首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Chikungunya virus (CHIKV) is a re-emerging alphavirus that causes chikungunya fever and persistent arthralgia in humans. Currently, there is no effective vaccine or antiviral against CHIKV infection. Therefore, this study evaluates whether RNA interference which targets at viral genomic level may be a novel antiviral strategy to inhibit the medically important CHIKV infection.

Methods

Plasmid-based small hairpin RNA (shRNA) was investigated for its efficacy in inhibiting CHIKV replication. Three shRNAs designed against CHIKV Capsid, E1 and nsP1 genes were transfected to establish stable shRNA-expressing cell clones. Following infection of stable shRNA cells clones with CHIKV at M.O.I. 1, viral plaque assay, Western blotting and transmission electron microscopy were performed. The in vivo efficacy of shRNA against CHIKV replication was also evaluated in a suckling murine model of CHIKV infection.

Results

Cell clones expressing shRNAs against CHIKV E1 and nsP1 genes displayed significant inhibition of infectious CHIKV production, while shRNA Capsid demonstrated a modest inhibitory effect as compared to scrambled shRNA cell clones and non-transfected cell controls. Western blot analysis of CHIKV E2 protein expression and transmission electron microscopy of shRNA E1 and nsP1 cell clones collectively demonstrated similar inhibitory trends against CHIKV replication. shRNA E1 showed non cell-type specific anti-CHIKV effects and broad-spectrum silencing against different geographical strains of CHIKV. Furthermore, shRNA E1 clones did not exert any inhibition against Dengue virus and Sindbis virus replication, thus indicating the high specificity of shRNA against CHIKV replication. Moreover, no shRNA-resistant CHIKV mutant was generated after 50 passages of CHIKV in the stable cell clones. More importantly, strong and sustained anti-CHIKV protection was conferred in suckling mice pre-treated with shRNA E1.

Conclusion

Taken together, these data suggest the promising efficacy of anti-CHIKV shRNAs, in particular, plasmid-shRNA E1, as a novel antiviral strategy against CHIKV infection.  相似文献   

2.
At the end of 2005, an outbreak of fever associated with joint pain occurred in La Réunion. The causal agent, chikungunya virus (CHIKV), has been known for 50 years and could thus be readily identified. This arbovirus is present worldwide, particularly in India, but also in Europe, with new variants returning to Africa. In humans, it causes a disease characterized by a typical acute infection, sometimes followed by persistent arthralgia and myalgia lasting months or years. Investigations in the La Réunion cohort and studies in a macaque model of chikungunya implicated monocytes-macrophages in viral persistence. In this Review, we consider the relationship between CHIKV and the immune response and discuss predictive factors for chronic arthralgia and myalgia by providing an overview of current knowledge on chikungunya pathogenesis. Comparisons of data from animal models of the acute and chronic phases of infection, and data from clinical series, provide information about the mechanisms of CHIKV infection-associated inflammation, viral persistence in monocytes-macrophages, and their link to chronic signs.  相似文献   

3.
The rising prevalence of arthritogenic alphavirus infections, including chikungunya virus (CHIKV) and Ross River virus (RRV), and the lack of antiviral treatments highlight the potential threat of a global alphavirus pandemic. The immune responses underlying alphavirus virulence remain enigmatic. We found that pentraxin 3 (PTX3) was highly expressed in CHIKV and RRV patients during acute disease. Overt expression of PTX3 in CHIKV patients was associated with increased viral load and disease severity. PTX3-deficient (PTX3-/-) mice acutely infected with RRV exhibited delayed disease progression and rapid recovery through diminished inflammatory responses and viral replication. Furthermore, binding of the N-terminal domain of PTX3 to RRV facilitated viral entry and replication. Thus, our study demonstrates the pivotal role of PTX3 in shaping alphavirus-triggered immunity and disease and provides new insights into alphavirus pathogenesis.  相似文献   

4.
Dengue and chikungunya are acute viral infections with overlapping clinical symptoms. Both diseases are transmitted by common mosquito vectors resulting in their co‐circulation in a region. Molecular and serological tests specific for both dengue and chikungunya infections were performed on 87 acute phase blood samples collected from patients with suspected dengue/chikungunya infections in Delhi from September to December, 2011. RT‐PCR and IgM ELISA were performed to detect dengue virus (DENV) and chikungunya virus (CHIKV). NS1 and IgG ELISA were also performed to detect DENV specific antigen and secondary DENV infection. DENV infection was detected in 49%, CHIKV infection in 29% and co‐infection with DENV and CHIKV in 10% of the samples by RT‐PCR. DENV serotypes 1, 2 and 3 were detected in this study. Nine DENV‐1 strains, six DENV‐2 strains and 20 CHIKV strains were characterized by DNA sequencing and phylogenetic analysis of their respective envelope protein genes. DENV‐1 strains grouped in the American African genotype, DENV‐2 strains in the Cosmopolitan genotype and CHIKV strains in the East Central South African genotype by phylogenetic analysis. This is one of the few studies reporting the phylogeny of two dengue virus serotypes (DENV‐1 and DENV‐2) and CHIKV. Surveillance and monitoring of DENV and CHIKV strains are important for design of strategies to control impending epidemics.  相似文献   

5.
Lack of vaccine and effective antiviral drugs against chikungunya virus (CHIKV) outbreaks have led to significant impact on health care in the developing world. Here, we evaluated the antiviral effects of tetracycline (TETRA) derivatives and other common antiviral agents against CHIKV. Our results showed that within the TETRA derivatives group, Doxycycline (DOXY) exhibited the highest inhibitory effect against CHIKV replication in Vero cells. On the other hand, in the antiviral group Ribavirin (RIBA) showed higher inhibitory effects against CHIKV replication compared to Aciclovir (ACIC). Interestingly, RIBA inhibitory effects were also higher than all but DOXY within the TETRA derivatives group. Docking studies of DOXY to viral cysteine protease and E2 envelope protein showed non-competitive interaction with docking energy of -6.6±0.1 and -6.4±0.1 kcal/mol respectively. The 50% effective concentration (EC50) of DOXY and RIBA was determined to be 10.95±2.12 μM and 15.51±1.62 μM respectively, while DOXY+RIBA (1:1 combination) showed an EC50 of 4.52±1.42 μM. When compared, DOXY showed higher inhibition of viral infectivity and entry than RIBA. In contrast however, RIBA showed higher inhibition against viral replication in target cells compared to DOXY. Assays using mice as animal models revealed that DOXY+RIBA effectively inhibited CHIKV replication and attenuated its infectivity in vivo. Further experimental and clinical studies are warranted to investigate their potential application for clinical intervention of CHIKV disease.  相似文献   

6.
The Aedes albopictus mosquito has been involved as the principal vector of recent major outbreaks due to the chikungunya virus (CHIKV). The species is naturally infected by two strains of Wolbachia (wAlbA and wAlbB). Wolbachia infections are thought to have spread by manipulating the reproduction of their hosts; cytoplasmic incompatibility is the mechanism used by Wolbachia to invade natural populations of many insects including Ae. albopictus. Here, we report a study on the effects of removing Wolbachia from Ae. albopictus on CHIKV replication and examine the consequences of CHIKV infection on some life‐history traits (survival and reproduction) of Wolbachia‐free Ae. albopictus. We found that Wolbachia‐free mosquitoes maintained a highly heterogeneous CHIKV replication compared to Wolbachia‐infected individuals. In Wolbachia‐infected Ae. albopictus, the regular increase of CHIKV followed by a steady viral load from day 4 post‐infection onwards was concomitant with a decline in Wolbachia density. This profile was also detected when examining the two key organs for viral transmission, the midgut and the salivary glands. Moreover, Wolbachia‐free Ae. albopictus was not altered in life‐history traits such as survival, oviposition and hatching characteristics whether infected or not with CHIKV. We found that Wolbachia is not essential for viral replication, its presence could lead to optimize replication from day 4 post‐infection onwards, coinciding with a decrease in Wolbachia density. Wolbachia may regulate viral replication in Ae. albopictus, with consequences on survival and reproduction.  相似文献   

7.
The Asian tiger mosquito Aedes albopictus (Skuse) (Diptera: Culicidae), native to Southeast Asia, has extended its geographical distribution to invade new temperate and tropical regions. This species was introduced in 1990 to Italy and has since become the main pest in urban settings. It was incriminated as a principal vector in the first European outbreak of chikungunya virus (CHIKV) in the province of Ravenna (Italy) in 2007. This outbreak was associated with CHIKV E1-226V, efficiently transmitted by Ae. albopictus . The occurrence of this outbreak in a temperate country led us to estimate the potential of Ae. albopictus to transmit CHIKV and dengue virus (DENV), and to determine the susceptibility to CHIKV of other mosquito species collected in northern Italy. Experimental infections showed that Ae. albopictus exhibited high disseminated infection rates for CHIKV (75.0% in Alessandria; 90.3% in San Lazzaro) and low disseminated infection rates for DENV-2 (14.3% in San Lazzaro; 38.5% in Alessandria). Moreover, Ae. albopictus was able to attain a high level of viral replication, with CHIKV detectable in the salivary glands at day 2 after infection. In addition, the other three mosquito species, Anopheles maculipennis Meigen, Aedes vexans vexans (Meigen) and Culex pipiens L., showed variable susceptibilities to infection with CHIKV, of 0%, 7.7% and 0–33%, respectively. This information on vector competence is crucial in assessing the risk for an outbreak of CHIKV or DENV in Italy.  相似文献   

8.
9.
Chikungunya virus (CHIKV) is a recently re-emerged public health problem in many countries bordering the Indian Ocean and elsewhere. Chikungunya fever is a relatively self limiting febrile disease, but the consequences of chikungunya fever can include a long lasting, debilitating arthralgia, and occasional neurological involvement has been reported. Macrophages have been implicated as an important cell target of CHIKV with regards to both their role as an immune mediator, as well evidence pointing to long term viral persistence in these cells. Microglial cells are the resident brain macrophages, and so this study sought to define the proteomic changes in a human microglial cell line (CHME-5) in response to CHIKV infection. GeLC-MS/MS analysis of CHIKV infected and mock infected cells identified some 1455 individual proteins, of which 90 proteins, belonging to diverse cellular pathways, were significantly down regulated at a significance level of p<0.01. Analysis of the protein profile in response to infection did not support a global inhibition of either normal or IRES-mediated translation, but was consistent with the targeting of specific cellular pathways including those regulating innate antiviral mechanisms.  相似文献   

10.

Background

Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place.

Methodology and Principal Findings

Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification.

Conclusion/Significance

Our study constitutes the first analysis of the protein response of Aedes aegypti''s midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by the arboviruses.  相似文献   

11.
Chikungunya virus (CHIKV), the causative agent of a major epidemic spanning five continents, is a positive stranded mRNA virus that replicates using the cell’s cap-dependent translation machinery. Despite viral infection inhibiting mTOR, a metabolic sensor controls cap-dependent translation, viral proteins are efficiently translated. Rapalog treatment, silencing of mtor or raptor genes, but not rictor, further enhanced CHIKV infection in culture cells. Using biochemical assays and real time imaging, we demonstrate that this effect is independent of autophagy or type I interferon production. Providing in vivo evidence for the relevance of our findings, mice treated with mTORC1 inhibitors exhibited increased lethality and showed a higher sensitivity to CHIKV. A systematic evaluation of the viral life cycle indicated that inhibition of mTORC1 has a specific positive effect on viral proteins, enhancing viral replication by increasing the translation of both structural and nonstructural proteins. Molecular analysis defined a role for phosphatidylinositol-3 kinase (PI3K) and MAP kinase-activated protein kinase (MnKs) activation, leading to the hyper-phosphorylation of eIF4E. Finally, we demonstrated that in the context of CHIKV inhibition of mTORC1, viral replication is prioritized over host translation via a similar mechanism. Our study reveals an unexpected bypass pathway by which CHIKV protein translation overcomes viral induced mTORC1 inhibition.  相似文献   

12.
Identification and characterization of virus host interactions is an essential step for the development of novel antiviral strategies. Very few studies have been targeted towards identification of chikungunya virus (CHIKV) interacting host proteins. In current study, virus overlay protein binding assay (VOPBA) and matrix-assisted laser desorption/ionization time of flight analysis (MALDI TOF/TOF) were employed for the identification of CHIKV binding proteins in mammalian cells. HSP70 and actin were identified as virus binding proteins in HEK-293T and Vero-E6 cells, whereas STAT-2 was identified as an additional protein in Vero-E6 cells. Pre-incubation with anti-HSP70 antibody and miRNA silencing of HSP70 significantly reduced the CHIKV production in HEK-293T and Vero-E6 cells at early time points. These results suggest that CHIKV exploits the housekeeping molecules such as actin, HSP70 and STAT-2 to establish infection in the mammalian cells.  相似文献   

13.
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that can cause fever and chronic arthritis in humans. CHIKV that is generated in mosquito or mammalian cells differs in glycosylation patterns of viral proteins, which may affect its replication and virulence. Herein, we compare replication, pathogenicity, and receptor binding of CHIKV generated in Vero cells (mammal) or C6/36 cells (mosquito) through a single passage. We demonstrate that mosquito cell-derived CHIKV (CHIKVmos) has slower replication than mammalian cell-derived CHIKV (CHIKVvero), when tested in both human and murine cell lines. Consistent with this, CHIKVmos infection in both cell lines produce less cytopathic effects and reduced antiviral responses. In addition, infection in mice show that CHIKVmos produces a lower level of viremia and less severe footpad swelling when compared with CHIKVvero. Interestingly, CHIKVmos has impaired ability to bind to glycosaminoglycan (GAG) receptors on mammalian cells. However, sequencing analysis shows that this impairment is not due to a mutation in the CHIKV E2 gene, which encodes for the viral receptor binding protein. Moreover, CHIKVmos progenies can regain GAG receptor binding capability and can replicate similarly to CHIKVvero after a single passage in mammalian cells. Furthermore, CHIKVvero and CHIKVmos no longer differ in replication when N-glycosylation of viral proteins was inhibited by growing these viruses in the presence of tunicamycin. Collectively, these results suggest that N-glycosylation of viral proteins within mosquito cells can result in loss of GAG receptor binding capability of CHIKV and reduction of its infectivity in mammalian cells.  相似文献   

14.
Tomatidine, a natural steroidal alkaloid from unripe green tomatoes has been shown to exhibit many health benefits. We recently provided in vitro evidence that tomatidine reduces the infectivity of Dengue virus (DENV) and Chikungunya virus (CHIKV), two medically important arthropod-borne human infections for which no treatment options are available. We observed a potent antiviral effect with EC50 values of 0.82 μM for DENV-2 and 1.3 μM for CHIKV-LR. In this study, we investigated how tomatidine controls CHIKV infectivity. Using mass spectrometry, we identified that tomatidine induces the expression of p62, CD98, metallothionein and thioredoxin-related transmembrane protein 2 in Huh7 cells. The hits p62 and CD98 were validated, yet subsequent analysis revealed that they are not responsible for the observed antiviral effect. In parallel, we sought to identify at which step of the virus replication cycle tomatidine controls virus infectivity. A strong antiviral effect was seen when in vitro transcribed CHIKV RNA was transfected into Huh7 cells treated with tomatidine, thereby excluding a role for tomatidine during CHIKV cell entry. Subsequent determination of the number of intracellular viral RNA copies and viral protein expression levels during natural infection revealed that tomatidine reduces the RNA copy number and viral protein expression levels in infected cells. Once cells are infected, tomatidine is not able to interfere with active RNA replication yet it can reduce viral protein expression. Collectively, the results delineate that tomatidine controls viral protein expression to exert its antiviral activity. Lastly, sequential passaging of CHIKV in presence of tomatidine did not lead to viral resistance. Collectively, these results further emphasize the potential of tomatidine as an antiviral treatment towards CHIKV infection.  相似文献   

15.
While a large number of mosquito-transmitted alphaviruses are known to cause serious human diseases, there are no licensed vaccines that protect against alphavirus infections. The alphavirus chikungunya virus (CHIKV) has caused multiple recent outbreaks of chikungunya fever. This virus has the potential to cause a worldwide epidemic and has generated strong interest in development of a prophylactic CHIKV vaccine. We report here on the development of a potent experimental vaccine for CHIKV based on a chimeric vesicular stomatitis virus (VSV) expressing the entire CHIKV envelope polyprotein (E3-E2-6K-E1) in place of the VSV glycoprotein (G). These VSVΔG-CHIKV chimeras incorporated functional CHIKV glycoproteins into the viral envelope in place of VSV G. The chimeric viruses were attenuated for growth in tissue culture but could be propagated to high titers without VSV G complementation. They also generated robust neutralizing antibody and cellular immune responses to CHIKV in mice after a single dose and protected mice against CHIKV infection. VSVΔG-alphavirus chimeras could have general applicability as alphavirus vaccines.  相似文献   

16.
To characterize the immunity developed by patients infected by chikungunya virus (CHIKV), we studied the intensity and specificity of CHIKV-specific T cells mediated responses in chronic and recovered patients at 12 to 24 months post-infection. T cells were challenged in vitro against CHIKV synthetic peptides covering the length of three viral proteins, capsid, E2 and nsP1 proteins as well as all inactivated virus particles. Cytokine production was assessed by ELISPOT and intracellular labeling. T cells producing IFN-γ were detected against CHIKV in 85% patient’s cells either by direct ELISPOT assay (69% of patients) or after expansion of memory T cells allowing the detection of both CD4 and CD8 specific-T cells in 16% additional cases. The IFN-γ response was mainly engaged in response to nsP1 or E2 (52% and 46% cases, respectively) but in only 27% cases against the capsid. The anti-E2 response represented half the magnitude of the total CHIKV IFN-γ production and was mainly directed against the C-terminal half part of the protein. Almost all patients had conserved a T cell specific response against CHIKV with a clear hierarchy of T cell responses (CD8 > CD4) engaged against E2 > nsP1 > capsid. More importantly, the intensity of responses was not significantly different between recovered and chronic patients. These findings constitute key elements to a better understanding of patient T cell immunoreactivity against CHIKV and argue against a possible defect of T cell immunoresponse in the chronicity post-CHIKV infection.  相似文献   

17.
18.
Three full-length infectious cDNA clones based on the alphavirus chikungunya (CHIKV) were developed and characterized in vitro and in vivo. The full-length clone retained the viral phenotypes of CHIKV in both cell culture and in mosquitoes and should be a valuable tool for the study of virus interactions in an epidemiologically significant natural vector, Aedes aegypti. Two additional infectious clones were constructed that express green fluorescent protein (EGFP) in the midgut, salivary glands, and nervous tissue of Aedes aegypti mosquitoes following oral infection. The two constructs differed in the placement of the subgenomic promoter and the gene encoding EGFP. Viruses derived from the pCHIKic EGFP constructs (5' CHIKV EGFP and 3' CHIKV EGFP) expressed EGFP in 100% of the Ae. aegypti mosquitoes tested on days 7 and 14 post infection (p.i.). The 5' CHIKV EGFP disseminated to 90% of the salivary glands and nervous tissue by day 14 p.i. Dissemination rates of this new viral vector exceeds those of previous systems, thus expanding the repertoire and potential for gene expression studies on this important vector species.  相似文献   

19.
The arthropod-transmitted chikungunya virus has emerged as an epidemic menace that causes debilitating polyarthritis. With this life-threatening impact on humans, the possible treatment requires to cure the viral infectivity. But, devoid of any vaccine against the chikungunya virus (CHIKV), there is a need to develop a novel chemotherapeutic strategy to treat this noxious infection. CHIKV carries highly compact P23pro-zbd structure that possesses potential RNA-binding surface domains which extremely influences the use of RNA template during genome replication at the time of infection and pathogenesis. Therefore, computational approaches were used to explore the novel small molecule inhibitors targeting P23pro-zbd domain. The tertiary structure was modeled and optimized using in silico approaches. The results obtained from PROCHECK (93.1% residues in favored regions), ERRAT (87.480 overall model quality) and ProSA (Z-score: −11.72) revealed the reliability of the proposed model. Interestingly, a previously reported inhibitor, chloroquine possesses good binding affinities with the target domain. In-depth analysis revealed that chloroquine derivatives such as didesethyl chloroquine hydroxyacetamide, cletoquine, hydroxychloroquine exhibited a better binding affinity. Notably, MD simulation analysis exhibited that Thr1312, Ala1355, Ala1356, Asn1357, Asp1364, Val1366, Cys1367, Ala1401, Gly1403, Ser1443, Tyr1444, Gly1445, Asn1459, and Thr1463 residues are the key amino acid responsible for stable ligand-protein interaction. The results obtained from this study provide new insights and advances the understanding to develop a new approach to consider effective and novel drug against chikungunya. However, a detailed in vivo study is required to explore its drug likeliness against this life-threatening disease.  相似文献   

20.
The emerging arthritogenic, mosquito-borne chikungunya virus (CHIKV) causes severe disease in humans and represents a serious public health threat in countries where Aedes spp mosquitoes are present. This study describes for the first time the successful production of CHIKV virus-like particles (VLPs) in insect cells using recombinant baculoviruses. This well-established expression system is rapidly scalable to volumes required for epidemic responses and proved well suited for processing of CHIKV glycoproteins and production of enveloped VLPs. Herein we show that a single immunization with 1 µg of non-adjuvanted CHIKV VLPs induced high titer neutralizing antibody responses and provided complete protection against viraemia and joint inflammation upon challenge with the Réunion Island CHIKV strain in an adult wild-type mouse model of CHIKV disease. CHIKV VLPs produced in insect cells using recombinant baculoviruses thus represents as a new, safe, non-replicating and effective vaccine candidate against CHIKV infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号