A3G, GFP-labeled pseudovirions were used to infect human embryonic kidney 293 cells, which showed inhibition of pseudovirion uptake, consistent with A3G being responsible for the inhibitory effect. Ligation of cell surface CCR5 receptors by CCL3 or CD40 by CD40L activated the ERK1/2 and p38 MAPK signaling pathways that induced A3G mRNA expression and production of the A3G protein. These in vitro results were corroborated by in vivo studies in rhesus macaques in which A3G was significantly up-regulated following immunization with SIVgp120 and p27 linked to HSP70. This novel preventive approach may in addition to adaptive immunity use the intracellular innate antiviral effect of A3G. 相似文献