首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhao C  Wang E 《Cellular signalling》2004,16(3):313-321
Two highly conserved mechanisms for maintaining cellular homeostasis are apoptosis and the cellular stress response. Hsp90 is one of the most abundant, highly conserved, and inducible Hsps in eukaryotes. Recently, Hsp90 has been shown to play important antiapoptotic roles through binding with Apaf-1, RIP and kinase domain of IKKalpha/beta. Our present studies demonstrate that Hsp90 can suppress tumor necrosis factor alpha (TNFalpha)-induced apoptosis in stable Hsp90-overexpressing NIH3T3 cells by preventing the cleavage of Bid. The prevention of the cleavage of Bid can be partially explained by the direct interaction between Hsp90 and Bid. Furthermore, disrupting the function of Hsp90 by the addition of its specific inhibitor, geldanamycin, blocked Hsp90's protection of Bid cleavage. These results show that Hsp90 can function at different levels within apoptotic signal transduction pathways.  相似文献   

2.
Unmethylated CpG oligodeoxynucleotides (CpG ODNs) activate immune responses in a TLR9-dependent manner. In this study, we found that stimulation of mouse macrophages and dendritic cells with B-type CpG ODN (CpG-B ODN) increased the cellular level of heat shock protein (Hsp) 90beta but not Hsp90alpha and prevented apoptosis induced by serum starvation or staurosporine treatment. The CpG-B ODN-induced Hsp90beta expression depended on TLR9, MyD88, and PI3K. Inhibition of Hsp90beta level by expressing small-interfering RNA suppressed not only Hsp90beta expression but also PI3K-dependent phosphorylation of Akt and CpG-B ODN-mediated antiapoptosis. Additional studies demonstrated that as described by other group in mast cells, Hsp90beta but not Hsp90alpha was associated with Bcl-2. Inhibition of Hsp90beta suppressed the CpG-B ODN-induced association of Hsp90beta with Bcl-2 and impaired the inhibitory effect of CpG-B ODN in the release of cytochrome c and activation of caspase-3. This study thus reveals the involvement of Hsp90beta but not Hsp90alpha in CpG-B ODN-mediated antiapoptotic response and that Hsp90beta is distinct from Hsp90alpha in regulation of the cellular function of immune cells.  相似文献   

3.
Two autopsy cases are reported in which double primary cancers of the lung had been strongly or definitely suspected before death by demonstration of two different types of malignant cells in the sputum as well as in smears of aspirates from pleural fluid and/or mediastinal tumor. By exfoliative cytology, one case was characterized by carcinoma cells of the small-cell type plus the large-cell and/or adenocarcinoma type; the other displayed small-cell-type and squamous-cell-type malignant cells. The autopsies definitely revealed in the first case an anaplastic carcinoma of the small-cell type in the left bronchus and a salivary-gland-type malignant "mixed" tumor in the right lower lobe and in the second case an anaplastic carcinoma of the small-cell type in the right upper lobe and a squamous-cell carcinoma in the left upper lobe. The frequence of occurrence and pathologic diagnosis of double primary lung cancers are reviewed and discussed. A rare type of lung cancer, salivary-gland-type malignant "mixed" tumor, is given special reference.  相似文献   

4.
Heat shock protein 90 (Hsp90) is a molecular chaperone that has emerged as an important target in cancer and several other diseases, such as neurodegenerative diseases, nerve injuries, inflammation, and infection. Discovery of novel agents that inhibit Hsp90 and have druglike properties is therefore a major focus in several academic and industrial laboratories. In this study, the authors describe the development and optimization in a 384-well format of a novel assay for the identification of Hsp90 inhibitors using fluorescence polarization, which measures competitive binding of red-shifted fluorescently labeled geldanamycin (GM-cy3B) to Hsp90 found in the NCI-N417 small-cell lung carcinoma cells. The authors demonstrate that GMcy3B binds with high affinity and specificity to cellular Hsp90. The assay results in excellent signal-to-noise ratios (>10) and Z' values (>0.75) at tracer concentrations greater than 4 nM and 1 microg/well of total NCI-N417 protein, indicating a robust assay. It also equilibrates after 5 h of incubation at room temperature and remains stable for up to 24 h. Furthermore, it is a simple mix-and-read format that is cost-effective and uses only low amounts of fluorophore and cell lysates. A study using more than 15,000 compounds from the National Institutes of Health Molecular Libraries Screening Center Network was performed to validate its performance in a high-throughput screening format.  相似文献   

5.
Candida albicans is the most common human fungal pathogen. Recent evidence has revealed the occurrence of apoptosis in C. albicans that is inducible by environmental stresses such as hydrogen peroxide, acetic acid, and amphotericin B. Apoptosis is regulated by the calcineurin-caspase pathway in C. albicans, and calcineurin is under the control of Hsp90 in echinocandin resistance. However, the role of Hsp90 in apoptosis of C. albicans remains unclear. In this study, we investigated the role of Hsp90 in apoptosis of C. albicans by using an Hsp90-compromised strain tetO-HSP90/hsp90 and found that upon apoptotic stimuli, including hydrogen peroxide, acetic acid or amphotericin B treatment, less apoptosis occurred, less ROS was produced, and more cells survived in the Hsp90-compromised strain compared with the Hsp90/Hsp90 wild-type strain. In addition, Hsp90-compromised cells were defective in up-regulating caspase-encoding gene CaMCA1 expression and activating caspase activity upon the apoptotic stimuli. Investigations on the relationship between Hsp90 and calcineurin revealed that activation of calcineurin could up-regulate apoptosis but could not further down-regulate apoptosis in Hsp90-compromised cells, indicating that calcineurin was downstream of Hsp90. Hsp90 inhibitor geldanamycin (GdA) could further decrease the apoptosis in calcineurin-pathway-defect strains, indicating that compromising Hsp90 function had a stronger effect than compromising calcineurin function on apoptosis. Collectively, this study demonstrated that compromised Hsp90 reduced apoptosis in C. albicans, partially through downregulating the calcineurin-caspase pathway.  相似文献   

6.
Brain and Reproductive Organ Expressed (BRE), or BRCC45, is a death receptor-associated antiapoptotic protein, which is also involved in DNA-damage repair, and K63-specific deubiquitination. BRE overexpression attenuates both death receptor- and stress-induced apoptosis, promotes experimental tumor growth, and is associated with human hepatocellular and esophageal carcinoma. How BRE mediates its antiapoptotic function is unknown. Here we report based on the use of a mouse Lewis lung carcinoma cell line D122 that BRE has an essential role in maintaining the cellular protein level of XIAP, which is the most potent endogenous inhibitor of the caspases functioning in both extrinsic and intrinsic apoptosis. shRNA-mediated exhaustive depletion of BRE sensitized D122 cells to apoptosis induced not only by etopoxide, but also by TNF-α even in the absence of cycloheximide, which blocks the synthesis of antiapoptotic proteins by TNF-α-activated NF-κB pathway. In BRE-depleted cells, protein level of XIAP was downregulated, but not the levels of other antiapoptotic proteins, cIAP-1, 2, and cFLIP, regulated by the same NF-κB pathway. Reconstitution of BRE restored XIAP levels and increased resistance to apoptosis. XIAP mRNA level was also reduced in the BRE-depleted cells, but the level of reduction was less profound than that of the protein level. However, BRE could not delay protein turnover of XIAP. Depletion of BRE also increased tumor cell apoptosis, and decreased both local and metastatic tumor growth. Taken together, these findings indicate that BRE and its XIAP-sustaining mechanism could represent novel targets for anti-cancer therapy.  相似文献   

7.
8.
B-cell lymphoma-2 (Bcl-2) is an antiapoptotic protein known to be important in the regulation of apoptosis in various cell types. However, its role in malignant transformation and tumorigenesis of human lung cells is not well understood. We previously reported that chronic exposure of human lung epithelial cells to the carcinogenic hexavalent chromium Cr(VI) caused malignant transformation and Bcl-2 upregulation; however, the role of Bcl-2 in the transformation is unclear. Using a gene silencing approach, we showed that Bcl-2 plays an important role in the malignant properties of Cr(VI)-transformed cells. Downregulation of Bcl-2 inhibited the invasive and proliferative properties of the cells as well as their colony forming and angiogenic activities, which are upregulated in the transformed cells as compared to control cells. Furthermore, animal studies showed the inhibitory effect of Bcl-2 knockdown on the tumorigenesis of Cr(VI)-transformed cells. The role of Bcl-2 in malignant transformation and tumorigenesis was confirmed by gene silencing experiments using human lung carcinoma NCI-H460 cells. These cells exhibited aggressive malignant phenotypes similar to those of Cr(VI)-transformed cells. Knockdown of Bcl-2 in the H460 cells inhibited malignant and tumorigenic properties of the cells, indicating the general role of Bcl-2 in human lung tumorigenesis. Ingenuity Pathways Analysis (IPA) revealed potential effectors of Bcl-2 in tumorigenesis regulation. Additionally, using IPA together with ectopic expression of p53, we show p53 as an upstream regulator of Bcl-2 in Cr(VI)-transformed cells. Together, our results indicate the novel and multifunctional role of Bcl-2 in malignant transformation and tumorigenesis of human lung epithelial cells chronically exposed to Cr(VI).  相似文献   

9.

Background

Ionizing irradiation is a commonly accepted treatment modality for lung cancer patients. However, the clinical outcome is hampered by normal tissue toxicity and tumor hypoxia. Since tumors often have higher levels of active heat shock protein 90 (Hsp90) than normal tissues, targeting of Hsp90 might provide a promising strategy to sensitize tumors towards irradiation. Hsp90 client proteins include oncogenic signaling proteins, cell cycle activators, growth factor receptors and hypoxia inducible factor-1α (HIF-1α). Overexpression of HIF-1α is assumed to promote malignant transformation and tumor progression and thus might reduce the accessibility to radiotherapy.

Methodology/Principal Findings

Herein, we describe the effects of the novel Hsp90 inhibitor NVP-AUY922 and 17-allylamino-17-demethoxygeldanamycin (17-AAG), as a control, on HIF-1α levels and radiosensitivity of lung carcinoma cells under normoxic and hypoxic conditions. NVP-AUY922 exhibited a similar biological activity to that of 17-AAG, but at only 1/10 of the dose. As expected, both inhibitors reduced basal and hypoxia-induced HIF-1α levels in EPLC-272H lung carcinoma cells. However, despite a down-regulation of HIF-1α upon Hsp90 inhibition, sensitivity towards irradiation remained unaltered in EPLC-272H cells under normoxic and hypoxic conditions. In contrast, treatment of H1339 lung carcinoma cells with NVP-AUY922 and 17-AAG resulted in a significant up-regulation of their initially high HIF-1α levels and a concomitant increase in radiosensitivity.

Conclusions/Significance

In summary, our data show a HIF-1α-independent radiosensitization of normoxic and hypoxic H1339 lung cancer cells by Hsp90 inhibition.  相似文献   

10.
Intestinal epithelial cell (IEC) apoptosis induced by hypoxia compromise intestinal epithelium barrier function. Both Akt and Hsp90 have cytoprotective function. However, the specific role of Akt and Hsp90β in IEC apoptosis induced by hypoxia has not been explored. We confirmed that hypoxia-induced apoptosis was reduced by Hsp90β overexpression but enhanced by decreasing Hsp90β expression. Hsp90β overexpression enhanced BAD phosphorylation and thus reduced mitochondrial release of cytochrome C. Reducing Hsp90β expression had opposite effects. The protective effect of Hsp90β against apoptosis was negated by LY294002, an Akt inhibitor. Further study showed that Akt phosphorylation was enhanced by Hsp90β, which was not due to the activation of upstream PI3K and PDK1 but because of stabilization of pAkt via direct interaction between Hsp90β and pAkt. These results demonstrate that Hsp90β may play a significant role in protecting IECs from hypoxia-induced apoptosis via stabilizing pAkt to phosphorylate BAD and reduce cytochrome C release. [BMB Reports 2013;46(1): 47-52]  相似文献   

11.
Hypoxia is a common environmental stress. Particularly, the center of rapidly growing solid tumors is easily exposed to hypoxic conditions. Thus, tumor cell response to hypoxia plays an important role in tumor progression as well as tumor therapy. However, little is known about hypoxic effect on apoptotic cell death. To examine the effects of hypoxia on TRAIL-induced apoptosis, human lung carcinoma A549 cells were exposed to hypoxia and treated with TRAIL protein. Hypoxia significantly protected A549 cells from apoptosis induced by TRAIL. Western blotting analysis demonstrated that hypoxia increased expression of antiapoptotic proteins such as Bcl-2, Bcl-XL, and IAP family members. The increase of these antiapoptotic molecules is believed to play an hypoxia-mediated protective role in TRAIL-induced apoptosis. Our findings suggest that an increase of antiapoptotic proteins induced by hypoxia may regulate the therapeutic activity of TRAIL protein in cancer therapy.  相似文献   

12.
At variance with protein kinases expressed by oncogenes, CK2 is endowed with constitutive activity under normal conditions, and no CK2 gain-of-function mutants are known. Its amount, however, is abnormally high in malignant cells where it appears to be implicated in many of the cell biology phenomena associated with cancer. These observations can be reconciled assuming that tumor cells develop an overdue reliance ("non-oncogene addiction") on abnormally high CK2 level. While the potential of this latter to generate an environment favorable to neoplasia is consistent with the global antiapoptotic and prosurvival role played by CK2, it is not clear what is determining accumulation of CK2 in cells "predisposed" to become malignant. Exploiting the apoptosis sensitive (S) or resistant (R) CEM cell model, characterized by sharply different CK2 levels, we have now correlated the level and degradation rate of CK2 to those of the chaperone proteins Hsp90 and Cdc37. We show in particular that persistence of high CK2 level in R-CEM, as opposed to S-CEM, is accompanied by the presence of an immunospecific form of Cdc37 not detectable in S-CEM and refractory to staurosporine-induced degradation.  相似文献   

13.
The Hsp90 inhibition has been shown to induce apoptosis in various cancer cells. The licorice compounds may enhance the anti-cancer drug effect. However, effect of the licorice compounds on the Hsp90 inhibition-induced apoptosis in ovarian cancer cells has not been studied. To assess the ability of 18β-glycyrrhetinic acid to promote apoptosis, we examined whether 18β-glycyrrhetinic acid potentiated the Hsp90 inhibitor-induced apoptosis in the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. Radicicol and geldanamycin induced a decrease in Bid, Bcl-2, Bcl-xL and survivin protein levels, an increase in Bax levels, the mitochondrial transmembrane potential loss, cytochrome c release, activation of caspases (-8, -9, and -3), cleavage of PARP-1, and an increase in the tumor suppressor p53 levels. 18β-Glycyrrhetinic acid enhanced Hsp90 inhibitor-induced apoptosis-related protein activation, nuclear damage, and cell death. The results suggest that 18β-glycyrrhetinic acid may potentiate the Hsp90 inhibition-induced apoptosis in ovarian carcinoma cell lines via the activation of the caspase-8- and Bid-dependent pathways and the mitochondria-mediated cell death pathway, leading to activation of caspases. Combination of Hsp90 inhibitors and 18β-glycyrrhetinic acid may confer a benefit in the treatment of epithelial ovarian adenocarcinoma.  相似文献   

14.
Defects in apoptosis signaling pathways are common in cancer cells. Such defects may play an important role in tumor initiation because apoptosis normally eliminates cells with damaged DNA or dysregulated cell cycle, i.e., cells with increased malignant potential. Moreover, impaired apoptosis may enhance tumor progression and promote metastasis by enabling tumor cells to survive the transit in the bloodstream and to grow in ectopic tissue sites lacking the otherwise required survival factors. Finally, raised apoptosis threshold may have deleterious consequences by rendering cancer cells resistant to various forms of therapy. The intensive apoptosis research during the past decade has resulted in the identification of several proteins which may promote tumorigenesis by inhibiting apoptosis. Of special relevance in human cancer are those commonly expressed in primary tumors and functioning at the common part of the signaling pathway leading to apoptosis. Proteins fulfilling these criteria include antiapoptotic members of the Bcl-2 protein family, heat shock proteins, Hsp70 and Hsp27, as well as survivin, the novel cancer-associated member of the inhibitor of apoptosis protein family. Understanding the molecular mechanisms of action of these proteins may offer novel modes of rationally and selectively manipulating the sensitivity of cancer cells to therapy.  相似文献   

15.
Targeting heat shock protein 90 (Hsp90) provides a promising therapeutic approach to enhance the sensitivity of tumor cells to ionizing radiation (IR). To explore the impact of scheduling drug-IR administration, in the present study, we analyzed the response of lung carcinoma A549 and glioblastoma SNB19 cells to simultaneous drug-IR treatment followed by a long-term drug administration. Cellular response was evaluated at different time intervals after IR-alone, drug-alone, or combined drug-IR treatments by colony counts and expression profiles of Hsp90 and its clients, along with several apoptotic markers and cell cycle-related proteins, as well as by IR-drug-induced cell cycle arrest, DNA damage, and repair. A short 30-minute exposure to either Hsp90 inhibitor did not affect the radiosensitivity of both tumor cell lines. Increasing the duration of post-IR-drug treatment progressively enhanced the sensitivity of SNB19 cells to IR. In contrast, the response of A549 cells to drug-IR combination was largely determined by the cytotoxic effects of both drugs without radiosensitization. Combined drug-IR treatment induced more severe DNA damage in both tumor cell lines than each treatment alone and also protracted the kinetics of DNA damage repair in SNB19 cells. In addition to large cell cycle disturbances, drug-IR treatment also caused depletion of the antiapoptotic proteins Akt and Raf-1 in both cell lines, along with a decrease of survivin in A549 cells in case of NVP-AUY922. The data show that simultaneous Hsp90 inhibition and irradiation may induce cell type-specific radiosensitization as well as cytotoxicity against tumor cells.  相似文献   

16.
Sensitivity of tumor cells to treatment with anticancer drugs depends on expression and function of antiapoptotic and antioxidant proteins. The goal of our study was to determine the functional role of the novel antioxidant protein Peroxiredoxin V (PrxV), in protection of human lung carcinoma cell lines against apoptosis. Analysis of expression of PrxV in multiple lung carcinoma cell lines revealed a positive correlation between the expression of PrxV and radioresistance in vitro. Clones of the lung carcinoma cells U1810 with down-regulated expression of PrxV, or with its impaired enzymatic function (expression of redox-negative PrxV), demonstrated increased sensitivity to treatment with anticancer drugs etoposide and adriamycin. Pre-treatment of these clones with antioxidant N-acetyl-cysteine did not change their sensitivity to adriamycin, suggesting the involvement of a non-redox activity of PrxV. Expression of the redox-negative PrxV mainly affected the mitochondrial pathway of apoptosis, as assessed by cytochrome c release assay. Impairment of the PrxV enzymatic function also affected transmembrane potential and calcium loading capacity of mitochondria, as well as mitochondrial morphology. Altogether, these findings suggest that PrxV is a multifunctional protein, which is essential for protection against apoptosis induced by anticancer drugs.  相似文献   

17.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various cancer cells. Hsp90 is known to be involved in cell survival and growth in tumor cells. Nevertheless, Hsp90 inhibitors exhibit a variable effect on the cytotoxicity of anticancer drugs. Furthermore, the combined effect of Hsp90 inhibitors on TRAIL-induced apoptosis in epithelial ovarian cancer cells has not been determined. To assess the ability of an inhibitor of Hsp90 inhibitor radicicol to promote apoptosis, we investigated the effect of radicicol on TRAIL-induced apoptosis in the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. TRAIL induced a decrease in Bid, Bcl-2, Bcl-xL, and survivin protein levels, increase in Bax levels, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases (-8, -9, and -3), cleavage of PARP-1 and an increase in the tumor suppressor p53 levels. Radicicol enhanced TRAIL-induced apoptosis-related protein activation, nuclear damage and cell death. These results suggest that radicicol may potentiate the apoptotic effect of TRAIL on ovarian carcinoma cell lines by increasing the activation of the caspase-8- and Bid-dependent pathway and the mitochondria-mediated apoptotic pathway, leading to caspase activation. Radicicol may confer a benefit in the TRAIL treatment of epithelial ovarian adenocarcinoma.  相似文献   

18.
A B Ng  G C Horak 《Acta cytologica》1983,27(4):397-402
Some factors influencing the detection of malignant cells in sputum samples were evaluated in 449 consecutive cases of primary lung carcinoma seen between 1959 and 1974. Diagnostic accuracy increased during the years under study; the reasons are discussed. The overall accuracy was 82.8%. Detection of malignant cells was 85% for small-cell carcinoma, squamous-cell carcinoma and large-cell carcinoma, 75% for adenocarcinoma, bronchioloalveolar carcinoma and adenosquamous carcinoma and 64% for the uncommon tumors. Accuracy was 87% for central tumors and 42% for peripheral lesions. Tumors less than 2 cm in diameter yielded only 39% accuracy as compared to 90% for larger tumors. The specificity of diagnosis of cell type in those specimens with malignant cells was 95% for small-cell carcinoma and squamous-cell carcinoma, more than 80% for adenocarcinoma and large-cell carcinoma, 65% for bronchioloalveolar-cell carcinoma and adenosquamous carcinoma and less than 30% for the uncommon tumors. Diagnostic accuracy was optimal in those cases with three or more sputum samples: 83% for those with three samples and 90% for those with five or more samples per case. The use of both sputum and bronchial specimens was complementary and increased the accuracy further. Reasons for unsatisfactory specimens included no deep cough, limited cellular material, excessive blood or leukocytes and drying artifacts; the first two were the most common causes.  相似文献   

19.
Lung cancer is the leading cause of cancer death worldwide. Histologically, 80% of lung cancers are classified as non-small-cell lung cancer (NSCLC), and the remaining 20% as small-cell lung cancer (SCLC). Lung carcinoma is the result of molecular changes in the cell, resulting in the deregulation of pathways controlling normal cellular growth, differentiation, and apoptosis. This review summarizes some of the most recent findings about the role of cell-cycle proteins in lung cancer pathogenesis and progression.  相似文献   

20.
Tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is considered a promising cancer therapeutic agent due to its ability to induce apoptosis in a variety of cancer cells, while sparing normal cells. However, many human tumors including acute myeloid leukemia (AML) are partially or completely resistant to monotherapy with TRAIL, limiting its therapeutic utility. Therefore, identification of factors that contribute to TRAIL resistance may facilitate future development of more effective TRAIL-based cancer therapies. Here, we report a previously unknown role for WT1 in mediating TRAIL resistance in leukemia. Knockdown of WT1 with shRNA rendered TRAIL-resistant myeloid leukemia cells sensitive to TRAIL-induced cell death, and re-expression of shRNA-resistant WT1 restored TRAIL resistance. Notably, TRAIL-mediated apoptosis in WT1-silenced cells was largely due to down-regulation of the antiapoptotic protein Bcl-xL. Moreover, WT1 expression strongly correlated with overexpression of Bcl-xL in AML cell lines and blasts from AML patients. Furthermore, we found that WT1 transactivates Bcl-xL by directly binding to its promoter. We previously showed that WT1 is a novel client protein of heat shock protein 90 (Hsp90). Consistent with this, pharmacological inhibition of Hsp90 resulted in reduced WT1 and Bcl-xL expression leading to increased sensitivity of leukemia cells to TRAIL-mediated apoptosis. Collectively, our results suggest that WT1-dependent Bcl-xL overexpression contributes to TRAIL resistance in myeloid leukemias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号