首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The E5 protein of the bovine papillomavirus induces cellular transformation when transfected into NIH 3T3 cells, and the extent of focal transformation is enhanced by cotransfection with the epidermal growth factor (EGF) receptor (Martin et al., Cell 59:21-32, 1989). To determine whether E5 affects EGF:receptor interactions we analyzed the kinetics of 125I-EGF processing using a mathematical model that enabled us to evaluate rate constants for ligand association (ka), dissociation (kd), internalization (ke), recycling (kr), and degradation (kh). These rate constants were measured in NIH 3T3 cells transfected with the human EGF receptor (ER cells) and in cells transfected with both the EGF receptor and E5 (E5/ER cells). We found that the rate constant for 125I-EGF association ka was significantly decreased in E5/ER cells, but was apparently occupancy-independent in both cell lines. The 125I-EGF dissociation rate constant kd was significantly lower in E5 transformed cells, and increased with occupancy in both cell lines. This suggests that E5 alters the receptor before or during EGF binding so that ligand association is slower; however, once complexes are formed, EGF is bound more tightly to the receptor. Rate constants for internalization ke were also found to be occupancy-dependent, although at a given level of occupancy ke was similar for both cell lines. Also, there was no apparent effect of E5 on the recycling rate constant kr. The 125I-EGF degradation rate constant kh was 30% lower in E5 transformed cells, and was occupancy-independent. The overall effect of E5 is to stabilize intact EGF:receptor complexes which may alter mitogenic signaling of the receptor.  相似文献   

2.
We measured the kinetic parameters for interaction of epidermal growth factor (EGF) with fetal rat lung (FRL) cells under two sets of experimental conditions and applied sensitivity analysis to see which parameters were well-defined. In the first set of experiments (method 1), the kinetics of internalization and dissociation of radiolabeled EGF were measured with a temperature-shift protocol in medium initially devoid of free ligand. The initial concentration of radiolabeled EGF bound to the cell surface corresponded to levels of receptor occupancy ranging from approximately 200 receptors per cell to approximately 18,000 receptors per cell, a level at which EGF binding approaches saturation. In the second set of experiments (method 2), carried out at a constant temperature, we began with no surface-bound or internalized ligand. The initial free ligand concentration was varied from 0.2 to 50 ng/mL. In both sets of experiments, we measured surface-bound, internalized, and free 125I-EGF as functions of time and evaluated the parameters of a mathematical model of endocytosis. Sensitivity analysis showed that three rate constants were well-defined in this combination of two experimental approaches: ke, the endocytic rate constant; ka, the association rate constant; and kd, the dissociation rate constant. The endocytic parameter ke was found to be independent of initial surface receptor occupancy (method 1); there was some indication that it increased with initial free ligand concentration in method 2. Neither kd nor ka was found to change with extent of initial surface receptor occupancy or initial free ligand concentration, respectively, a finding of significance, since diffusion theory predicts these parameters will vary with surface receptor occupancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We measured time-dependent concentration changes of human interferon-alpha 2a (IFN) and human tumor necrosis factor-alpha (TNF) bound at the plasma membrane and internalized by human lung alveolar carcinoma A549 cells in the presence of excess free ligand. Concentration changes for these two ligands were substantially different. We modified our compartmental kinetic model encompassing receptor synthesis and receptor loss (Myers, A. C., Kovach, J. S., and Vuk-Pavlovi?, S. (1987) J. Biol. Chem. 262, 6494-6499) to include receptor recycling. We solved analytically the equations of three variants of the model of receptor recycling. All parameters (rate constants) were identifiable when the data sets consisted of time-resolved concentrations of IFN and TNF at the cell surface and internalized by cells. By least squares fitting we derived the best fit values for the first order rate constants for internalization of the ligand-receptor complex, receptor recycling, turnover of free receptors, elimination of the ligand from cells, and the rate of insertion of free receptors into the membrane. The best fit to data for interactions of cells with IFN was obtained without inclusion of the term for recycling of receptors to the membrane. The simplest model including receptor recycling was necessary and sufficient for the fit to the respective data for TNF. These results demonstrate that the contribution of receptor recycling to the metabolism of the ligand and the receptor can be quantitated by compartmental modeling. Receptor recycling does not contribute to the kinetics of Type I IFN receptor in A549 cells. In contrast, recycling contributes significantly to endocytosis mediated by the TNF receptor.  相似文献   

4.
W C Suh  S Leirmo  M T Record 《Biochemistry》1992,31(34):7815-7825
Comparative studies of the effects of Mg2+ vs Na+ and of acetate (OAc-) vs Cl- on the kinetics of formation and dissociation of E. coli RNA polymerase (E sigma 70)-lambda PR promoter open complexes have been used to probe the mechanism of this interaction. Composite second-order association rate constants ka and first-order dissociation rate constants kd, and their power dependences on salt concentration SKa (SKa identical to d log ka/d log [salt]) and Skd (Skd identical to d log kd/d log [salt]), were determined in MgCl2 and NaOAc to compare with the results of Roe and Record (1985) in NaCl. Replacement of NaCl by MgCl2 reduces the magnitude of Ska 2-fold (Ska = -11.9 +/- 1.1 in NaCl; Ska = -5.2 +/- 0.3 in MgCl2) and (by extrapolation) drastically reduces the magnitude of ka at any specified salt concentration (e.g., approximately 10(6)-fold at 0.2 M). Replacement of NaCl by NaOAc does not significantly affect Ska (Ska = -12.0 +/- 0.7 in NaOAc) and (by extrapolation) increased ka by approximately 80-fold at any fixed [Na+]. In the absence of Mg2+, replacement of NaCl by NaOAc is found to increase the half-life of the open complex by approximately 560-fold at fixed [Na+] without affecting Skd [Skd = 7.6 +/- 0.1 in NaOAc; in NaCl, Skd = 7.7 +/- 0.2 (Roe & Record, 1985)]. Replacement of NaCl by MgCl2 drastically reduces both Skd and the half-life of the open complex at any salt concentration below approximately 0.2 M. Strikingly, Skd = 0.4 +/- 0.1 in MgCl2, indicating that the net uptake of Mg2+ ions in the kinetically significant steps in dissociation of the open complex is much smaller than that expected by analogy with the uptake of approximately 8 Na+ ions in the corresponding steps in NaCl. In NaCl/MgCl2 mixtures, at a constant [NaCl] in the range 0.1-0.2 M, initial addition of MgCl2 (0.5 mM less than or equal to [MgCl2] less than or equal to 1 mM) increases the half-life of the open complex; further addition of MgCl2 causes the half-life to decrease, though the effect of [MgCl2] on kd is always less than that predicted by a simple competitive model. The observed effects of MgCl2 on Skd and kd differ profoundly from those expected from the behavior of kd and Skd in NaCl and NaOAc and indicate that the role of Mg2+ in dissociation is not merely that of a nonspecific divalent competitor with RNAP for interactions with DNA phosphates and of a DNA helix-stabilizer, both of which should cause kd to increase monotonically with increasing [Mg2+].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Four enol lactones, bearing phenyl or 1-naphthyl substituents on the alpha or beta positions [3-phenyl-6-methylenetetrahydro-2-pyranone (alpha Ph6H, IIc), 3-(1-naphthyl)-6-methylenetetrahydro-2-pyranone (alpha Np6H, IId), 4-phenyl-6-methylenetetrahydro-2-pyranone (beta Ph6H, IIIc), and 4-(1-naphthyl)-6-methylenetetrahydro-2-pyranone (beta Np6H, IIId)], available as pure R and S enantiomers, have been studied as alternate substrate inhibitors of chymotrypsin. Kinetic constants for substrate binding (Ks) and acylation (ka) were determined by a competitive substrate assay, using succinyl-L-Ala-L-Ala-L-Pro-L-Phe p-nitroanilide; the deacylation rate constant (kd) was determined by the proflavin displacement assay. All lactones undergo rapid acylation (ka varies from 17 to 170 min-1) that shows little enantioselectivity; there is, however, pronounced enantioselectivity in substrate binding for three of the lactones [Ks(R/S) = 40-110]. In each case it is the enantiomer with the S configuration that has the higher affinity. In all cases, deacylation rates are slow, and in two cases, acyl enzymes with half-lives of 4.0 and 12.5 h at pH 7.2, 25 degrees C, are obtained (for beta Ph6H and alpha Np6H, respectively). In these cases, high deacylation enantioselectivity is observed [kd(S/R) = 60-70], and the lactone more weakly bound as a substrate (R enantiomer) gives the more stable acyl enzyme. Two hypotheses, involving hindrance of the attack of water or an exchange of the ester and ketone carbonyl groups in the acyl enzyme, are advanced as possible explanations for the high stability of these acyl enzymes.  相似文献   

6.
S P Fay  R G Posner  W N Swann  L A Sklar 《Biochemistry》1991,30(20):5066-5075
We describe a general approach for the quantitative analysis of the interaction among fluorescent peptide ligands (L), receptors (R), and G proteins (G) using fluorescence flow cytometry. The scheme depends upon the use of commercially available fluorescent microbeads as standards to calibrate the concentration of fluorescent peptides in solution and the receptor number on cells in suspension. We have characterized a family of fluoresceinated formyl peptides and analyzed both steady-state and dynamic aspects of ligand formyl peptide-receptor interactions in digitonin-permeabilized human neutrophils. Detailed receptor-binding studies were performed with the pentapeptide N-formyl-Met-Leu-Phe-Phe-Lys-fluorescein. Equilibrium studies showed that GTP [S] caused a loss of binding affinity of approximately two orders of magnitude, from approximately 0.04 nM (LRG) to approximately 3 nM (LR), respectively. Kinetic studies revealed that this change in affinity was principally due to an increase in the dissociation rate constants from approximately 1 x 10(-3) s-1 (LRG) to approximately 1 x 10(-1) s-1 (LR). In contrast, the association rate constants in the presence and absence of guanine nucleotide (approximately 3 x 10(7) s-1 M-1) were statistically indistinguishable and close to the diffusion limit. In the presence of guanine nucleotide (LR), the kinetic data were adequately fit by a single-step reversible-binding model. In the absence of guanine nucleotides, not all receptors have rapid access to G to form the LRG ternary complex. Mathematically, those R that have rapid access to G are either precoupled to R or the association of G with R is fast compared to the association of L with R. The physiological consequences of coupling heterogeneity are discussed.  相似文献   

7.
Equilibria and rates were observed over the ranges 1-1600 atm, 3-10 mM Mg2+, at 60 mM NH4Cl, pH 7.5, 20 degrees C, by light scattering. The main reaction is accurately represented at all conditions by the following phenomenological equations. 30 S + 50 S = 70 S, KA70 = ka/kd = [70 S]/[30 S][50 S] The equilibrium constants obey simple rules: the volume of association, delta VA0, has the constant value 242 +/- 9 ml/mol, independent of pressure, at all Mg2+ concentrations; the derived values of log KA70 at 1 atm increase linearly with log [Mg2+] at a slope of 7.5. In contrast, the rate constants show a clear break at 6 mM Mg2+: below 6 mM, log ka decreases with pressure with a delta Va of 105 +/- 9 ml/mol and increases with log [Mg2+] at a slope of 4.9; above 6 mM, these values are halved; a split can actually be seen at 6 mM Mg2+, near 500 atm. The usual two-step mechanism for second order reactions in solution, which would insert a 70 S' species, either an encounter complex or a true low concentration steady state intermediate, into the above equation can accommodate these results: as [Mg2+] increases, the rate of transformation of 70 S' into 70 S finally predominates over the rate of dissociation of 70 S' into subunits. The bulk of the pressure effects and all of the [Mg2+] dependence arise from the progressive increase in delta GA0 (electrostatic) that occurs when 30, 50, and 70 S particles all lose equivalent fractions of their internal Mg2+ in response to increases in pressure or decreases in [Mg2+].  相似文献   

8.
Escherichia coli ribosomal protein S1 is composed of six repeating homologous oligonucleotide/oligosaccharide-binding fold (OB folds). In trans-translation, S1 plays a role in delivering transfer-messenger RNA (tmRNA) to stalled ribosomes. The second OB fold of S1 was found to be protected from tryptic digestion in the presence of tmRNA. Truncated S1 mutant Delta2, in which the first and second OB folds were deleted, showed significantly decreased tmRNA-binding activity. Furthermore, the E. coli S1 homolog (BS1) from Bacillus subtilis, which corresponds to the four C-terminal OB folds of E. coli S1, showed no interaction with E. coli tmRNA, as judged by the results of a gel shift assay. Surface plasmon resonance analysis revealed that mutant Delta2 and BS1 had decreased association rate constants (ka, 0.59 x 10(3) M(-1).S(-1); and ka, 1.89 x 10(3) M(-1).S(-1)), while they retained the respective dissociation rate constants (kd, 0.67 x 10(-3) S(-1); and kd, 0.53 x 10(-3) S(-1)), in comparison with wild-type protein S1 (ka, 3.32 x 10(3) M(-1).S(-1); and kd, 0.56 x 10(-3) S(-1)). These results suggest that the second OB fold in protein S1 is essential for the recognition of tmRNA, while the four C-terminal OB folds play a role in stabilizing the S1-tmRNA complex.  相似文献   

9.
A novel analytical method based on the exact solution of equations of kinetics of unbranched first- and pseudofirst-order mechanisms is developed for application to the process of Esigma70 RNA polymerase (R)-lambdaPR promoter (P) open complex formation, which is described by the minimal three-step mechanism with two kinetically significant intermediates (I1, I2), [equation: see text], where the final product is an open complex RPo. The kinetics of reversible and irreversible association (pseudofirst order, [R] > [P]) to form long-lived complexes (RPo and I2) and the kinetics of dissociation of long-lived complexes both exhibit single exponential behavior. In this situation, the analytical method provides explicit expressions relating observed rate constants to the microscopic rate constants of mechanism steps without use of rapid equilibrium or steady-state approximations, and thereby provides a basis for interpreting the composite rate constants of association (ka), isomerization (ki), and dissociation (kd) obtained from experiment for this or any other sequential mechanism of any number of steps. In subsequent papers, we apply this formalism to analyze kinetic data obtained in the reversible and irreversible binding regimes of Esigma70 RNA polymerase (R)-lambdaP(R) promoter (P) open complex formation.  相似文献   

10.
H S Wiley  D D Cunningham 《Cell》1981,25(2):433-440
We demonstrate that the interaction of polypeptide ligands with cells under physiological conditions can be described by a set of steady state equations. These equations include four new rate constants: Vr, the rate of insertion of receptors into the cell membrane; Ke, the endocytotic rate constant of occupied receptors; Kt, the turnover rate constant of unoccupied receptors; and Kh, the rate constant of hydrolysis of internalized ligand. Several simple procedures are described for determining these constants. In experiments in which epidermal growth factor and human fibroblasts were used, the cell-ligand interactions followed the predictions of the steady state model. The utility of the steady state equations is demonstrated by establishing the kinetic basis of the commonly observed “down regulation” phenomenon and by quantitating the effect of methylamine on the endocytotic and degradation rates of epidermal growth factor. We also show that the slope of a “Scatchard plot” of steady state binding data is a complex constant including terms for the endocytotic rate of both occupied and unoccupied receptors. The X-intercept of such a plot is a function of the insertion rate of new receptors, the internalization rate of occupied receptors and the degradation rate of the internalized ligand. The steady state equations allow one to predict changes in cellular ligand binding resulting from alterations in the four rate constants. They also provide a foundation for computer simulations of ligand-cell interactions, which closely correspond to experimental data. These approaches should facilitate studies on the control of cellular activities by these polypeptide ligands.  相似文献   

11.
A quantitative analysis by flow cytometry of the rate and extent of endocytosis of ligands bound to the membrane immunoglobulins of mouse B-splenocytes is reported. The temperature dependence and the response to inhibitors of oxidative metabolism are described. Inhibitors of the cytoskeleton (cytochalasin B, vinblastine and colchicine) and of calmodulin (trifluoperazine) do not interfere with endocytosis at non-lethal doses. Similarly fetal calf serum does not modify the rate and extent of the process. Endocytosis occurs in a similar time range, but to a lesser extent, when the ligand is monovalent than when it cross-links the membrane immunoglobulins. Finally, it is shown that, within minutes after its internalization, the divalent ligand is found in an acidic environment, while the monovalent ligand is not. These results, in agreement with the model of receptor recycling, suggest that the divalent ligand-receptor complex is indeed internalized and captured in an acidic environment while the monovalent ligand-receptor complex is internalized and probably rapidly recycled back to the cell surface.  相似文献   

12.
We examined the kinetics of internalization, trafficking, and down-regulation of recombinant guanylyl cyclase/natriuretic peptide receptor-A (NPRA) utilizing stably transfected 293 cells expressing a very high density of receptors. After atrial natriuretic peptide (ANP) binding to NPRA, ligand-receptor complexes are internalized, processed intracellularly, and sequestered into subcellular compartments, which provided an approach to examining directly the dynamics of metabolic turnover of NPRA in intact cells. The translocation of ligand-receptor complexes from cell surface to intracellular compartments seems to be linked to ANP-dependent down-regulation of NPRA. Using tryptic proteolysis of cell surface receptors, it was found that approximately 40-50% of internalized ligand-receptor complexes recycled back to the plasma membrane with an apparent t(12) = 8 min. The recycling of NPRA was blocked by the lysosomotropic agent chloroquine, the energy depleter dinitrophenol, and also by low temperature, suggesting that recycling of the receptor is an energy- and temperature-dependent process. Data suggest that approximately 70-80% of internalized (125)I-ANP is processed through a lysosomal degradative pathway; however, 20-25% of internalized ligand is released intact into the cell exterior through an alternative mechanism involving an chloroquine-insensitive pathway. It is implied that internalization and processing of bound ANP-NPRA complexes may play an important role in mediating the biological action of hormone and the receptor protein. In retrospect, this could occur at the level of receptor regulation or through the initiation of ANP mediated signals. It is envisioned that the endocytotic pathway of ligand-receptor complexes of ANP-NPRA would lead to termination and/or diminished responsiveness of ANP in target cells.  相似文献   

13.
Ligands can be captured by a surface target through either direct bulk diffusion or surface diffusion following reversible adsorption to the surface. We have solved a steady state boundary value problem for a perfect sink disk target in the surface, taking into account bulk and surface diffusion coefficients D and Ds and adsorption/desorption kinetic rate constants ka and kd at non-target regions. Solutions have been successfully found by numerical computation. The results show that the rate of capture from the surface depends non-linearly on Ds, D, ka, kd and geometrical dimensions. In particular, we demonstrate that not only is the non-target region equilibrium constant Keq (= ka/kd) important in determining the rate of capture from the surface, but so are the kinetic rate constants ka and kd separately. In all cases, the surface adsorption/diffusion combination enhances the total rate of capture. The results should be useful for predicting reaction rates of biological membrane bound receptor clusters and substrate-immobilized enzymes.  相似文献   

14.
Abstract

Frequently during the course of binding to a receptor, ligand is degraded. In some preparations receptor is degraded. And with isolated cell preparations, ligand and/or receptor may be internalized. Here we present a mathematical model in which the binding and other reactions are combined. The resulting set of differential equations is solved numerically to simulate association curves and the resulting values of bound and free ligand are used to construct Scatchard plots. Where non-ideal conditions exist, the Scatchard plots are generally curvilinear. Dependence of this curvilinearity - on time of measurement of free and bound ligand, on degradation and internalization of ligand, and on degradation and internalization of receptor - is shown. Equilibrium constants derived from the Scatchard plots are generally incorrect but the derived receptor concentration is often correct. The simulations suggest experimental possibilities for distinction among the several side reactions in ligand-receptor binding systems.  相似文献   

15.
We have obtained expression of the beta-N-acetylglucosamine-binding receptor from chicken hepatocytes in Xenopus oocytes by injecting mRNA synthesized in vitro from a full length cDNA cloned into an expression vector (Mellow et al: J. Biol Chem 263: 5468-5473, 1988). Immunoprecipitation of the receptor after labeling of oocytes with [35S]-methionine for times ranging from 6 to 72 h revealed 4-5 closely spaced bands of 25-30 kDa after SDS-PAGE. Although these bands were largely resistant to endoglycosidase H cleavage, endoglycosidase F reduced the size of all bands to a single species at 23-24 kDa, indicating that they resulted from heterogeneity in glycosylation of a single polypeptide. Incubation of oocytes expressing this receptor with [125I]-GlcNAc-BSA resulted in 1.8 to 10 x higher levels of cell-associated ligand in mRNA-injected vs. water-injected control oocytes, 2-35% of cell-associated counts was removed by EGTA rinse at 20 degrees C, suggesting that most ligand was inaccessible (presumably intracellular). Immunoprecipitation of sucrose gradient fractions detected receptor molecules predominantly in a light organelle at 1.09-1.12 g/cc (the density of early endosomes and plasma membrane vesicles), with no evidence of the receptor in much heavier yolk platelet fractions even in the presence of ligand. In contrast, internalized [125I]-GlcNAc-BSA was found either at the top of the gradients or in organelles at 1.09-1.17 g/cc and in yolk platelets. TCA precipitation indicated that much intracellular ligand was degraded to acid-soluble fragments. Addition of vitellogenin (the yolk protein precursor) to the medium together with the [125I]-GlcNAc-BSA shifted much of the ligand into yolk platelets. These data indicate that the chicken glycoprotein receptor expressed in oocytes mediates binding and internalization of this ligand into an organelle in which ligand-receptor dissociation occurs, allowing for separation of these two molecules into different compartments. The behavior of ligand in Xenopus oocytes expressing the chicken receptor closely resembles its behavior in hepatocytes.  相似文献   

16.
Previously we reported that internalized ligand-receptor complexes are transported within the alveolar macrophage at a rate that is independent of the ligand and/or receptor but is dependent on the endocytic apparatus (Ward, D. M., R. S. Ajioka, and J. Kaplan. 1989. J. Biol. Chem. 264:8164-8170). To probe the mechanism of intracellular vesicle transport, we examined the ability of vesicles internalized at different times to fuse. The mixing of ligands internalized at different times was studied using the 3,3'-diaminobenzidine/horseradish peroxidase density shift technique. The ability of internalized vesicles to fuse was dependent upon their location in the endocytic pathway. When ligands were administered as tandem pulses a significant amount of mixing (20-40%) of vesicular contents was observed. The pattern of mixing was independent of the ligands employed (transferrin, mannosylated BSA, or alpha macroglobulin), the order of ligand addition, and temperature (37 degrees C or 28 degrees C). Fusion was restricted to a brief period immediately after internalization. The amount of fusion in early endosomes did not increase when cells, given tandem pulses, were chased such that the ligands further traversed the early endocytic pathway. Little fusion, also, was seen when a chase was interposed between the two ligand pulses. The temporal segregation of vesicle contents seen in early endosomes was lost within late endosomes. Extensive mixing of vesicle contents was observed in the later portion of the endocytic pathway. This portion of the pathway is defined by the absence of internalized transferrin and is composed of ligands en route to lysosomes. Incubation of cells in iso-osmotic medium in which Na+ was replaced by K+ inhibited movement of internalized ligands to the lysosome, resulting in ligand accumulation within the late endocytic pathway. The accumulation of ligand was correlated with extensive mixing of sequentially internalized ligands. Although significant amounts of ligand degradation were observed, this compartment was devoid of conventional lysosomal markers such as acid glycosidases. These results indicate changing patterns of vesicle fusion within the endocytic pathway, with a complete loss of temporal ligand segregation in a prelysosomal compartment.  相似文献   

17.
Measurements characterizing electron transfer from a photoexcited zinc protoporphyrin triplet (3ZnP) to a ferriheme electron acceptor within the [alpha 1,beta 2] electron-transfer complex of [FeIII,Zn] hybrid hemoglobins are reported. Analytical results demonstrate that the hybrids studied are pure, homogeneous proteins with 1:1 ZnP:FeP content. Within the T quaternary structure adopted by these hybrids, the optical spectrum of a FeIIIP is perturbed by the protein environment. Room temperature kinetic studies of the rate of 3ZnP decay as a function of the heme oxidation and ligation state demonstrate that quenching of 3ZnP by FeIII(H2O)P occurs by long-range intramolecular electron transfer with rate constant kt = 100 (+/- 10) s-1 and is not complicated by spin-quenching or energy-transfer processes; results are the same for alpha(Zn) and beta(Zn) hybrids. Replacement of H2O as a ligand to the ferriheme changes the 3ZnP----FeIIIP electron-transfer rate constant, kt, which demonstrates that electron transfer, not conformational conversion, is rate limiting. However, the trend is not readily explained by simple considerations of spin-state and bonding geometry: kt decreases in the order imidazole greater than H2O greater than F- approximately CN- approximately N3-. The reverse electron-transfer process FeIIP----ZnP+ has not been observed directly but has been shown to be much more rapid, with rate constant kb greater than 10(3) s-1, consistent with the possible importance of "hole" superexchange in electron tunneling within protein complexes.  相似文献   

18.
1. The pH-dependence is considered of a reaction between E and S that proceeds through an intermediate ES under "Briggs-Haldane' conditions, i.e. there is a steady state in ES and [S]o greater than [E]T, where [S]o is the initial concentration of S and [E]T is the total concentration of all forms of E. Reactants and intermediates are assumed to interconvert in three protonic states (E equilibrium ES; EH equilibrium EHS; EH2 equilibrium EH2S), but only EHS provides products by an irreversible reaction whose rate constant is kcat. Protonations are assumed to be so fast that they are all at equilibrium. 2. The rate equation for this model is shown to be v = d[P]/dt = (kcat.[E]T[S]o/A)/[(KmBC/DA) + [S]o], where Km is the usual assembly of rate constants around EHS and A-D are functions of the form (1 + [H]/K1 + K2/[H]), in which K1 and K2 are: in A, the molecular ionization constants of ES; in B, the analogous constants of E; in C and D, apparent ionization constants composed of molecular ionization constants (of E or ES) and assemblies of rate constants. 3. As in earlier treatments of this type of reaction which involve either the assumption that the reactants and intermediate are in equilibrium or the assumption of Peller & Alberty [(1959) J. Am. Chem. Soc. 81, 5907-5914] that only EH and EHS interconvert directly, the pH-dependence of kcat. is determined only by A. 4. The pH-dependence of Km is determined in general by B-C/A-D, but when reactants and intermediate are in equilibrium, C identical to D and this expression simplifies to B/A. 5. The pH-dependence of kcat./Km, i.e. of the rate when [S]o less than Km, is not necessarily a simple bell-shaped curve characterized only by the ionization constants of B, but is a complex curve characterized by D/B-C. 6. Various situations are discussed in which the pH-dependence of kcat./Km is determined by assemblies simpler than D/B-C. The special situation in which a kcat./Km-pH profile provides the molecular pKa values of the intermediate ES complex is delineated.  相似文献   

19.
The equilibrium binding, kinetics of ligand-receptor interactions, and biological activity of endothelin-1 and -2 have been studied in Swiss 3T3 fibroblasts. Scatchard analyses of saturation binding data for ET-1 and -2, performed at 4 degrees C to prevent internalization of the occupied receptor, revealed similar affinity constants and numbers of binding sites for endothelin-1 and -2. Experiments designed to determine ligand-induced effects on 45Ca efflux demonstrated no qualitative or quantitative differences between the two endothelin isoforms. In contrast, kinetic studies resulted in different rates of dissociation for the two isoforms and different extents of dissociation. Specifically, only 40% of the bound [125I]endothelin-1 was dissociated at 4 h following the addition of excess unlabeled ligand, whereas 85-90% of the bound [125I]endothelin-2 was dissociated under the same conditions. Endothelin-1 and -2 also differed in the percent of specific cell-associated ligand bound after a 2 h incubation at 37 degrees C following an initial equilibration at 4 degrees C. The differences in dissociation rates and association or internalization rates at 37 degrees C are the first data that differentiate between the two isoforms. It is suggested that isoform-specific differences in the rate of dissociation from cell surface endothelin receptors influence the level of cell-associated endothelin and may be important in determining physiologic responses in vivo.  相似文献   

20.
Tryptophanyl-tRNA synthetase catalyzed formation of Trp-tRNA(Trp) has been studied by mixing tRNA(Trp) with a preformed bis(tryptophanyl adenylate)-enzyme complex in the 0-60-ms time range, on a quenched-flow apparatus. Analyzing the data gives an association rate constant ka = (1.22 +/- 0.47) X 10(8) M-1 S-1, a dissociation rate constant kd = 143 +/- 73 S-1, and a dissociation constant Kd = 1.34 +/- 0.80 microM for tRNA(Trp). The maximum rate constant of tryptophan transfer to tRNA(Trp) is kt = 33 +/- 3 S-1. When starting the aminoacylation reaction with a mono(tryptophanyl adenylate)-enzyme complex, one obtains different kinetic profiles than when using a bis(tryptophanyl adenylate)-enzyme complex. Over a 0-400-ms time range, the monoadenylate-enzyme complex yields an apparent first-order reaction, while the bis-adenylate-enzyme complex yields a biphasic aminoacylation of tRNA(Trp). Analysis of Trp-tRNA(Trp) formation from both complexes according to simple reaction schemes shows that the dissociation of tRNA(Trp) from an enzyme subunit carrying no adenylate is 6.9-fold slower than from an enzyme subunit carrying an adenylate. The apparent rate constant of dissociation of nascent tryptophanyl-tRNA(Trp) is 4.9 S-1 in the absence of free tryptophan, which is much slower than its rate of formation (33 S-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号