首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CCN family proteins 2 and 3 (CCN2 and CCN3) belong to the CCN family of proteins, all having a high level of structural similarity. It is widely known that CCN2 is a profibrotic molecule that mediates the development of fibrotic disorders in many different tissues and organs. In contrast, CCN3 has been recently suggested to act as an anti-fibrotic factor in several tissues. This CCN3 action was shown earlier to be exerted by the repression of the CCN2 gene expression in kidney tissue, whereas different findings were obtained for liver cells. Thus, the molecular action of CCN3 yielding its anti-fibrotic effect is still controversial. Here, using a general model of fibrosis, we evaluated the effect of CCN3 overexpression on the gene expression of all of the CCN family members, as well as on that of fibrotic marker genes. As a result, repression of CCN2 gene expression was modest, while type I collagen and α-smooth muscle actin gene expression was prominently repressed. Interestingly, not only CCN2, but also CCN4 gene expression showed a decrease upon CCN3 overexpression. These findings indicate that fibrotic gene induction is under the control of a complex molecular network conducted by CCN family members functioning together.  相似文献   

2.
CCN family member 2 (CCN2), also known as connective tissue growth factor (CTGF), has been suggested to be an endochondral ossification genetic factor that has been termed “ecogenin”, because in vitro studies revealed that CCN2 promotes the proliferation and differentiation of growth-plate chondrocytes, osteoblasts, and vascular endothelial cells, all of which play important roles in endochondral ossification. In addition to its action toward these three types of cells, CCN2 was recently found to promote the formation of osteoclasts in vitro, which cells play an important role in the replacement of cartilage by bone during endochondral ossification, thus strengthening the “ecogenin” hypothesis. For confirmation of this hypothesis, transgenic mice over-expressing CCN2 in cartilage were generated. The results proved the hypothesis; i.e., the over-expression of CCN2 in cartilage stimulated the proliferation and differentiation of growth-plate chondrocytes, resulting in the promotion of endochondral ossification. In addition to its “ecogenin” action, CCN2 had earlier been shown to promote the differentiation of various cartilage cells including articular cartilage cells. In accordance with these findings, cartilage-specific overexpression of CCN2 in the transgenic mice was shown to protect against the development of osteoarthritic changes in aging articular cartilage. Thus, CCN2 may also play a role as an anti-aging (chondroprotective) factor, stabilizing articular cartilage. CCN2 also had been shown to promote intramembranous ossification, regenerate cartilage and bone, and induce angiogenesis in vivo. For understanding of the molecular mechanism underlying such multifunctional actions, yeast two-hybrid analysis, protein array analysis, solid-phase binding assay, and surface plasmon resonance (SPR) analysis have been used to search for binding partners of CCN2. ECMs such as fibronectin and aggrecan, growth factors including BMPs and FGF2 and their receptors such as FGFR1 and 2 and RANK, as well as CCN family members themselves, were shown to bind to CCN2. Regarding the interaction of CCN2 with some of them, various binding modules in the CCN2 molecule have been identified. Therefore, the numerous biological actions of CCN2 would depend on what kinds of binding partners and what levels of them are present in the microenvironment of different types of cells, as well as on the state of differentiation of these cells. Through this mechanism, CCN2 would orchestrate various signaling pathways, acting as a signal conductor to promote harmonized skeletal growth and regeneration.  相似文献   

3.
NOV/CCN3 is one of the founding members of the CCN (Cyr61 CTGF NOV) family. In the avian retina, CCN3 expression is mostly located within the central region of the inner nuclear layer. As retinal development progresses and this retinal layer differentiates and matures, CCN3 expression forms a dorsal–ventral and a central–peripheral gradient. CCN3 is produced by two glial cell types, peripapillary cells and Müller cells, as well as by horizontal, amacrine, and bipolar interneurons. In retinal neurons and Müller cell cultures, CCN3 expression is induced by activated BMP signaling, whereas Notch signaling decreases CCN3 mRNA and protein levels in Müller cells and has no effect in retinal neurons. In Müller cells, the CCN3 expression detected may thus result from a balance between the Notch and BMP signaling pathways. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

4.
5.
Previous work had suggested that recombinant CCN3 was partially inhibiting cell proliferation. Here we show that native CCN3 protein secreted into the conditioned medium of glioma transfected cells indeed induces a reduction in cell proliferation. Large amounts of CCN3 are shown to accumulate both cytoplasmically and extracellularly as cells reach high density, therefore highlighting new aspects on how cell growth may be regulated by CCN proteins. Evidence is presented establishing that the amount of CCN3 secreted into cell culture medium is regulated by post-translational proteolysis. As a consequence, the production of CCN3 varies throughout the cell cycle and CCN3 accumulates at the G2/M transition of the cycle. We also show that CCN3-induced inhibition of cell growth can be partially reversed by specific antibodies raised against a C-terminal peptide of CCN3. The use of several clones expressing various portions of CCN3 established that the CT module of CCN3 is sufficient to induce cell growth inhibition.  相似文献   

6.
7.
Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.  相似文献   

8.
We elucidate the role of CCN3/NOV, a member of the CCN family proteins, in osteoblast differentiation using MC3T3-E1 osteoblastic cells. Transduction with CCN3 adenovirus (AdCCN3) alone induced no apparent changes in the expression of osteoblast-related markers, whereas cotransduction with BMP-2 adenovirus (AdBMP-2) and AdCCN3 significantly inhibited the AdBMP-2-induced mRNA expression of Runx2, osterix, ALP, and osteocalcin. Immunoprecipitation-western analysis revealed that CCN3 associated with BMP-2. Compared to transduction with AdBMP-2 alone, cotransduction with AdBMP-2 and AdCCN3 attenuated the expression of phosphorylated Smad1/5/8 and the mRNA for Id1, Id2, and Id3. Transduction with AdCCN3 stimulated the expression of cleaved Notch1, the mRNA expression of Hes1 and Hey1/Hesr1, and the promoter activities of Hes1 and Hey1. The inhibitory effects of CCN3 on the expression of BMP-2-induced osteoblast-related markers were nullified in Hey1-deficient osteoblastic cells. These results indicate that CCN3 exerts inhibitory effects on BMP-2-induced osteoblast differentiation by its involvement of the BMP and Notch signaling pathways.  相似文献   

9.
Explant loading experiments were conducted to investigate the effect of load duration on proteoglycan synthesis. A compressive load of 0.1 MPa applied for 10 min was found to stimulate proteoglycan synthesis, while the same load applied for 20 h suppressed synthesis. This bimodal response suggests that the cells are responding to different mechanical stimuli as time progresses. A theoretical model has therefore been developed to describe the mechanical environment perceived by cells within soft hydrated tissues (e.g. articular cartilage) while the tissue is being loaded. The cells are modeled, using the biphasic theory, as fluid-solid inclusions embedded in and attached to a biphasic extracellular matrix of distinct material properties. A method of solution is developed which is valid for any axisymmetric loading configuration, provided that the cell radius, a, is small relative to the tissue height, h (i.e. h/a 1). A closed-form analytical solution for this inclusion problem is then presented for the confined compression configuration. Results from this model show that the mechanical environment in and around the cells is time dependent and inhomogeneous, and can be significantly influenced by differences in properties between the cell and the extracellular matrix.  相似文献   

10.
The CCN family of genes currently comprises six secreted proteins (designated CCN1–6 after Cyr61/CCN1; ctgf/CCN2; Nov/CCN3; WISP1/CCN4; WISP2/CCN5, WISP3/CCN6) with a similar mosaic primary structure. It is now well accepted that CCN proteins are not growth factors but matricellular proteins that modify signaling of other molecules, in particular those associated with the extracellular matrix. CCN proteins are involved in mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration of multiple cell types. Since their first identification as matricellular factors, the CCN proteins now figure prominently in a variety of major diseases and are now considered valid candidates for therapeutic targeting. Dissection of the molecular mechanisms governing the biological properties of these proteins is being actively pursued by an expanding network of scientists around the globe who will meet this year at the 5th International Workshop on the CCN family of Genes, organized by the International CCN Society (http://ccnsociety.com), home for an international cadre of collaborators working in the CCN field.  相似文献   

11.
CCN3/NOV activates the Notch signal through the carboxyl terminal cysteine-rich (CT) domain. CCN3 transfection to Kusa-A1 inhibited osteogenic differentiation and cell proliferation, which is accompanied by upregulation of Hes/Hey, Notch downstream targets, and p21, a CDK inhibitor. Upregulation of Hes/Hey and p21 was abrogated by the deletion of CT domain. Anti-proliferative activity of CCN3 was also abrogated by CT domain deletion whereas anti-osteogenic activity was not completely abrogated. We found that CT domain-deleted CCN3 still possesses antagonistic effect on BMP-2. These results suggest that CCN3 employs Notch and BMP pathways in anti-osteogenic activity while it inhibits cell proliferation uniquely by Notch/p21 pathway.  相似文献   

12.
Large articular cartilage defects have proven difficult to treat and often result in osteoarthritis of the affected joint. Cryopreservation of articular cartilage can provide an increased supply of tissues for osteochondral allograft but cryoprotective agents are required; however, few studies have been performed on the toxicity of these agents. This study was designed to determine the order of toxicity of five commonly used cryoprotectant agents as well as interactions that occur between them. Isolated porcine articular chondrocytes were exposed to individual cryoprotectant agents and combinations of these agents at 1 M and 3 M concentrations for 5 min and 120 min. Cell viability was determined using membrane integrity dyes and a metabolic activity assay. Subsequently, a regression analysis based study was undertaken to extract the maximum amount of information from this data. Results of this study demonstrated that all 1 M solutions were minimally toxic. The 3 M solutions demonstrated varying toxicity after 120 min. Ethylene glycol and glycerol were less toxic than propylene glycol, dimethyl sulfoxide, and formamide. Combinations of cryoprotectant agents were less toxic than single cryoprotectant agents at the same concentration. This is the most comprehensive study investigating cryoprotectant agent toxicity in articular chondrocytes and has resulted in important information regarding the order of toxicity and interactions that occur between these agents.  相似文献   

13.
CCN2 consists of 4 distinct modules that are conserved among various CCN family protein members. From the N-terminus, insulin-like growth factor binding protein (IGFBP), von Willebrand factor type C repeat (VWC), thrombospondin type 1 repeat (TSP1) and C-terminal cysteine-knot (CT) modules are all aligned tandem therein. The multiple functionality of CCN2 is thought to be enabled by the differential use of these modules when interacting with other molecules. In this study, we independently prepared all 4 purified module proteins of human CCN2, utilizing a secretory production system with Brevibacillus choshinensis and thus evaluated the cell biological effects of such single modules. In human umbilical vascular endothelial cells (HUVECs), VWC, TSP and CT modules, as well as a full-length CCN2, were capable of efficiently activating the ERK signal transduction cascade, whereas IGFBP was not. In contrast, the IGFBP module was found to prominently activate JNK in human chondrocytic HCS-2/8 cells, while the others showed similar effects at lower levels. In addition, ERK1/2 was modestly, but significantly activated by IGFBP and VWC in those cells. No single module, but a mixture of the 4 modules provoked a significant activation of p38 MAPK in HCS-2/8 cells, which was activated by the full-length CCN2. Therefore, the signals emitted by CCN2 can be highly differential, depending upon the cell types, which are thus enabled by the tetramodular structure. Furthermore, the cell biological effects of each module on these cells were also evaluated to clarify the relationship among the modules, the signaling pathways and biological outcomes. Our present results not only demonstrate that single CCN2 modules were potent activators of the intracellular signaling cascade to yield a biological response per se, while also providing new insight into the module-wise structural and functional relationship of a prototypic CCN family member, CCN2.  相似文献   

14.
During mammalian development, expression of the Nephroblastoma overexpressed gene (NOV/CCN3) is tightly regulated in skeletal muscles. Ex vivo, ectopic expression of NOV blocks myogenic differentiation. NOV also supports endothelial cell adhesion and angiogenesis through interactions with integrins. Integrins play fundamental roles during myogenesis. In this study, we show that NOV mediates adhesion and spreading of myoblasts. Myoblasts adhesion to NOV does not require proteoglycans and is dependent on integrin β1, whereas spreading involves another RGD-sensitive integrin. The C-Terminal part of NOV as well as full-length is able to support adhesion of myoblasts; in addition, both increase focal-adhesion kinase (FAK) phosphorylation. Furthermore, NOV is an adhesive substrate that, combined with FGF2 or IGF-1, promotes cell specific proliferation and survival, respectively, in a better way than fibronectin. Taken together, these results identify NOV as an adhesion substrate for myoblasts which, in concert with growth factors, could play a role in the physiology of muscle cells.  相似文献   

15.
CCN2 (connective tissue growth factor (CTGF/CCN2)) is a matricellular protein that utilizes integrins to regulate cell proliferation, migration and survival. The loss of CCN2 leads to perinatal lethality resulting from a severe chondrodysplasia. Upon closer inspection of Ccn2 mutant mice, we observed defects in extracellular matrix (ECM) organization and hypothesized that the severe chondrodysplasia caused by loss of CCN2 might be associated with defective chondrocyte survival. Ccn2 mutant growth plate chondrocytes exhibited enlarged endoplasmic reticula (ER), suggesting cellular stress. Immunofluorescence analysis confirmed elevated stress in Ccn2 mutants, with reduced stress observed in Ccn2 overexpressing transgenic mice. In vitro studies revealed that Ccn2 is a stress responsive gene in chondrocytes. The elevated stress observed in Ccn2−/− chondrocytes is direct and mediated in part through integrin α5. The expression of the survival marker NFκB and components of the autophagy pathway were decreased in Ccn2 mutant growth plates, suggesting that CCN2 may be involved in mediating chondrocyte survival. These data demonstrate that absence of a matricellular protein can result in increased cellular stress and highlight a novel protective role for CCN2 in chondrocyte survival. The severe chondrodysplasia caused by the loss of CCN2 may be due to increased chondrocyte stress and defective activation of autophagy pathways, leading to decreased cellular survival. These effects may be mediated through nuclear factor κB (NFκB) as part of a CCN2/integrin/NFκB signaling cascade.

Electronic supplementary material

The online version of this article (doi:10.1007/s12079-013-0201-y) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Nephroblastoma overexpressed gene encodes a matricellular protein (CCN3/NOV) of the CCN family, comprising CCN1 (CYR61), CCN2 (CTGF), CCN4 (WISP-1), CCN5 (WISP-2), and CCN6 (WISP-3). CCN proteins are involved in the regulation of mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration in multiple cell types. Compared to CCN2/CTGF, known as a profibrotic protein, the biological role of CCN3/NOV in liver fibrosis remains obscure. In this study we showed ccn3/nov mRNA to increase dramatically following hepatic stellate cell activation, reaching peak levels in fully transdifferentiated myofibroblasts. In models of experimental hepatic fibrosis, CCN3/NOV increased significantly at the mRNA and protein levels. CCN3/NOV was found mainly in non-parenchymal cells along the areas of tissue damage and repair. In the bile-duct ligation model, CCN3/NOV was localized mainly along portal tracts, while the repeated application of carbon tetrachloride resulted in CCN3/NOV expression mainly in the centrilobular areas. In contrast to CCN2/CTGF, the profibrotic cytokines platelet-derived growth factor-B and -D as well as transforming growth factor-β suppressed CCN3/NOV expression. In vitro, CCN3/NOV siRNA attenuated migration in the cirrhotic fat storing cell line CFSC well in line with in vivo findings that various types of cells expressing CCN3/NOV migrate into the area of tissue damage and regeneration. The suppression of CCN3/NOV enhanced expression of profibrotic marker proteins, such as α-smooth muscle actin, collagen type I, fibronectin, CCN2/CTGF and TIMP-1 in primary rat hepatic stellate cells and in CFSC. We further found that adenoviral overexpression of CCN2/CTGF suppressed CCN3/NOV expression, while the overexpression of CCN3/NOV as well as the suppression of CCN3/NOV by targeting siRNAs both resulted in enhanced CCN2/CTGF expression. These results indicate the complexity of CCN actions that are far beyond the classic Yin/Yang interplay.  相似文献   

18.
The CCN family of proteins consists of six members with conserved structural features. These proteins play several roles in the physiology and pathology of cells. Among the pathological roles of the CCN family, one of the most important and controversial ones is their role in the expansion and metastasis of cancer. Up to now a number of reports have described the possible role of each CCN family member independently. In this study, we comprehensively analyzed the roles of all six CCN family members in cell growth, migration and invasion of breast cancer cells in vitro and in vivo. As a result, we found the CCN2/CCN3 ratio to be a parameter that is associated with the metastatic phenotype of breast cancer cells that are highly metastatic to the bone. The same analysis with cell lines from oral squamous carcinomas that are not metastatic to the bone further supported our notion. These results suggest the functional significance of the interplay between CCN family members in regulating the phenotype of cancer cells.  相似文献   

19.
《Biomarkers》2013,18(8):714-720
Background: We investigated whether urinary mRNA of connective tissue growth factor (CCN2) and nephroblastoma overexpressed gene (CCN3) can provide clinical insight into the management of patients with nondiabetic CKD.

Methods: Urinary mRNA expression of CCN2 and CCN3 were measured by Real-time PCR in 35 CKD patients and 12 controls.

Results: Urinary mRNA of CCN2 and CCN3 were distinctively greater in CKDs than healthy controls. Urinary CCN3/CCN2 mRNA ratio correlated to the degree of glomerular histological changes in those who received renal biopsy.

Conclusion: Urinary CCN3/CCN2 mRNA ratio may be a useful noninvasive biomarker for evaluating patients with nondiabetic CKD prior to renal biopsy.  相似文献   

20.
Gap junctions form channels that allow exchange of materials between cells and are composed of transmembrane protein subunits called connexins. While connexins are believed to mediate cellular signaling by permitting intercellular communication to occur, there is also increasing evidence that suggest connexins may mediate growth control via a junction-independent mechanism. Connexin43 (Cx43) is the most abundant gap junction protein found in astrocytes, and gliomas exhibit reduced Cx43 expression. We have previously observed that restoration of Cx43 levels in glioma cells led to increased expression of CCN3 (NOV) proteins. We now report that overexpression of Cx43 in C6-glioma cells (C6-Cx43) also upregulates the expression of CCN1 (Cyr61). Both CCN1 and CCN3 belong to the Cyr61/Connective tissue growth factor/Nephroblastoma-overexpressed (CCN) family of secretory proteins. The CCN proteins are tightly associated with the extracellular matrix and have important roles in cell proliferation and migration. CCN1 promotes growth in glioma cells, as shown by the increased proliferation rate of CCN1-overexpressing C6 cells. In addition to its effect on cell growth, CCN1 also increased the motility of glioma cells in the presence of extracellular substrates such as fibronectin. Gliomas expressing high levels of Cx43 preferentially upregulated CCN3 which resulted in reduced growth rate. CCN3 could also be observed in Cx43 gap junction plaques in confluent C6-Cx43H culture at the stationary phase of their growth. Our results suggest that the dissimilar growth characteristics between high and low Cx43 expressors may be due to differential regulation of CCN3 by varying levels of Cx43.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号