首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was to determine whether individual rotavirus capsid proteins could stimulate protection against rotavirus shedding in an adult mouse model. BALB/c mice were intranasally or intramuscularly administered purified Escherichia coli-expressed murine rotavirus strain EDIM VP4, VP6, or truncated VP7 (TrVP7) protein fused to the 42.7-kDa maltose-binding protein (MBP). One month after the last immunization, mice were challenged with EDIM and shedding of rotavirus antigen was measured. When three 9-microg doses of one of the three rotavirus proteins fused to MBP were administered intramuscularly with the saponin adjuvant QS-21, serum rotavirus immunoglobulin G (IgG) was induced by each protein. Following EDIM challenge, shedding was significantly (P = 0.02) reduced (i.e., 38%) in MBP::VP6-immunized mice only. Three 9-micrograms doses of chimeric MBP::VP6 or MBP::TrVP7 administered intranasally with attenuated E. coli heat-labile toxin LT(R192G) also induced serum rotavirus IgG, but MBP::VP4 immunization stimulated no detectable rotavirus antibody. No protection against EDIM shedding was observed in the MBP::TrVP7-immunized mice. However, shedding was reduced 93 to 100% following MBP::VP6 inoculation and 56% following MBP::VP4 immunization relative to that of controls (P = <0.001). Substitution of cholera toxin for LT(R192G) as the adjuvant, reduction of the number of doses to 1, and challenge of the mice 3 months after the last immunization did not reduce the level of protection stimulated by intranasal administration of MBP::VP6. When MBP::VP6 was administered intranasally to B-cell-deficient microMt mice that made no rotavirus antibody, shedding was still reduced to <1% of that of controls. These results show that mice can be protected against rotavirus shedding by intranasal administration of individual rotavirus proteins and that this protection can occur independently of rotavirus antibody.  相似文献   

2.
Rotavirus vaccines are delivered early in life, when the immune system is immature. To determine the effects of immaturity on responses to candidate vaccines, neonatal (7 days old) and adult mice were immunized with single doses of either Escherichia coli-expressed rotavirus VP6 protein and the adjuvant LT(R192G) or live rhesus rotavirus (RRV), and protection against fecal rotavirus shedding following challenge with the murine rotavirus strain EDIM was determined. Neonatal mice immunized intranasally with VP6/LT(R192G) were unprotected at 10 days postimmunization (dpi) and had no detectable rotavirus B-cell (antibody) or CD4(+) CD8(+) T-cell (rotavirus-inducible, Th1 [gamma interferon and interleukin-2 {IL-2}]-, Th2 [IL-5 and IL-4]-, or ThIL-17 [IL-17]-producing spleen cells) responses. However, by 28 and 42 dpi, these mice were significantly (P >or= 0.003) protected and contained memory rotavirus-specific T cells but produced no rotavirus antibody. In contrast, adult mice were nearly fully protected by 10 dpi and contained both rotavirus immunoglobulin G and memory T cells. Neonates immunized orally with RRV were also less protected (P=0.01) than adult mice by 10 dpi and produced correspondingly less rotavirus antibody. Both groups contained few rotavirus-specific memory T cells. Protection levels by 28 dpi for neonates or adults were equal, as were rotavirus antibody levels. This report introduces a neonatal mouse model for active protection studies with rotavirus vaccines. It indicates that, with time, neonatal mice develop full protection after intranasal immunization with VP6/LT(R192G) or oral immunization with a live heterologous rotavirus and supports reports that protection depends on CD4(+) T cells or antibody, respectively.  相似文献   

3.
Intranasal immunization of mice with a chimeric VP6 protein and the mucosal adjuvant Escherichia coli heat labile toxin LT(R192G) induces nearly complete protection against murine rotavirus (strain EDIM [epizootic diarrhea of infant mice virus]) shedding for at least 1 year. The aim of this study was to identify the protective lymphocytes elicited by this new vaccine candidate. Immunization of mouse strains lacking one or more lymphocyte populations revealed that protection was dependent on alphabeta T cells but mice lacking gammadelta T cells and B cells remained fully protected. Furthermore, depletion of CD8 T cells in immunized B-cell-deficient mice before challenge resulted in no loss of protection, while depletion of CD4 T cells caused complete loss of protection. Therefore, alphabeta CD4 T cells appeared to be the only lymphocytes required for protection. As confirmation, purified splenic T cells from immunized mice were intraperitoneally injected into Rag-2 mice chronically infected with EDIM. Transfer of 2 x 10(6) CD8 T cells had no effect on shedding, while transfer of 2 x 10(5) CD4 T cells fully resolved shedding in 7 days. Interestingly, transfer of naive splenic CD4 T cells also resolved shedding but more time and cells were required. Together, these results establish CD4 T cells as effectors of protection against rotavirus after intranasal immunization of mice with VP6 and LT(R192G).  相似文献   

4.
The ability to elicit protective immune responses after intranasal immunization with rotavirus particles, either with or without the attenuated Escherichia coli heat-labile enterotoxin LT(R192G) as an adjuvant, was examined in the adult mouse model. BALB/c mice were administered one or two inoculations of psoralen/UV-inactivated, triple-layered (tl) or double-layered (dl) purified rotavirus particles. Four weeks after immunization, mice were challenged with the murine rotavirus strain EDIM, and the shedding of rotavirus antigen was quantified. Rotaviruses used for immunization included EDIM and heterotypic simian (RRV), bovine (WC3), and human (89-12) strains. tl EDIM stimulated both systemic and intestinal rotavirus antibody responses and complete protection with as little as one 1-microgram dose. Inclusion of LT(R192G) (10 micrograms) significantly increased rotavirus antibody responses and reduced antigen concentrations needed for full protection. Both dl EDIM and heterotypic dl and tl particles stimulated protection, but they did so less than tl EDIM at comparable concentrations, either with or without LT(R192G). When B-cell-deficient microMt mice were immunized with tl EDIM particles, protection was reduced to levels similar to those induced with dl EDIM and heterotypic particles in BALB/c mice. However, dl EDIM particles induced similar levels of protection in both mouse strains. The protection stimulated by tl or dl EDIM particles was not diminished by CD8 cell depletion prior to immunization in either strain of mice. These results indicate that tl EDIM induced immunity at least partially through responses to its outer capsid proteins, presumably by stimulation of serotype-specific neutralizing antibody. In contrast, the other particles stimulated protection primarily by an antibody-independent mechanism. Finally, depletion of CD8 cells had no effect on protection by either mechanism.  相似文献   

5.
The purpose of this study was to determine which regions of the VP6 protein of the murine rotavirus strain EDIM are able to elicit protection against rotavirus shedding in the adult mouse model following intranasal (i.n.) immunization with fragments of VP6 and a subsequent oral EDIM challenge. In the initial experiment, the first (fragment AB), middle (BC), or last (CD) part of VP6 that was genetically fused to maltose-binding protein (MBP) and expressed in Escherichia coli was examined. Mice (BALB/c) immunized with two 9-microg doses of each of the chimeras and 10 microg of the mucosal adjuvant LT(R192G) were found to be protected against EDIM shedding (80, 92, and nearly 100% reduction, respectively; P 相似文献   

6.
We have shown that rotavirus 2/6 viruslike particles composed of proteins VP2 and VP6 (2/6-VLPs) administered to mice intranasally with cholera toxin (CT) induced protection from rotavirus challenge, as measured by virus shedding. Since it is unclear if CT will be approved for human use, we evaluated the adjuvanticity of Escherichia coli heat-labile toxin (LT) and LT-R192G. Mice were inoculated intranasally with 10 μg of 2/6-VLPs combined with CT, LT, or LT-R192G. All three adjuvants induced equivalent geometric mean titers of rotavirus-specific serum antibody and intestinal immunoglobulin G (IgG). Mice inoculated with 2/6-VLPs with LT produced significantly higher titers of intestinal IgA than mice given CT as the adjuvant. All mice inoculated with 2/6-VLPs mixed with LT and LT-R192G were totally protected (100%) from rotavirus challenge, while mice inoculated with 2/6-VLPs mixed with CT showed a mean 91% protection from challenge. The availability of a safe, effective mucosal adjuvant such as LT-R192G will increase the practicality of administering recombinant vaccines mucosally.  相似文献   

7.
We are developing rotavirus vaccines based on the VP6 protein of the human G1P[8] [corrected] [J. Virol. 73 (1999) 7574] CJN strain of rotavirus. One prototype candidate consisting of MBP::VP6::His6, a chimeric protein of maltose-binding protein, VP6 and hexahistidine, was expressed mainly as truncated polypeptides in Escherichia coli BL21(DE3) cells. A possible reason for this extensive truncation is the high frequencies of rare bacterial codons within the rotavirus VP6 gene. Expression of truncated recombinant VP6 was found to be reduced, and expression of complete VP6 protein was simultaneously increased, when the protein was expressed in Rosetta(DE3)pLacI E. coli cells that contain increased amounts of transfer RNAs for a selection of rare codons. The same observation was made when a synthetic codon-optimized CJN-VP6 gene was expressed in E. coli BL21 or Rosetta cells. To increase protein recovery, recombinant E. coli cells were treated with 8M urea. Denatured, full-length MBP::VP6::His6 protein was then purified and used for intranasal vaccination of BALB/c mice (2 doses administered with E. coli heat-labile toxin LT(R192G) as adjuvant). Following oral challenge with the G3P[16] [corrected] [J. Virol. 76 (2002) 560] EDIM strain of murine rotavirus, protection levels against fecal rotavirus shedding were comparable (P>0.05) between groups of mice immunized with denatured codon-optimized or native (not codon-optimized) immunogen with values ranging from 87 to 99%. These protection levels were also comparable to those found after immunization with non-denatured CJN VP6. Thus, expression of complete rotavirus VP6 protein was greatly enhanced by codon optimization, and the protection elicited was not affected by denaturation of recombinant VP6.  相似文献   

8.
A baculovirus-expressed VP4 protein derived from the simian rhesus rotavirus (RRV) was used to parenterally immunize murine dams. VP4-immunized dams developed high levels of neutralizing antibodies against RRV and low levels of cross-reactive neutralizing antibodies against human strains Wa, ST3, and S2 and animal strains SA-11, NCDV, and Eb. Newborn mice suckled on VP4-immunized dams were protected against a virulent challenge dose of the simian strain RRV and against murine rotavirus Eb. The cross-reactive nature of the serum-neutralizing response generated by VP4 immunization and the protective efficacy of the immunization suggest that recombinant-expressed VP4 proteins should be considered as viable vaccine candidates.  相似文献   

9.
To evaluate whether the rectal route of immunization may be used to provide appropriate protection against enteric pathogens such as rotaviruses (RV), we studied the antibody response and the protection induced by rectal immunization of mice with RV virus-like particles (VLP). For this purpose, 6-week-old BALBc mice were rectally immunized twice with RV 8-2/6/7-VLP derived from the bovine RV RF81 strain either alone or combined with various adjuvants including four toxins [cholera toxin (CT) and three attenuated Escherichia coli-derived heat-labile toxins (LTs), LT(R192G), LT(R72), and LT(K63)] and two Toll-like receptor-targeting adjuvants (CpG and resiquimod). Six weeks after the second immunization, mice were challenged with murine RV strain ECw. RV VLP administered alone were not immunogenic and did not protect mice against RV challenge. By contrast, RV VLP combined with any of the toxin adjuvants were immunogenic (mice developed significant titers of anti-RV immunoglobulin A [IgA] in both serum and feces and of anti-RV IgG in serum) and either efficiently induced complete protection of the mice (no detectable fecal virus shedding) or, for LT(K63), reduced the amount of fecal virus shedding after RV challenge. When combined with RV VLP, CpG and resiquimod failed to achieve protection, although CpG efficiently induced an antibody response to RV. These results support the consideration of the rectal route for the development of new immunization strategies against RV infection. Rectal delivery of a VLP-based vaccine might allow the use of adjuvants less toxic than, but as efficient as, CT.  相似文献   

10.
DNA vaccines are usually given by intramuscular injection or by gene gun delivery of DNA-coated particles into the epidermis. Induction of mucosal immunity by targeting DNA vaccines to mucosal surfaces may offer advantages, and an oral vaccine could be effective for controlling infections of the gut mucosa. In a murine model, we obtained protective immune responses after oral immunization with a rotavirus VP6 DNA vaccine encapsulated in poly(lactide-coglycolide) (PLG) microparticles. One dose of vaccine given to BALB/c mice elicited both rotavirus-specific serum antibodies and intestinal immunoglobulin A (IgA). After challenge at 12 weeks postimmunization with homologous rotavirus, fecal rotavirus antigen was significantly reduced compared with controls. Earlier and higher fecal rotavirus-specific IgA responses were noted during the peak period of viral shedding, suggesting that protection was due to specific mucosal immune responses. The results that we obtained with PLG-encapsulated rotavirus VP6 DNA are the first to demonstrate protection against an infectious agent elicited after oral administration of a DNA vaccine.  相似文献   

11.
Clearance of chronic murine rotavirus infection in SCID mice can be demonstrated by adoptive transfer of immune CD8+ T lymphocytes from histocompatible donor mice immunized with a murine homotypic rotavirus (T. Dharakul, L. Rott, and H.B. Greenberg, J. Virol 64:4375-4382, 1990). The present study focuses on the protein specificity and heterotypic nature of cell-mediated clearance of chronic murine rotavirus infection in SCID mice. Heterotypic cell-mediated clearance was demonstrated in SCID mice infected with EDIM (murine) rotavirus after adoptive transfer of CD8+ T lymphocytes from BALB/c mice that were immunized with a variety of heterologous (nonmurine) rotaviruses including Wa (human, serotype 1), SA11 and RRV (simian, serotype 3), and NCDV and RF (bovine, serotype 6). This finding indicates the serotypic independence of T-cell-mediated rotavirus clearance. To further identify the rotavirus proteins that are capable of generating CD8+ T cells that mediate virus clearance, donor mice were immunized with SF-9 cells infected with a baculovirus recombinant expressing one of the following rotavirus proteins: VP1, VP2, NS53 (from RF), VP4, VP7, NS35 (from RRV), VP6, and NS28 (from SA11). SCID mice stopped shedding rotavirus after receiving CD8+ T cells from mice immunized with VP1, VP4, VP6, and VP7 but not with VP2, NS53, NS35, NS28, or wild-type baculovirus. These results suggest that heterotypic cell-mediated clearance of rotavirus in SCID mice is mediated by three of the major rotavirus structural proteins and by a putative polymerase protein.  相似文献   

12.
We have evaluated the immunogenicity and protective efficacy of rotavirus subunit vaccines administered by mucosal routes. Virus-like particles (VLPs) produced by self-assembly of individual rotavirus structural proteins coexpressed by baculovirus recombinants in insect cells were the subunit vaccine tested. We first compared the immunogenicities and protective efficacies of VLPs containing VP2 and VP6 (2/6-VLPs) and G3 2/6/7-VLPs mixed with cholera toxin and administered by oral and intranasal routes in the adult mouse model of rotavirus infection. VLPs administered orally induced serum antibody and intestinal immunoglobulin A (IgA) and IgG. The highest oral dose (100 microg) of VLPs induced protection from rotavirus challenge (> or = 50% reduction in virus shedding) in 50% of the mice. VLPs administered intranasally induced higher serum and intestinal antibody responses than VLPs administered orally. All mice receiving VLPs intranasally were protected from challenge; no virus was shed after challenge. Since there was no difference in immunogenicity or protective efficacy between 2/6- and 2/6/7-VLPs, protection was achieved without inclusion of the neutralization antigens VP7 and VP4. We also tested the immunogenicities and protective efficacies of 2/6-VLPs administered intranasally without the addition of cholera toxin. 2/6-VLPs administered intranasally without cholera toxin induced lower serum and intestinal antibody titers than 2/6-VLPs administered with cholera toxin. The highest dose (100 microg) of 2/6-VLPs administered intranasally without cholera toxin resulted in a mean reduction in shedding of 38%. When cholera toxin was added, higher levels of protection were achieved with 10-fold less immunogen. VLPs administered mucosally offer a promising, safe, nonreplicating vaccine for rotavirus.  相似文献   

13.
Influenza vaccines that induce greater cross-reactive or heterosubtypic immunity (Het-I) may overcome limitations in vaccine efficacy imposed by the antigenic variability of influenza A viruses. We have compared mucosal versus traditional parenteral administration of inactivated influenza vaccine for the ability to induce Het-I in BALB/c mice and evaluated a modified Escherichia coli heat-labile enterotoxin adjuvant, LT(R192G), for augmentation of Het-I. Mice that received three intranasal (i.n.) immunizations of H3N2 vaccine in the presence of LT(R192G) were completely protected against lethal challenge with a highly pathogenic human H5N1 virus and had nasal and lung viral titers that were at least 2,500-fold lower than those of control mice receiving LT(R192G) alone. In contrast, mice that received three vaccinations of H3N2 vaccine subcutaneously in the presence or absence of LT(R192G) or incomplete Freund's adjuvant were not protected against lethal challenge and had no significant reductions in tissue virus titers observed on day 5 post-H5N1 virus challenge. Mice that were i.n. administered H3N2 vaccine alone, without LT(R192G), displayed partial protection against heterosubtypic challenge. The immune mediators of Het-I were investigated. The functional role of B and CD8+ T cells in Het-I were evaluated by using gene-targeted B-cell (IgH-6(-/-))- or beta2-microglobulin (beta2m(-/-))-deficient mice, respectively. beta2m(-/-) but not IgH-6(-/-) vaccinated mice were protected by Het-I and survived a lethal infection with H5N1, suggesting that B cells, but not CD8+ T cells, were vital for protection of mice against heterosubtypic challenge. Nevertheless, CD8+ T cells contributed to viral clearance in the lungs and brain tissues of heterotypically immune mice. Mucosal but not parenteral vaccination induced subtype cross-reactive lung immunoglobulin G (IgG), IgA, and serum IgG anti-hemagglutinin antibodies, suggesting the presence of a common cross-reactive epitope in the hemagglutinins of H3 and H5. These results suggest a strategy of mucosal vaccination that stimulates cross-protection against multiple influenza virus subtypes, including viruses with pandemic potential.  相似文献   

14.
We investigated the rotavirus-specific lymphocyte responses induced by intranasal immunization of adult BALB/c mice with rotavirus 2/6 virus-like particles (2/6-VLPs) of the bovine RF strain, by assessing the profile of cytokines produced after in vitro restimulation and serum and fecal antibody responses. The cytokines produced by splenic cells were first evaluated. Intranasal immunization with 50 microg of 2/6-VLPs induced a high serum antibody response, including immunoglobulin G1 (IgG1) and IgG2a, a weak fecal antibody response, and a mixed Th1/Th2-like profile of cytokines characterized by gamma interferon and interleukin 10 (IL-10) production and very low levels of IL-2, IL-4, and IL-5. Intranasal immunization with 10 microg of 2/6-VLPs coadministered with the mucosal adjuvants cholera toxin and Escherichia coli heat-labile toxin (LT) considerably enhanced the Th1/Th2-like response; notably, significant levels of IL-2, IL-4, and IL-5 were observed. Since rotavirus is an enteric pathogen, we next investigated the production of IL-2 and IL-5, as being representative of Th1 and Th2 responses, by Peyer's patch and mesenteric lymph node cells from mice immunized intranasally with 2/6-VLPs and LT. The results were compared to those obtained from splenic and cervical lymph node cells. We found that both cytokines were produced by cells from each of these lymphoid tissues. These results confirm the Th1/Th2-like response observed at the systemic level and show, on the assumption that T cells are the primary cells producing the cytokines after in vitro restimulation, that rotavirus-specific T lymphocytes are present in the intestine after intranasal immunization with 2/6-VLPs and LT.  相似文献   

15.
We determined the capacity of microcapsules formed by the combination of sodium alginate, an aqueous anionic polymer, and spermine hydrochloride, an aqueous cationic amine, to enhance protection against rotavirus challenge in mice. Adult BALB/c mice were orally inoculated with either free or microencapsulated rotavirus (simian rotavirus strain RRV) and challenged 6 or 16 weeks later with murine rotavirus strain EDIM. Virus-specific humoral immune responses were determined at the time of challenge and 4 days after challenge by intestinal fragment culture. We found that spermine-alginate microcapsules enhanced protection against challenge 16 weeks after immunization but not 6 weeks after immunization. Quantities of virus-specific immunoglobulin A produced by small intestinal lamina propria lymphocytes were correlated with the degree of protection against challenge afforded by spermine-alginate microcapsules. Possible mechanisms by which microcapsules enhance protection against rotavirus challenge are discussed.  相似文献   

16.
In an effort to develop a safe and effective vaccine against respiratory syncytial virus (RSV), we used Escherichia coli heat-labile toxin (LT), and LTK63 (an LT mutant devoid of ADP-ribosyltransferase activity) to elicit murine CD8(+) CTL responses to an intranasally codelivered CTL peptide from the second matrix protein (M2) of RSV. M2(82-90)-specific CD8(+) T cells were detected by IFN-gamma enzyme-linked immunospot and (51)Cr release assay in local and systemic lymph nodes, and their induction was dependent on the use of a mucosal adjuvant. CTL elicited by peptide immunization afforded protection against RSV challenge, but also enhanced weight loss. CTL-mediated viral clearance was not dependent on IFN-gamma since depletion using specific mAb during RSV challenge did not affect cellular recruitment or viral clearance. Depletion of IFN-gamma did, however, reduce the concentration of TNF detected in lung homogenates of challenged mice and largely prevented the weight loss associated with CTL-mediated viral clearance. Mice primed with the attachment glycoprotein (G) develop lung eosinophilia after intranasal RSV challenge. Mucosal peptide vaccination reduced pulmonary eosinophilia in mice subsequently immunized with G and challenged with RSV. These studies emphasize that protective and immunoregulatory CD8(+) CTL responses can be mucosally elicited using enterotoxin-based mucosal adjuvants but that resistance against viral infection may be accompanied by enhanced disease.  相似文献   

17.
During primary rotavirus (RV) infection, CD8+ T cells play an important role in viral clearance as well as providing partial protection against reinfection. CD4+ T cells are essential for maximal development of RV-specific intestinal immunoglobulin A. In this study, we took advantage of the cytokine flow cytometry technique to obtain a detailed map of H-2b- and H-2d-restricted CD8+ and CD4+ T-cell epitopes from the RV proteins VP6 and VP7. Three new CD8+ T-cell epitopes (H-2d and H-2b restricted) and one new CD4+ T-cell epitope (H-2d and H-2b restricted) were identified. Using these newly identified targets, we characterized the development and specificity of cellular immune responses in C57BL/6 and BALB/c mice during acute infection of infants and adults. We found that both the CD4+ and CD8+ responses peaked on days 5 to 7 after infection and then declined rapidly. Interestingly, both the response kinetics and tissue distributions were different when epitopes on VP6 and VP7 were compared. VP6 elicited a response which predominated in the intestine, while the response to VP7 was more systemic. Additionally, the T-cell responses elicited after homologous versus heterologous infection differed substantially. We found that during homologous infection, there was a greater response toward VP6 than that toward VP7, especially in the intestine, while after heterologous infection, this was not the case. Finally, in suckling mice, we found two peaks in the CD8 response on days 7 and 14 postinfection, which differed from the single peak found in adults and likely mimics the biphasic pattern of rotavirus shedding in infant mice.  相似文献   

18.
M M McNeal  M N Rae    R L Ward 《Journal of virology》1997,71(11):8735-8742
The effector functions responsible for resolution of shedding in mice orally inoculated with the murine rotavirus strain EDIM were identified in B-cell-deficient and normal BALB/c mice after monoclonal antibody (MAb) depletion of CD4 and CD8 cells. When depleted of CD8 cells, B-cell-deficient muMt mice resolved their infections more slowly than nondepleted animals, but CD4 cell depletion caused chronic, high-level shedding. This finding indicated that CD4 cell-dependent immunological effectors other than, or in addition to, CD8 cells played roles in rotavirus resolution in muMt mice in the absence of antibody. The roles of CD4 and CD8 cells in resolution of rotavirus shedding were further characterized in immunologically normal BALB/c mice. Depletion of CD4 cells before EDIM inoculation resulted in rapid resolution of most shedding, but chronic, low-level shedding continued for weeks. When the CD4 cell-depleted BALB/c mice were subsequently depleted of CD8 cells, shedding levels increased significantly (P < 0.001), indicating that CD8 cells were responsible for the rapid but incomplete suppression of rotavirus shedding. Further experimentation revealed that little rotavirus antibody was made in CD4 cell-depleted BALB/c mice, and only after CD4 cells were repopulated did antibody production increase and virus shedding fully resolve. Thus, resolution of rotavirus shedding in both muMt and BALB/c mice was associated with CD4 and CD8 cell effector activities.  相似文献   

19.
We investigated the immunogenicity of recombinant double-layered rotavirus-like particle (2/6-VLPs) vaccines derived from simian SA11 or human (VP6) Wa and bovine RF (VP2) rotavirus strains. The 2/6-VLPs were administered to gnotobiotic pigs intranasally (i.n.) with a mutant Escherichia coli heat-labile toxin, LT-R192G (mLT), as mucosal adjuvant. Pigs were challenged with virulent Wa (P1A[8],G1) human rotavirus at postinoculation day (PID) 21 (two-dose VLP regimen) or 28 (three-dose VLP regimen). In vivo antigen-activated antibody-secreting cells (ASC) (effector B cells) and in vitro antigen-reactivated ASC (derived from memory B cells) from intestinal and systemic lymphoid tissues (duodenum, ileum, mesenteric lymph nodes [MLN], spleen, peripheral blood lymphocytes [PBL], and bone marrow lymphocytes) collected at selected times were quantitated by enzyme-linked immunospot assays. Rotavirus-specific immunoglobulin M (IgM), IgA, and IgG ASC and memory B-cell responses were detected by PID 21 or 28 in intestinal and systemic lymphoid tissues after i.n. inoculation with two or three doses of 2/6-VLPs with or without mLT. Greater mean numbers of virus-specific ASC and memory B cells in all tissues prechallenge were induced in pigs inoculated with two doses of SA11 2/6-VLPs plus mLT compared to SA11 2/6-VLPs without mLT. After challenge, anamnestic IgA and IgG ASC and memory B-cell responses were detected in intestinal lymphoid tissues of all VLP-inoculated groups, but serum virus-neutralizing antibody titers were not significantly enhanced compared to the challenged controls. Pigs inoculated with Wa-RF 2/6-VLPs (with or without mLT) developed higher anamnestic IgA and IgG ASC responses in ileum after challenge compared to pigs inoculated with SA11 2/6-VLPs (with or without mLT). Three doses of SA 11 2/6-VLP plus mLT induced the highest mean numbers of IgG memory B cells in MLN, spleen, and PBL among all groups postchallenge. However, no significant protection against diarrhea or virus shedding was evident in any of the 2/6-VLP (with or without mLT)-inoculated pigs after challenge with virulent Wa human rotavirus. These results indicate that 2/6-VLP vaccines are immunogenic in gnotobiotic pigs when inoculated i.n. and that the adjuvant mLT enhanced their immunogenicity. However, i.n. inoculation of gnotobiotic pigs with 2/6-VLPs did not confer protection against human rotavirus challenge.  相似文献   

20.
Severe combined immunodeficient (SCID) mice lack both functional T and B cells. These mice develop chronic rotavirus infection following an oral inoculation with the epizootic diarrhea of infant mice (EDIM) rotavirus. Reconstitution of rotavirus-infected SCID mice with T lymphocytes from immunocompetent mice allows an evaluation of a role of T-cell-mediated immunity in clearing chronic rotavirus infection. Complete rotavirus clearance was demonstrated in C.B-17/scid mice 7 to 9 days after the transfer of immune CD8+ splenic T lymphocytes from histocompatible BALB/c mice previously immunized intraperitoneally with the EDIM-w strain of murine rotavirus. The virus clearance mediated by T-cell transfer was restricted to H-2d-bearing T cells and occurred in the absence of rotavirus-specific antibody as determined by enzyme-linked immunosorbent assay, neutralization, immunohistochemistry, and radioimmunoprecipitation. Temporary clearance of rotavirus was observed after the transfer of immune CD8+ T cells isolated from the intestinal mucosa (intraepithelial lymphocytes [IELs]) or the spleens of BALB/c mice previously infected with EDIM by the oral route. Chronic virus shedding was transiently eliminated 7 to 11 days after spleen cell transfer and 11 to 12 days after IEL transfer. However, recurrence of rotavirus infection was detected 1 to 8 days later in all but one SCID recipient receiving cells from orally immunized donors. The viral clearance was mediated by IELs that were both Thy1+ and CD8+. These data demonstrated that the clearance of chronic rotavirus infection in SCID mice can be mediated by immune CD8+ T lymphocytes and that this clearance can occur in the absence of virus-specific antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号