首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 811 毫秒
1.
Mastrus ridibundus is a specialist hymenopteran parasitoid that parasitizes last-instar larvae or prepupae of the codling moth, Cydia pomonella. Foraging females eavesdrop on an aggregation pheromone produced by cocooning larvae. We investigated whether larvae that cocoon in aggregation experience a greater rate of parasitism than larvae that cocoon in isolation. In wind tunnel experiments, 10 larvae in aggregations were more readily located by female M. ridibundus than 10 larvae well separated from each other. Similarly, aggregations of 30 larvae were more attractive to female M. ridibundus than those of 3 larvae. In cage experiments, larval cocooning in aggregation or isolation had no effect on the mean rate of parasitism and the mean number of eggs deposited per parasitized host. In Petri-dish experiments, the location of larvae within an aggregation significantly affected their rate of parasitism, with those in the center of an aggregation completely shielded from parasitism. Our data suggest that aggregation behavior by C. pomonella larvae does not appear to increase the rate of parasitism. The increased risk of aggregated larvae to be detected by M. ridibundus is likely offset by diluted parasitism risk and structural refugia effects that larvae in aggregation experience. As an egg-limited parasitoid, female M. ridibundus can parasitize on average only one larva in an aggregation, with the likelihood of parasitism for each larva being inversely proportional to the number of larvae in that aggregation.  相似文献   

2.
Rohlfs M  Hoffmeister TS 《Oecologia》2004,140(4):654-661
Although an increase in competition is a common cost associated with intraspecific crowding, spatial aggregation across food-limited resource patches is a widespread phenomenon in many insect communities. Because intraspecific aggregation of competing insect larvae across, e.g. fruits, dung, mushrooms etc., is an important means by which many species can coexist (aggregation model of species coexistence), there is a strong need to explore the mechanisms that contribute to the maintenance of this kind of spatial resource exploitation. In the present study, by using Drosophila-parasitoid interactions as a model system, we tested the hypothesis whether intraspecific aggregation reflects an adaptive response to natural enemies. Most of the studies that have hitherto been carried out on Drosophila-parasitoid interactions used an almost two-dimensional artificial host environment, where host larvae could not escape from parasitoid attacks, and have demonstrated positive density-dependent parasitism risk. To test whether these studies captured the essence of such interactions, we used natural breeding substrates (decaying fruits). In a first step, we analysed the parasitism risk of Drosophila larvae on a three-dimensional substrate in natural fly communities in the field, and found that the risk of parasitism decreased with increasing host larval density (inverse density dependence). In a second step, we analysed the parasitism risk of Drosophila subobscura larvae on three breeding substrate types exposed to the larval parasitoids Asobara tabida and Leptopilina heterotoma. We found direct density-dependent parasitism on decaying sloes, inverse density dependence on plums, and a hump-shaped relationship between fly larval density and parasitism risk on crab apples. On crab apples and plums, fly larvae benefited from a density-dependent refuge against the parasitoids. While the proportion of larvae feeding within the fruit tissues increased with larval density, larvae within the fruit tissues were increasingly less likely to become victims of parasitoids than those exposed at the fruit surface. This suggests a facilitating effect of group-feeding larvae on reaching the spatial refuge. We conclude that spatial aggregation in Drosophila communities can at least in part be explained as a predator avoidance strategy, whereby natural enemies act as selective agents maintaining spatial patterns of resource utilisation in their host communities.  相似文献   

3.
Nancy E. Stamp 《Oecologia》1981,49(2):201-206
Summary The effect of group size of early instars on parasitism of Euphydryas phaeton (Nymphalidae) was examined. Different numbers of larvae were stocked per web to determine the effect of group size on parasitism. Larval aggregations of moderate size (the size occurring naturally) had the least parasitism. Larger larval groups had a disproportionately high rate of parasitism. The major larval parasitoids located vulnerable larvae within webs, instead of attacking larvae available on the outside of webs. Parasitism rates were similar for larvae of damaged and undamaged webs, a consequence of the behavior and location of larvae in the webs. Lower limit to group size was a function of facilitation of larval numbers in reaching the first feeding site, the top of the host plant. Feeding facilitation by larval aggregations was not a factor in larval survival or growth.  相似文献   

4.
The apple ermine moth, Yponomeuta malinellus Zeller (Lepidoptera: Yponomeutidae), is a tent caterpillar that feeds on Malus spp. in Korea. Populations of the moth in native areas appeared to be regulated by the assemblage of parasitoids. Phenological associations between host stages and parasitoids, susceptible stage(s) of the host for each parasitoid, and stage‐specific parasitism were studied. The egg larval parasitoid Ageniaspis fuscicollis (Dalman) had highest parasitism of first instar larvae (24%), with 14% parasitism of other larval stages. Dolichogenidea delecta (Haliday) was recovered from all larval instars with the highest parasitism rate of second instar larvae (20.1%), followed by 19.9% parasitism of mid‐larval hosts. Herpestomus brunicornis Gravenhorst was reared from second instar larvae through to pupal collection, and had the highest parasitism rate (29.9%) at the pupal stage. The larval pupal parasitoid Zenillia dolosa (Meigen) was recovered from mid‐larval to pupal stages with the highest parasitism rate (5.5%) occurring in third to fourth instar larvae. The host stages for developing A. fuscicollis completely overlap with those of D. delecta, and with those of H. brunicornis to some degree. A statistically significant negative correlation exists between A. fuscicollis and these dominant parasitoids, indicating competitive interaction within the host.  相似文献   

5.
Massicus raddei Blessig (Coleoptera: Cerambycidae), also referred to as the oak long‐horned beetle (OLB), is a non‐natural host for the generalist parasitoid Sclerodermus pupariae Yang et Yao (Hymenoptera: Bethylidae). To determine whether this generalist parasitoid might be a suitable agent for the control of OLB, the adaptive learning experience of adult female parasitoids to OLB larvae was investigated in the laboratory. A Y‐tube olfactometer bioassay was used to examine the effects of adaptive learning experience on the foraging ability of parasitoids for OLB larvae. The results indicated that parasitoids were significantly attracted by the volatiles of ash bark, Fraxinus velutina, with emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) larvae and larval frass, after exposure to ash bark mixed with EAB larval frass (learning condition A). In contrast, after exposure to oak bark, Quercus liaotungensis, mixed with OLB larval frass (learning condition C), parasitoids showed significant preference for the volatiles of oak bark with OLB larvae and larval frass. On the basis of the results of no‐choice tests, we found that parasitoids exposed to learning condition C had greater paralysis efficiency and higher OLB larvae parasitism rates than those exposed to learning condition A or no experience. Furthermore, parasitoids fed on OLB larvae in learning condition C had significantly greater paralysis efficiency and higher OLB larvae parasitism rates than other parasitoids tested. Parasitoids fed on EAB larvae in learning condition A had the lowest paralysis efficiency and OLB larvae parasitism rates among the parasitoids tested. These findings suggested that adaptive learning significantly enhanced the ability of a generalist parasitoid to utilize a novel host. This may provide a new approach to controlling non‐natural hosts using generalist parasitoids.  相似文献   

6.
Five species of larval parasitoids were reared fromRhagoletis pomonella (Walsh) infested fruit of hawthorn,Crataegus, collected from several locations in southwest Washington over a four year period. A braconid,Biosteres melleus (Gahan), parasitized larvae infesting fruits of a native hawthorn species,Crataegus douglasii Lindl. Another braconid,Opius downesi Gahan, emerged exclusively fromR. pomonella pupae reared from fruits of an introduced species of hawthorn,Crataegus monogyna Jacq. A pteromalid,Pteromalus sp., and two eulophids,Tetrastichus spp., attackedR. pomonella larvae infesting fruits of both hawthorn species. No parasitoids emerged from a total of 4385 pupae reared from apple. Percent parasitism ofR. pomonella was higher inC. monogyna compared toC. douglasii fruits. The highest average levels of parasitism ofR. pomonella inC. monogyna andC. douglasii fruits were 90% and 23% respectively. The kinds of parasitoids, their relative abundances and timing of parasitization on the two hawthorns was related to differences in fruit ripening patterns and its effect on the development ofR. pomonella on these two hosts. Parasitization ofR. pomonella byTetrastichus spp. is a new host record. The detection of these species andPteromalus sp. in southwest Washington are the first records of ectoparasitoids attacking this tephritid.  相似文献   

7.
Populations of Drosophila melanogaster face significant mortality risks from parasitoid wasps that use species‐specific strategies to locate and survive in hosts. We tested the hypothesis that parasitoids with different strategies select for alternative host defense characteristics and in doing so contribute to the maintenance of fitness variation and produce trade‐offs among traits. We characterized defense traits of Drosophila when exposed to parasitoids with different host searching behaviors (Aphaereta sp. and Leptopilina boulardi). We used host larvae with different natural alleles of the gene Dopa decarboxylase (Ddc), a gene controlling the production of dopamine and known to influence the immune response against parasitoids. Previous population genetic analyses indicate that our focal alleles are maintained by balancing selection. Genotypes exhibited a trade‐off between the immune response against Aphaereta sp. and the ability to avoid parasitism by L. boulardi. We also identified a trade‐off between the ability to avoid parasitism by L. boulardi and larval competitive ability as indicated by differences in foraging and feeding behavior. Genotypes differed in dopamine levels potentially explaining variation in these traits. Our results highlight the potential role of parasitoid biodiversity on host fitness variation and implicate Ddc as an antagonistic pleiotropic locus influencing larval fitness traits.  相似文献   

8.
Codling moth, Cydia pomonella Linnaeus (Lepidoptera: Tortricidae), is a serious pest of apples worldwide. This study aimed to evaluate the mortality rate of codling moth eggs, larvae and pupae in the field in commercial and neglected apple and walnut orchards over two years, and to investigate the biodiversity and intensity of parasitoids associated with codling moth in the orchards. Five patches of wax paper containing 1-day-old codling moth eggs were placed in a neglected orchard in order to evaluate parasitism rates. Corrugated cardboard bands were placed around the trunk of 15 trees during late spring and the beginning of summer through to fruiting season to capture and measure parasitism of codling moth larvae. 5285 larvae in total were collected during this study. Mortality rate (egg?+?larvae?+?pupae) varied between the commercial and neglected orchards, reaching a maximum of (42.89% and 66.67%) in neglected apple orchards and (61.03% and 74.76%) in the neglected walnut orchard in 2003 and 2004, respectively. Trichogramma cacoeciae (Hymenoptera: Tichogrammatidae) was the only egg parasitoid recorded. Eight hymenopteran larval and pupal parasitoids belonging to several subfamilies were recorded: Cheloninae, Agathidinae, Cremastinae, Haltichellinae, Chalcidinae, Anomalinae, and Pteromalinae and one dipteran belonging to Tachininae. In conclusion, mortality factors, mainly by parasitoids, are contributing to a general reduction in codling moth larvae populations particularly in neglected orchards. The hymenopteran Ascogaster quadridentata and the dipteran Neoplectops pomonellae can contribute to biological control programmes against codling moth in the coastal region and other regions.  相似文献   

9.
Field and laboratory studies revealed that the mating system of a tephritid fly, Procecidochares sp., meets even the most stringent definition of lekking behavior. Mark-recapture and plant-preference experiments confirmed that newly emerged adult Procecidochares sp. left their larval host plant (Chrysothamnus nauseosus) and flew to Atriplex canescens. The flies used A. canescens solely as a mate encounter site. Sex ratios of emerging flies did not differ from unity, but sex ratios at the leks were extremely male-biased. An advantage for larger individuals in male-male aggressive encounters was quantified and observations suggested that females might be choosing mates based on outcomes of fights. Lekking behavior, previously reported among polyphagic tephritids, is considered exceptional for a monophagous species. Factors favoring a lek mating system in this species are discussed.  相似文献   

10.
Generalist predators may disrupt or complement biological control by parasitoids. Past studies have examined how predators and parasitoids interact to affect aphid suppression, but more information is needed from other host taxa. Here, we explore the interactive effects of a spider (Cheiracanthium mildei) and a generalist parasitoid (Meteorus ictericus) on the light brown apple moth (Epiphyas postvittana), a recent introduction to North America. The spider negatively affected adult parasitoids in a field experiment, and reduced numbers of parasitized larvae in the laboratory. Nonetheless, the combined effects of parasitoids and spiders on larval mortality of the moth were additive. Percent parasitism was not affected by the presence of the spider in field or laboratory experiments, and results were similar when single or multiple larval instars of the moth were included. The spider’s lack of prey preference for unparasitized or parasitized larvae likely precluded any disruptive effects on parasitism. Results suggest that resident generalist parasitoids and predators can work in conjunction to hinder the invasion success of a novel herbivore prey species.  相似文献   

11.
Intra- and interspecific resource competition are potentially important factors affecting host plant use by phytophagous insects. In particular, escape from competitors could mediate a successful host shift by compensating for decreased feeding performance on a new plant. Here, we examine the question of host plant-dependent competition for apple (Malus pumila)- and hawthorn (Crataegus mollis)-infesting larvae of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae) at a field site near Grant, Michigan, USA. Interspecific competition from tortricid (Cydia pomonella, Grapholita prunivora, and Grapholita packardi) and agonoxenid (subfamily Blastodacninae) caterpillars and a curculionid weevil (Conotrachelus crataegi) was much stronger for R. pomonella larvae infesting the ancestral host hawthorn than the derived host apple. Egg to pupal survivorship was estimated as 52.8% for fly larvae infesting hawthorn fruit without caterpillars and weevils compared to only 27.3% for larvae in harthorns with interspecific insects. Survivorship was essentially the same between fly larvae infesting apples in the presence (44.8%) or absence (42.6%) of interspecific insects. Intraspecific competition among maggots was also stronger in hawthorns than apples. The order or time that a larva exited a hawthorn fruit was a significant determinant of its pupal mass, with earlier emerging larvae being heavier than later emerging larvae. This was not the case for larvae in apples, as the order or time that a larva exited an apple fruit had relatively little influence on its pupal mass. Our findings suggest that decreased performance related to host plant chemistry/nutrition may restrict host range expansion and race formation in R. pomonella to those plants where biotic/ecological factors (i.e. escape from competitors and parasitoids) adequately balance the survivorship equation. This balance permits stable fly populations to persist on novel plants, setting the stage for the evolution of host specialization under certain mitigating conditions (e.g. when mating is host specific and host-associated fitness trade-offs exist).  相似文献   

12.
Theory predicts that habitat fragmentation, including reduced area and connectivity of suitable habitat, changes multitrophic interactions. Species at the bottom of trophic cascades (host plants) are expected to be less negatively affected than higher trophic levels, such as herbivores and their parasitoids or predators. Here we test this hypothesis regarding the effects of habitat area and connectivity in a trophic system with three levels: first with the population size of the larval food plant Hippocrepis comosa, next with the population density of the monophagous butterfly species Polyommatus coridon and finally with its larval parasitism rate. Our results show no evidence for negative effects of habitat fragmentation on the food plant or on parasitism rates, but population density of adult P. coridon was reduced with decreasing connectivity. We conclude that the highly specialized butterfly species is more affected by habitat fragmentation than its larval food plant because of its higher trophic position. However, the butterfly host species was also more affected than its parasitoids, presumably because of lower resource specialization of local parasitoids which also frequently occur in alternative hosts. Therefore, conservation efforts should focus first on the most specialized species of interaction networks and second on higher trophic levels.  相似文献   

13.
Pearl millet is one of the major staple food crops in Sub-Sahelian Africa, and the millet head miner (MHM) [Heliocheilus albipunctella] is its major pest, causing serious economic damage in the maturity period. We studied the dispersion patterns of the endogenous ectoparasitoid, Habrobracon hebetor (Hymenoptera: Braconidae), after augmentative releases in pearl millet fields for biological control of the MHM, in 2010 and 2011 in Burkina Faso and Niger. The parasitoids were released using 15 jute bags per release site. Parasitoid dispersion was indirectly monitored through weekly assessments of MHM parasitism by H. hebetor at different distances from release points (0, 3 and 5?km) and in control villages (15?km). Our findings indicate that the jute bags released approximately 900–1000 parasitoids per site over a period of three weeks. This initial parasitoid population led to higher parasitism of MHM larvae at the site of dissemination compared to farms at distances of 3 and 5?km. However, usually after five weeks, successive generations of H. hebetor dispersed up to 3?km, causing high levels of MHM larval mortality, which sometimes is similar to those of the release points. Based on these results, we recommend the release of parasitoids at sites spaced 3?km for timely and more efficient control of MHM populations.  相似文献   

14.
We studied the effect of four weeding regimes (weed free, one manual weeding, one manual weeding+atrazine, and a weedy check) on larval density and leaf defoliation in four pear millet genotypes by the larvae of Oriental armyworm, Mythimna separata. Data were also recorded on the extent of larval parasitism under different weeding regimes, and the parasitoids involved. The leaf damage and larval densities were lower in weed free plots as compared to the weedy plots. This was also reflected in grain yield, as maximum grain yield was recorded in weed-free plots as compared to the weedy plots. Seven parasitoids (Cotesia ruficrus, Metopius rufus, Sturmiopsis inferens, Palexorista solemnis, P. laxa, Carcelia sp., and the entomopathogenic nematode Neoplectana sp. were recorded from M. separata larvae, of which M. rufus, Carceliasp., and Neoplectanasp. were the most abundant. Parasitism by M. rufus was greater in plots with a weed cover and least in weed-free plots, while parasitsm by Carcelia sp. was lower in plots with one hand weeding than in weedy plots. Numerically, parasitism by Neopletana sp. was low in plots treated with atrazine, and maximum in plots weeded manually. Therefore, the minimum level of weeding, which does not affect the crop adversely should be undertaken to promote the biological control of M. separata in pearl millet.  相似文献   

15.
Populations of hymenopteran parasitoids associated with larval stages of the invasive emerald ash borer (EAB) Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) were surveyed in 2009 and 2010 in the recently invaded areas in north central United States (Michigan), where two introduced EAB larval parasitoids, Tetrastichus planipennisi Yang and Spathius agrili Yang were released for classical biological control. Results from two years of field surveys showed that several hymenopteran parasitoids have become associated with EAB in Michigan. Among these parasitoids, the gregarious species T. planipennisi was the most abundant, accounting for 93% of all parasitoid individuals collected in 2009 (immediately after field release) and 58% in 2010 (a year later after field releases). Low levels (1–5%) of parasitism of EAB larvae by T. planipennisi were consistently detected at survey sites in both years. Separately, the abundance of the native parasitoid, Atanycolus spp., increased sharply, resulting in an average parasitism rate of EAB larvae from <0.5% in 2009 to 19% in 2010. Other parasitoids such as Phasgonophora sulcata Westwood, Spathius spp., Balcha indica Mani & Kaul, Eupelmus sp., and Eurytomus sp. were much less abundant than T. planipennisi and Atanycolus spp., and each caused <1% parasitism. Besides hymenopteran parasitoids, woodpeckers consumed 32–42% of the immature EAB stages present at our study sites, while undetermined biotic factors (such as microbial disease and host tree resistance) caused 10–22% mortality of observed EAB larvae. Relevance of these findings to the potential for biological control of EAB in the invaded areas of North America is discussed.  相似文献   

16.
Plants respond to grazing by herbivorous insects by emitting a range of volatile organic compounds, which attract parasitoids to their insect hosts. However, a positive outcome for the host plant is a necessary precondition for making the attraction beneficial or even adaptive. Parasitoids benefit plants by killing herbivorous insects, thus reducing future herbivore pressure, but also by curtailing the feeding intensity of the still living, parasitised host. In this study, the effect of parasitism on food consumption of the 5th instar larvae of the autumnal moth (Epirrita autumnata) was examined under laboratory conditions. Daily food consumption, as well as the duration of the 5th instar, was measured for both parasitised and non-parasitised larvae. The results showed that parasitism by the solitary endoparasitoid Zele deceptor not only reduced leaf consumption significantly but also hastened the onset of pupation in autumnal moth larvae. On the basis of the results, an empirical model was derived to assess the affects on the scale of the whole tree. The model suggests that parasitoids might protect the tree from total defoliation at least at intermediate larval densities. Consequently, a potential for plant–parasitoid chemical signalling appears to exist, which seems to benefit the mountain birch (Betula pubescens ssp. czerepanovii) by reducing the overall intensity of herbivore defoliation due to parasitism by this hymenopteran parasitoid.  相似文献   

17.
Indirect plant defence mechanisms enhance the effectiveness of natural enemies of herbivores. Herbivore‐induced plant volatiles (HIPVs) attract the parasitoids of insect herbivores as shown both in numerous choice tests conducted under laboratory conditions and in relatively few common‐garden setups in agro‐ecosystems. However, the importance of this indirect defence trait at higher levels of biological organization has yet to be investigated through natural field experiments. Here, we report a field experiment of larval parasitism of two cyclic geometrid defoliators in herbivore‐damaged and fairly intact mountain birch Betula pubescens ssp. czerepanovii under natural conditions. Parasitism rates in larvae of the autumnal (Epirrita autumnata) and winter moth (Operophtera brumata) exposed for 30 h on defoliated trees were more than twice as high as those on control trees. This finding indicates that hymenopteran parasitoids were attracted to previously defoliated trees by some cues from the host plants, HIPVs being the most likely candidates. The third trophic level should thus be considered in natural plant herbivore interactions. Furthermore, parasitoids and food resources are key factors in the population regulation of forest insect pests, and indirect plant defences could be important in their interactions. Our research also emphasizes the quality of control treatments in field experiments, since immediate plant responses easily obscure the results as soon as control trees become infested by herbivorous insects.  相似文献   

18.
The impact of alien species on native organisms is a cause for concern worldwide, with biological invasions commonplace today. Suppression efforts targeting many invasive species have included introductions of biological control agents. The numerous releases of biological control agents in the Hawaiian archipelago have resulted in considerable concern for non-target impacts, due to high levels of non-target parasitism observed to occur in some cases. This study investigated the impact of introduced Hymenoptera parasitoids on a Hawaiian moth. The endemic Hawaiian moth Udea stellata (Butler) has seven alien parasitoids associated with it, two purposely introduced, three adventive, and two of uncertain origin. The objective of this study was to determine the relative contribution of the seven parasitoid species to the population dynamics of U. stellata by constructing partial life tables. Marginal attack rates and associated k-values were calculated to allow comparison of mortality factors between experimental sites. Sentinel larvae were deployed on potted host plants and left in the field for 3-day intervals in open and exclusion treatments. The factors that contributed to total mortality in the open treatment were: disappearance (42.1%), death due to unknown reasons during rearing (16.5%) and parasitism (4.9%). The open treatment incurred significantly higher larval disappearance compared to the exclusion treatment (7.8%), which suggests that in large part disappearance is the result of predation. Adventive parasitoids inflicted greater total larval mortality attributable to parasitism (97.0%) than purposely introduced species (3.0%).  相似文献   

19.
In this study we examined interactions between two solitary endoparasitoids, the braconid Chelonus insularis and the ichneumonid Campoletis sonorensis, and a multiple-enveloped nucleopolyhedrovirus infecting Spodoptera frugiperda larvae. We examined whether ovipositing females minimize interference by discriminating amongst hosts and examined the outcome of within-host competition between parasitoid species and between the parasitoids and the virus. The egg–larval parasitoid Ch. insularis did not discriminate between virus-contaminated and uncontaminated S. frugiperda eggs; all S. frugiperda larvae that emerged from surface-contaminated eggs died of viral infection prior to parasitoid emergence. The larval parasitoid C. sonorensis also failed to discriminate between healthy and virus-infected S. frugiperda larvae or between larvae unparasitized or parasitized by Ch. insularis. Host larvae parasitized in the egg stage by Ch. insularis were suitable for the development of C. sonorensis when they were multiparasitized by C. sonorensis as first, second, third, and fourth instars, whereas emergence of Ch. insularis was dramatically reduced (by 85 to 100%) in multiparasitized hosts. Nonspecific host mortality was significantly higher in multiparasitized hosts than in singly parasitized hosts. The development time and sex ratio of C. sonorensis in multiparasitized host larvae were unaffected by the presence of Ch. insularis larval stages. Both Ch. insularis parasitized and nonparasitized larvae of the same instar (second, third, or fourth instars) had a similar quantitative response to a challenge of virus inoculum. All host larvae that ingested a lethal dose of virus were unsuitable for Ch. insularis development. In contrast, C. sonorensis did not survive in hosts that ingested a lethal virus dose immediately after parasitism, but parasitoid survival was possible with a 2-day delay between parasitism and viral infection and the percentage of parasitoid emergence increased significantly as the interval between parasitism and viral infection increased. The development time of C. sonorensis was significantly reduced in virus-infected hosts compared to conspecifics that developed in healthy hosts. C. sonorensis females that oviposited in virus-infected hosts did not transmit the virus to healthy hosts that were parasitized subsequently. Field applications of virus for biocontrol of S. frugiperda may lead to substantial mortality of immature parasitoids, although field experiments have not yet demonstrated such an effect.  相似文献   

20.
Endoparasitoids of Anomis privata larvae include five species in three families of two orders. In this work, two species of Hymenoptera Braconidae (Cotesia sp., Microplitis sp.), one species of Ichneumonidae (Mesochorus vittator) and two species of Diptera Tachinidae (Exorista (Podotachina) sorbillans, Timavia amoena) were investigated. Of the 261 larvae of A. privata examined, 32 had a parasite, so the rate of parasitism was 12.26%. Parasitism by taxon was the highest, at 10.35% (27 individuals), in Cotesia sp. in Hymenoptera Braconidae. Parasitoids of Braconidae and Ichneumonidae were larval parasitoids. A parasitic insect of Tachinidae was a larva–pupal parasitoid. Solitary parasitoids included Microplitis sp. in Braconidae and E. sorbillans in Tachinidae. Gregarious parasitoids included Cotesia sp. in Braconidae, M. vittator in Ichneumonidae and T. amoena in Tachinidae. There was also a multiparasitoid (T. amoena) and two superparasitoids (Cotesia sp., M. vittator). A larva of A. privata sought feed even after it was parasitized every parasitoid investigated in this study, so five species of parasitoids were all koinobiont.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号