首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subiculum (SUB) is a pivotal structure positioned between the hippocampus proper and various cortical and subcortical areas. Despite the growing body of anatomical and intrinsic electrophysiological data of subicular neurons, modulation of synaptic transmission in the SUB is not well understood. In the present study we investigated the role of group II metabotropic glutamate receptors (mGluRs), which have been shown to be involved in the regulation of synaptic transmission by suppressing presynaptic cAMP activity. Using field potential and patch-clamp whole cell recordings we demonstrate that glutamatergic transmission at CA1-SUB synapses is depressed by group II mGluRs in a cell-type specific manner. Application of the group II mGluR agonist (2S,1′R,2′R,3′R)-2-(2, 3-dicarboxycyclopropyl)glycine (DCG-IV) led to a significantly higher reduction of excitatory postsynaptic currents in subicular bursting cells than in regular firing cells. We further used low-frequency stimulation protocols and brief high-frequency bursts to test whether synaptically released glutamate is capable of activating presynaptic mGluRs. However, neither frequency facilitation is enhanced in the presence of the group II mGluR antagonist LY341495, nor is a test stimulus given after a high-frequency burst. In summary, we present pharmacological evidence for presynaptic group II mGluRs targeting subicular bursting cells, but both low- and high-frequency stimulation protocols failed to activate presynaptically located mGluRs.  相似文献   

2.
The hippocampus plays a central role in memory formation in the mammalian brain. Its ability to encode information is thought to depend on the plasticity of synaptic connections between neurons. In the pyramidal neurons constituting the primary hippocampal output to the cortex, located in area CA1, firing of presynaptic CA3 pyramidal neurons produces monosynaptic excitatory postsynaptic potentials (EPSPs) followed rapidly by feedforward (disynaptic) inhibitory postsynaptic potentials (IPSPs). Long-term potentiation (LTP) of the monosynaptic glutamatergic inputs has become the leading model of synaptic plasticity, in part due to its dependence on NMDA receptors (NMDARs), required for spatial and temporal learning in intact animals. Using whole-cell recording in hippocampal slices from adult rats, we find that the efficacy of synaptic transmission from CA3 to CA1 can be enhanced without the induction of classic LTP at the glutamatergic inputs. Taking care not to directly stimulate inhibitory fibers, we show that the induction of GABAergic plasticity at feedforward inhibitory inputs results in the reduced shunting of excitatory currents, producing a long-term increase in the amplitude of Schaffer collateral-mediated postsynaptic potentials. Like classic LTP, disinhibition-mediated LTP requires NMDAR activation, suggesting a role in types of learning and memory attributed primarily to the former and raising the possibility of a previously unrecognized target for therapeutic intervention in disorders linked to memory deficits, as well as a potentially overlooked site of LTP expression in other areas of the brain.  相似文献   

3.
1. Metabotropic glutamate receptors (mGluRs) are known to play a role in synaptic plasticity. In a study of rat hippocampal brain slices, we find that a brief perfusion of a group I mGluR agonist, (S)-3,5-dihydroxyphenylglycine (DHPG), induced a robust long-term depression (DHPG-LTD) in area CA1.2. The action was accompanied by an enhancement of the paired-pulse facilitation (PPF) ratio.3. At the same time DHPG enhanced ionophoretic responses to alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), kainic acid (KA), and N-methyl-D-aspartate (NMDA) in CA1 pyramidal neurons. This was only partially reversed by washing.4. These observations indicate that DHPG exerts two opposing actions, suppression of the synaptic transmission and facilitation of postsynaptic responses. However, the presynaptic action dominates, since the net effect of monosynaptic activation is a reduction of response.5. Perfusion of DHPG reduced three calcium-dependent responses in CA3 pyramidal neurons, which are presynaptic to CA1 neurons. These are calcium spike width and amplitude, after-hyperpolarization (AHP), and spike frequency adaptation (SFA).6. These results suggest that the DHPG-LTD results from modulation of the presynaptic calcium currents by group l mGluRs.  相似文献   

4.
Pyramidal cells form excitatory synaptic connections with local inhibitory neurons in the hippocampus. This recurrent synapse plays a crucial stabilizing role in the control of hippocampal activity, since it transforms pyramidal cell population. Using a combination of dual recording from presynaptic and postsynaptic cells and anatomical techniques, we show that these synaptic connections often comprise a single site for liberation of excitatory transmitter. The resulting excitatory postsynaptic potentials (EPSCs) have a fast time course and a similar amplitude to miniature EPSCs recorded in tetrodotoxin and cobalt. In contrast, activation of metabotropic glutamate receptors (mGluRs) by transmitter liberated during repetitive activation of these synapses produces an excitation with a much slower time course. In addition to somatodendritic mGluRs, which excite inhibitory cells, a different species of mGluR is present on inhibitory cell terminals. This mGluR is activated by higher concentrations of the agonist t-1-amino-cyclopentyl–1,3-decarboxylate and acts to reduce γ-aminobutyric acid release. mGluRs, thus, have a dual action to enhance and to depress synaptic inhibition in the hippocampus. © 1995 John Wiley & Sons, Inc.  相似文献   

5.

Background

Hippocampal CA1 pyramidal neurons receive two excitatory glutamatergic synaptic inputs: their most distal dendritic regions in the stratum lacunosum-moleculare (SLM) are innervated by the perforant path (PP), originating from layer III of the entorhinal cortex, while their more proximal regions of the apical dendrites in the stratum radiatum (SR) are innervated by the Schaffer-collaterals (SC), originating from hippocampal CA3 neurons. Endocannabinoids (eCBs) are naturally occurring mediators capable of modulating both GABAergic and glutamatergic synaptic transmission and plasticity via the CB1 receptor. Previous work on eCB modulation of excitatory synapses in the CA1 region largely focuses on the SC pathway. However, little information is available on whether and how eCBs modulate glutamatergic synaptic transmission and plasticity at PP synapses.

Methodology/Principal Findings

By employing somatic and dendritic patch-clamp recordings, Ca2+ uncaging, and immunostaining, we demonstrate that there are significant differences in low-frequency stimulation (LFS)- or DHPG-, an agonist of group I metabotropic glutamate receptors (mGluRs), induced long-term depression (LTD) of excitatory synaptic transmission between SC and PP synapses in the same pyramidal neurons. These differences are eliminated by pharmacological inhibition with selective CB1 receptor antagonists or genetic deletion of the CB1 receptor, indicating that these differences likely result from differential modulation via a CB1 receptor-dependent mechanism. We also revealed that depolarization-induced suppression of excitation (DSE), a form of short-term synaptic plasticity, and photolysis of caged Ca2+-induced suppression of Excitatory postsynaptic currents (EPSCs) were less at the PP than that at the SC. In addition, application of WIN55212 (WIN) induced a more pronounced inhibition of EPSCs at the SC when compared to that at the PP.

Conclusions/Significance

Our results suggest that CB1 dependent LTD and DSE are differentially expressed at the PP versus SC synapses in the same neurons, which may have an impact on synaptic scaling, integration and plasticity of hippocampal CA1 pyramidal neurons.  相似文献   

6.
Giessel AJ  Sabatini BL 《Neuron》2010,68(5):936-947
Acetylcholine release and activation of muscarinic cholinergic receptors (mAChRs) enhance synaptic plasticity in?vitro and cognition and memory in?vivo. Within the hippocampus, mAChRs promote NMDA-type glutamate receptor-dependent forms of long-term potentiation. Here, we use calcium (Ca) imaging combined with two-photon laser glutamate uncaging at apical spines of CA1 pyramidal neurons to examine postsynaptic mechanisms of muscarinic modulation of glutamatergic transmission. Uncaging-evoked excitatory postsynaptic potentials and Ca transients are increased by muscarinic stimulation; however, this is not due to direct modulation of glutamate receptors. Instead, mAChRs modulate a negative feedback loop in spines that normally suppresses synaptic signals. mAChR activation reduces the Ca sensitivity of small conductance Ca-activated potassium (SK) channels that are found in the spine, resulting in increased synaptic potentials and Ca transients. These effects are mediated by M1-type muscarinic receptors and occur in a casein kinase-2-dependent manner. Thus, muscarinic modulation regulates synaptic transmission by tuning the activity of nonglutamatergic postsynaptic ion channels.  相似文献   

7.

Background

The latero-capsular part of the central nucleus of the amygdala (CeLC) is the target of the spino-parabrachio-amygdaloid pain pathway. Our previous studies showed that CeLC neurons develop synaptic plasticity and increased neuronal excitability in the kaolin/carrageenan model of arthritic pain. These pain-related changes involve presynaptic group I metabotropic glutamate receptors (mGluRs) and postsynaptic NMDA and calcitonin gene-related peptide (CGRP1) receptors. Here we address the role of group II mGluRs.

Results

Whole-cell current- and voltage-clamp recordings were made from CeLC neurons in brain slices from control rats and arthritic rats (>6 h postinjection of kaolin/carrageenan into the knee). Monosynaptic excitatory postsynaptic currents (EPSCs) were evoked by electrical stimulation of afferents from the pontine parabrachial (PB) area. A selective group II mGluR agonist (LY354740) decreased the amplitude of EPSCs more potently in CeLC neurons from arthritic rats (IC50 = 0.59 nM) than in control animals (IC50 = 15.0 nM). The inhibitory effect of LY354740 was reversed by a group II mGluR antagonist (EGLU) but not a GABAA receptor antagonist (bicuculline). LY354740 decreased frequency, but not amplitude, of miniature EPSCs in the presence of TTX. No significant changes of neuronal excitability measures (membrane slope conductance and action potential firing rate) were detected.

Conclusion

Our data suggest that group II mGluRs act presynaptically to modulate synaptic plasticity in the amygdala in a model of arthritic pain.  相似文献   

8.
The spinal synaptic plasticity is associated with a central sensitization of nociceptive input, which accounts for the generation of hyperalgesia in chronic pain. However, how group I metabotropic glutamate receptors (mGluRs) may operate spinal plasticity remains essentially unexplored. Here, we have identified spike-timing dependent synaptic plasticity in substantia gelatinosa (SG) neurons, using perforated patch-clamp recordings of SG neuron in a spinal cord slice preparation. In the presence of bicuculline and strychnine, long-term potentiation (LTP) was blocked by AP-5 and Ca2+ chelator BAPTA-AM. The group I mGluR antagonist AIDA, PLC inhibitor U-73122, and IP3 receptor blocker 2-APB shifted LTP to long-term depression (LTD) without affecting acute synaptic transmission. These findings provide a link between postsynaptic group I mGluR/PLC/IP3-gated Ca2+ store regulating the polarity of synaptic plasticity and spinal central sensitization.  相似文献   

9.
突触前α7烟碱受体对海马神经元兴奋性突触传递的调控   总被引:3,自引:1,他引:3  
Liu ZW  Yang S  Zhang YX  Liu CH 《生理学报》2003,55(6):731-735
采用盲法膜片钳技术观察突触前烟碱受体(nicotinic acetylcholinel receptors,nAChRs)对海马脑片CAl区锥体神经元兴奋性突触传递的调控作用。结果显示,nAChRs激动剂碘化二甲基苯基哌嗪(dimethylphenyl—piperazinium iodide,DMPP)不能在CAl区锥体神经元上诱发出烟碱电流。DMPP对CAl区锥体神经元自发兴奋性突触后电流(spontaneous excitatory postsynaptic current,sEPSC)具有明显的增频和增幅作用,并呈现明显的浓度依赖关系。DMPP对微小兴奋性突触后电流(miniature excitatory postsynaptic current,mEPSC)具有增频作用,但不具有增幅作用。上述DMPP增强突触传递的作用不能被nAChRs拮抗剂美加明、六烃季铵和双氢-β-刺桐丁所阻断,但可被α-银环蛇毒素阻断。上述结果提示,海马脑片CAl区锥体神经元兴奋性突触前nAChRs含有对α-银环蛇毒素敏感的胡亚单位,其激活可增强海马CAl区锥体神经元突触前递质谷氨酸的释放,从而对兴奋性突触传递发挥调控作用。  相似文献   

10.
G-protein-coupled metabotropic glutamate receptors (GPC mGluRs) are important constituents of glutamatergic synapses where they contribute to synaptic plasticity and development. Here we characterised a member of this family in the honeybee. We show that the honeybee genome encodes a genuine mGluR (AmGluRA) that is expressed at low to medium levels in both pupal and adult brains. Analysis of honeybee protein sequence places it within the type 3 GPCR family, which includes mGlu receptors, GABA-B receptors, calcium-sensing receptors, and pheromone receptors. Phylogenetic comparisons combined with pharmacological evaluation in HEK 293 cells transiently expressing AmGluRA show that the honeybee protein belongs to the group II mGluRs. With respect to learning and memory AmGluRA appears to be required for memory formation. Both agonists and antagonists selective against the group II mGluRs impair long-term (24 h) associative olfactory memory formation when applied 1 h before training, but have no effect when injected post-training or pre-testing. Our results strengthen the notion that glutamate is a key neurotransmitter in memory processes in the honeybee.  相似文献   

11.
Ji D  Lape R  Dani JA 《Neuron》2001,31(1):131-141
This study reveals mechanisms in the mouse hippocampus that may underlie nicotinic influences on attention, memory, and cognition. Induction of synaptic plasticity, arising via generally accepted mechanisms, is modulated by nicotinic acetylcholine receptors. Properly timed nicotinic activity at pyramidal neurons boosted the induction of long-term potentiation via presynaptic and postsynaptic pathways. On the other hand, nicotinic activity on interneurons inhibited nearby pyramidal neurons and thereby prevented or diminished the induction of synaptic potentiation. The synaptic modulation was dependent on the location and timing of the nicotinic activity. Loss of these synaptic mechanisms may contribute to the cognitive deficits experienced during Alzheimer's diseases, which is associated with a loss of cholinergic projections and with a decrease in the number of nicotinic receptors.  相似文献   

12.
Rebola N  Lujan R  Cunha RA  Mulle C 《Neuron》2008,57(1):121-134
The physiological conditions under which adenosine A2A receptors modulate synaptic transmission are presently unclear. We show that A2A receptors are localized postsynaptically at synapses between mossy fibers and CA3 pyramidal cells and are essential for a form of long-term potentiation (LTP) of NMDA-EPSCs induced by short bursts of mossy fiber stimulation. This LTP spares AMPA-EPSCs and is likely induced and expressed postsynaptically. It depends on a postsynaptic Ca2+ rise, on G protein activation, and on Src kinase. In addition to A2A receptors, LTP of NMDA-EPSCs requires the activation of NMDA and mGluR5 receptors as potential sources of Ca2+ increase. LTP of NMDA-EPSCs displays a lower threshold for induction as compared with the conventional presynaptic mossy fiber LTP; however, the two forms of LTP can combine with stronger induction protocols. Thus, postsynaptic A2A receptors may potentially affect information processing in CA3 neuronal networks and memory performance.  相似文献   

13.
Activation of several subtypes of glutamate receptors contributes to changes in postsynaptic calcium concentration at hippocampal synapses, resulting in various types of changes in synaptic strength. Thus, while activation of NMDA receptors has been shown to be critical for long-term potentiation (LTP) and long term depression (LTD) of synaptic transmission, activation of metabotropic glutamate receptors (mGluRs) has been linked to either LTP or LTD. While it is generally admitted that dynamic changes in postsynaptic calcium concentration represent the critical elements to determine the direction and amplitude of the changes in synaptic strength, it has been difficult to quantitatively estimate the relative contribution of the different types of glutamate receptors to these changes under different experimental conditions. Here we present a detailed model of a postsynaptic glutamatergic synapse that incorporates ionotropic and mGluR type I receptors, and we use this model to determine the role of the different receptors to the dynamics of postsynaptic calcium with different patterns of presynaptic activation. Our modeling framework includes glutamate vesicular release and diffusion in the cleft and a glutamate transporter that modulates extracellular glutamate concentration. Our results indicate that the contribution of mGluRs to changes in postsynaptic calcium concentration is minimal under basal stimulation conditions and becomes apparent only at high frequency of stimulation. Furthermore, the location of mGluRs in the postsynaptic membrane is also a critical factor, as activation of distant receptors contributes significantly less to calcium dynamics than more centrally located ones. These results confirm the important role of glutamate transporters and of the localization of mGluRs in postsynaptic sites in their signaling properties, and further strengthen the notion that mGluR activation significantly contributes to postsynaptic calcium dynamics only following high-frequency stimulation. They also provide a new tool to analyze the interactions between metabotropic and ionotropic glutamate receptors.  相似文献   

14.
Hippocampal neurons fire spikes when an animal is at a particular location or performs certain behaviors in a particular place, providing a cellular basis for hippocampal involvement in spatial learning and memory. In a natural environment, spatial memory is often associated with potentially dangerous sensory experiences such as noxious or painful stimuli. The central sites for such pain-associated memory or plasticity have not been identified. Here we present evidence that excitatory glutamatergic synapses within the CA1 region of the hippocampus may play a role in storing pain-related information. Peripheral noxious stimulation induced excitatory postsynaptic potentials (EPSPs) in CA1 pyramidal cells in anesthetized animals. Tissue/nerve injury caused a rapid increase in the level of the immediate-early gene product Egr1 (also called NGFI-A, Krox24, or zif/268) in hippocampal CA1 neurons. In parallel, synaptic potentiation induced by a single tetanic stimulation (100 Hz for 1 s) was enhanced after the injury. This enhancement of synaptic potentiation was absent in mice lacking Egr1. Our data suggest that Egr1 may act as an important regulator of pain-related synaptic plasticity within the hippocampus.  相似文献   

15.
Long-term potentiation (LTP) of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca2+ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR) and metabotropic glutamate receptor (mGluR) activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca2+ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP) also involves mGluR activation. Astrocyte Ca2+ elevations and LTP are absent in IP3R2 knock-out mice. Downregulating astrocyte Ca2+ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca2+ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca2+ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca2+ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca2+ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.  相似文献   

16.
Protein phosphatase-1 (PP1) has been implicated in the control of long-term potentiation (LTP) and depression (LTD) in rat hippocampal CA1 neurons. PP1 catalytic subunits associate with multiple postsynaptic regulatory subunits, but the PP1 complexes that control hippocampal LTP and LTD in the rat hippocampus remain unidentified. The neuron-specific actin-binding protein, neurabin-I, is enriched in dendritic spines, and tethers PP1 to actin-rich postsynaptic density to regulate morphology and maturation of spines. The present studies utilized Sindbis virus-mediated expression of wild-type and mutant neurabin-I polypeptides in organotypic cultures of rat hippocampal slices to investigate their role in synaptic plasticity. While wild-type neurabin-I elicited no change in basal synaptic transmission, it enhanced LTD and inhibited LTP in CA1 pyramidal neurons. By comparison, mutant neurabins, specifically those unable to bind PP1 or F-actin, decreased basal synaptic transmission, attenuated LTD and increased LTP in slice cultures. Biochemical and cell biological analyses suggested that, by mislocalizing synaptic PP1, the mutant neurabins impaired the functions of endogenous neurabin-PP1 complexes and modulated LTP and LTD. Together, these studies provided the first biochemical and physiological evidence that a postsynaptic actin-bound neurabin-I-PP1 complex regulates synaptic transmission and bidirectional changes in hippocampal plasticity.  相似文献   

17.
目的探讨组蛋白去乙酰化酶2(HDAC2)在成年C57BL/6小鼠海马内的分布及其与突触后致密区(PSD)蛋白成员的共定位,为揭示HDAC2与PSD蛋白复合物之间的内在联系及在海马相关的学习记忆过程中可能起到的调控作用提供形态学依据。方法应用免疫组化方法观察HDAC2在C57BL/6小鼠海马各区的表达分布。应用免疫荧光双标技术研究HDAC2与PSD蛋白成员N-甲基-D-天冬氨酸(NMDA)受体亚单位1(NR1)、PSD-95之间是否存在共定位。结果 HDAC2在小鼠海马CA1~CA3区锥体细胞和齿状回颗粒细胞均具有明显表达,而在各区的始层、辐射层、腔隙-分子层以及齿状回多形细胞层表达均较少。免疫荧光双标染色图片的重叠表明,HDAC2与NR1、PSD-95在小鼠海马CA1~CA3区锥体细胞层和齿状回颗粒细胞层内均可见显著共表达现象,其他区域偶见散在分布的双染神经元。结论 HDAC2在小鼠海马锥体细胞层和颗粒细胞层表达丰富,并与PSD蛋白成员间存在共定位现象。本实验结果为探讨HDAC2对谷氨酸能突触后神经元依赖的突触可塑性的调节机制提供了形态学依据。  相似文献   

18.
Jin Y  Kim SJ  Kim J  Worley PF  Linden DJ 《Neuron》2007,55(2):277-287
Glutamate produces both fast excitation through activation of ionotropic receptors and slower actions through metabotropic receptors (mGluRs). To date, ionotropic but not metabotropic neurotransmission has been shown to undergo long-term synaptic potentiation and depression. Burst stimulation of parallel fibers releases glutamate, which activates perisynaptic mGluR1 in the dendritic spines of cerebellar Purkinje cells. Here, we show that the mGluR1-dependent slow EPSC and its coincident Ca transient were selectively and persistently depressed by repeated climbing fiber-evoked depolarization of Purkinje cells in brain slices. LTD(mGluR1) was also observed when slow synaptic current was evoked by exogenous application of a group I mGluR agonist, implying a postsynaptic expression mechanism. Ca imaging further revealed that LTD(mGluR1) was expressed as coincident attenuation of both limbs of mGluR1 signaling: the slow EPSC and PLC/IP3-mediated dendritic Ca mobilization. Thus, different patterns of neural activity can evoke LTD of either fast ionotropic or slow mGluR1-mediated synaptic signaling.  相似文献   

19.
This study aims to determine whether the regulation of extracellular glutamate is altered during aging and its possible consequences on synaptic transmission and plasticity. A decrease in the expression of the glial glutamate transporters GLAST and GLT‐1 and reduced glutamate uptake occur in the aged (24–27 months) Sprague–Dawley rat hippocampus. Glutamatergic excitatory postsynaptic potentials recorded extracellularly in ex vivo hippocampal slices from adult (3–5 months) and aged rats are depressed by DL‐TBOA, an inhibitor of glutamate transporter activity, in an N‐Methyl‐d‐ Aspartate (NMDA)‐receptor‐dependent manner. In aged but not in young rats, part of the depressing effect of DL‐TBOA also involves metabotropic glutamate receptor (mGluRs) activation as it is significantly reduced by the specific mGluR antagonist d‐methyl‐4‐carboxy‐phenylglycine (MCPG). The paired‐pulse facilitation ratio, a functional index of glutamate release, is reduced by MCPG in aged slices to a level comparable to that in young rats both under control conditions and after being enhanced by DL‐TBOA. These results suggest that the age‐associated glutamate uptake deficiency favors presynaptic mGluR activation that lowers glutamate release. In parallel, 2 Hz‐induced long‐term depression is significantly decreased in aged animals and is fully restored by MCPG. All these data indicate a facilitated activation of extrasynaptic NMDAR and mGluRs in aged rats, possibly because of an altered distribution of glutamate in the extrasynaptic space. This in turn affects synaptic transmission and plasticity within the aged hippocampal CA1 network.  相似文献   

20.
J A Kauer  R C Malenka  R A Nicoll 《Neuron》1988,1(10):911-917
Long-term potentiation (LTP) is a long-lasting enhancement of synaptic transmission that can be induced by brief repetitive stimulation of excitatory pathways in the hippocampus. One of the most controversial points is whether the process underlying the enhanced synaptic transmission occurs pre- or postsynaptically. To examine this question, we have taken advantage of the novel physiological properties of excitatory synaptic transmission in the CA1 region of the hippocampus. Synaptically released glutamate activates both NMDA and non-NMDA receptors on pyramidal cells, resulting in an excitatory postsynaptic potential (EPSP) with two distinct components. A selective increase in the non-NMDA component of the EPSP was observed with LTP. This result suggests that the enhancement of synaptic transmission during LTP is caused by an increased sensitivity of the postsynaptic neuron to synaptically released glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号