首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The stress and strain in the vessel wall are important determinants of vascular physiology and pathophysiology. Vessels are constrained radially by the surrounding tissue. The hypothesis in this work is that the surrounding tissue takes up a considerable portion of the intravascular pressure and significantly reduces the wall strain and stress. Ten swine of either sex were used to test this hypothesis. An impedance catheter was inserted into the carotid or femoral artery, and after mechanical preconditioning pressure-cross-sectional area relations were obtained with the surrounding tissue intact and dissected away (untethered), respectively. The radial constraint of the surrounding tissue was quantified as an effective perivascular pressure on the outer surface of the vessel, which was estimated as 50% or more of the intravascular pressure. For carotid arteries at pressure of 100 mmHg, the circumferential wall stretch ratio in the intact state was approximately 20% lower than in the untethered state and the average circumferential stress was reduced by approximately 70%. For femoral arteries, the reductions were approximately 15% and 70%, respectively. These experimental data support the proposed hypothesis and suggest that in vitro and in vivo measurements of the mechanical properties of vessels must be interpreted with consideration of the constraint of the surrounding tissue.  相似文献   

3.
It is well known that blood vessels exhibit viscoelastic properties, which are modeled in the literature with different mathematical forms and experimental bases. The wide range of existing viscoelastic wall models may produce significantly different blood flow, pressure, and vessel deformation solutions in cardiovascular simulations. In this paper, we present a novel comparative study of two different viscoelastic wall models in nonlinear one-dimensional (1D) simulations of blood flow. The viscoelastic models are from papers by Holenstein et al. in 1980 (model V1) and Valdez-Jasso et al. in 2009 (model V2). The static elastic or zero-frequency responses of both models are chosen to be identical. The nonlinear 1D blood flow equations incorporating wall viscoelasticity are solved using a space-time finite element method and the implementation is verified with the Method of Manufactured Solutions. Simulation results using models V1, V2 and the common static elastic model are compared in three application examples: (i) wave propagation study in an idealized vessel with reflection-free outflow boundary condition; (ii) carotid artery model with nonperiodic boundary conditions; and (iii) subject-specific abdominal aorta model under rest and simulated lower limb exercise conditions. In the wave propagation study the damping and wave speed were largest for model V2 and lowest for the elastic model. In the carotid and abdominal aorta studies the most significant differences between wall models were observed in the hysteresis (pressure-area) loops, which were larger for V2 than V1, indicating that V2 is a more dissipative model. The cross-sectional area oscillations over the cardiac cycle were smaller for the viscoelastic models compared to the elastic model. In the abdominal aorta study, differences between constitutive models were more pronounced under exercise conditions than at rest. Inlet pressure pulse for model V1 was larger than the pulse for V2 and the elastic model in the exercise case. In this paper, we have successfully implemented and verified two viscoelastic wall models in a nonlinear 1D finite element blood flow solver and analyzed differences between these models in various idealized and physiological simulations, including exercise. The computational model of blood flow presented here can be utilized in further studies of the cardiovascular system incorporating viscoelastic wall properties.  相似文献   

4.
The viscoelastic properties of porcine carotid tissue are investigated in this work. Experimental uniaxial stress relaxation tests along the longitudinal and circumferential directions of the vessel were performed for carotid strips extracted from 10 vessels. Directional and local differences - distal versus proximal position - in the tissue behavior were investigated. The experimental tests reveal a highly anisotropic, non-linear viscoelastic response and local dependence of the samples. The carotid artery shows anisotropic relaxation behavior for both proximal and distal samples. The highest stress relaxation was found in the circumferential tensile test for the highest applied strain at the distal position. For the circumferential direction, the relaxation stress was higher than in the longitudinal being at its highest in the distal position. These facts show that the stress relaxation is higher in the distal than in the proximal position. However, there are no differences between both positions in the longitudinal direction. In addition, a constitutive law that takes into account the fundamental features, including non-linear viscoelasticity, of the arterial tissue is proposed. The present results are correlated with the purely elastic response and the microstructural analysis of the tissue by means of histological quantification presented in a previous study.  相似文献   

5.
《Biorheology》1996,33(3):185-208
An analytical solution for pulsatile flow of a generalized Maxwell fluid in straight rigid tubes, with and without axial vessel motion, has been used to calculate the effect of blood viscoelasticity on velocity profiles and shear stress in flows representative of those in the large arteries. Measured bulk flow rate Q waveforms were used as starting points in the calculations for the aorta and femoral arteries, from which axial pressure gradient ▿P waves were derived that would reproduce the starting Q waves for viscoelastic flow. The ▿P waves were then used to calculate velocity profiles for both viscoelastic and purely viscous flow. For the coronary artery, published ▿P and axial vessel acceleration waveforms were used in a similar procedure to determine the separate and combined influences of viscoelasticity and vessel motion.Differences in local velocities, comparing viscous flow to viscoelastic flow, were in all cases less than about 2% of the peak local velocity. Differences in peak wall shear stress were less than about 3%.In the coronary artery, wall shear stress differences between viscous and viscoelastic flow were small, regardless of whether axial vessel motion was included. The shape of the wall shear stress waveform and its difference, however, changed dramatically between the stationary and moving vessel cases. The peaks in wall shear stress difference corresponded with large temporal gradients in the combined driving force for the flow.  相似文献   

6.
The large epicardial coronary arteries and veins span the surface of the heart and gradually penetrate into the myocardium. It has recently been shown that remodeling of the epicardial veins in response to pressure overload strongly depends on the degree of myocardial support. The nontethered regions of the vessel wall show significant intimal hyperplasia compared with the tethered regions. Our hypothesis is that such circumferentially nonuniform structural adaptation in the vessel wall is due to nonuniform wall stress and strain. Transmural stress and strain are significantly influenced by the support of the surrounding myocardial tissue, which significantly limits distension of the vessel. In this finite-element study, we modeled the nonuniform support by embedding the left anterior descending artery into the myocardium to different depths and analyzed deformation and strain in the vessel wall. Circumferential wall strain was much higher in the untethered than tethered region at physiological pressure. On the basis of the hypothesis that elevated wall strain is the stimulus for remodeling, the simulation results suggest that large epicardial coronary vessels have a greater tendency to become thicker in the absence of myocardial constraint. This study provides a mechanical basis for understanding the local growth and remodeling of vessels subjected to various degrees of surrounding tissue.  相似文献   

7.
Li LP  Herzog W 《Biorheology》2004,41(3-4):181-194
The relative importance of fluid-dependent and fluid-independent transient mechanical behavior in articular cartilage was examined for tensile and unconfined compression testing using a fibril reinforced model. The collagen matrix of articular cartilage was modeled as viscoelastic using a quasi-linear viscoelastic formulation with strain-dependent elastic modulus, while the proteoglycan matrix was considered as linearly elastic. The collagen viscoelastic properties were obtained by fitting experimental data from a tensile test. These properties were used to investigate unconfined compression testing, and the sensitivity of the properties was also explored. It was predicted that the stress relaxation observed in tensile tests was not caused by fluid pressurization at the macroscopic level. A multi-step tensile stress relaxation test could be approximated using a hereditary integral in which the elastic fibrillar modulus was taken to be a linear function of the fibrillar strain. Applying the same formulation to the radial fibers in unconfined compression, stress relaxation could not be simulated if fluid pressurization were absent. Collagen viscoelasticity was found to slightly weaken fluid pressurization in unconfined compression, and this effect was relatively more significant at moderate strain rates. Therefore, collagen viscoelasticity appears to play an import role in articular cartilage in tensile testing, while fluid pressurization dominates the transient mechanical behavior in compression. Collagen viscoelasticity plays a minor role in the mechanical response of cartilage in unconfined compression if significant fluid flow is present.  相似文献   

8.
There is no doubt that atherosclerosis is one of the most important health problems in the Western Societies. It is well accepted that atherosclerosis is associated with abnormal stress and strain conditions. A compelling observation is that the epicardial arteries develop atherosclerosis while the intramural arteries do not. Atherosclerotic changes involving the epicardial portion of the coronary artery stop where the artery penetrates the myocardium. The objective of the present study is to understand the fluid and solid mechanical differences between the two types of vessels. A finite element analysis was employed to investigate the effect of external tissue contraction on the characteristics of pulsatile blood flow and the vessel wall stress distribution. The sequential coupling of fluid-solid interaction (FSI) revealed that the changes of flow velocity and wall shear stress, in response to cyclical external loading, appear less important than the circumferential stress and strain reduction in the vessel wall under the proposed boundary conditions. These results have important implications since high stresses and strains can induce growth, remodeling, and atherosclerosis; and hence we speculate that a reduction of stress and strain may be atheroprotective. The importance of FSI in deformable vessels with pulsatile flow is discussed and the fluid and solid mechanics differences between epicardial and intramural vessels are highlighted.  相似文献   

9.
We have recently shown that estrogen causes vessel dilation through receptor-mediated stimulation of nitric oxide (NO) production. Here, we hypothesize that estrogen modulates the mechanical homeostasis in the blood vessel wall through NO production. The mechanical properties of female ovariectomized (ovx) mice, female mice lacking the gene for endothelial NO synthase (eNOS(-/-)), and control female and male mice were studied to test the hypothesis. The femoral and carotid arteries and aorta were cannulated in situ and mechanically distended. The stress, strain, elastic modulus, and wall thickness of vessels in ovx and eNOS(-/-) mice, as well as intact female and male mice, were determined. Western blot and immunohistochemistry were used to assess eNOS protein expression in the aorta. Moreover, NO by-products of the femoral and carotid artery were determined by measuring the levels of nitrite and nitrate. Our results show that ovariectomy and eNOS(-/-) significantly decrease the strain in all arteries. Furthermore, the eNOS protein was significantly reduced in ovx mice. Finally, the NO metabolites were significantly decreased both in ovx and eNOS(-/-) mice. We found statistically significant correlations between the structural (wall thickness), mechanical (stress, strain, and elastic modulus), and biochemical parameters (NO by-products). These novel results connect NO to the structural and mechanical properties of the vessel wall. Hence, the effect of endogenous estrogen on the arterial mechanical properties is mediated by the regulation of NO derived from eNOS.  相似文献   

10.
S Q Liu  Y C Fung 《Biorheology》1992,29(5-6):443-457
Rheological properties of blood vessels are expected to change in disease process if the structure of the vessel wall changes. This is illustrated in diabetes, which can be induced in rat by a single injection of Streptozocin. One of the rheological properties of the blood vessel is the stress-strain relationship. The nonlinear stress-strain relationship of arteries is best expressed as derivations of a strain-energy function. In this paper, the stress-strain relations are measured and the coefficients in the strain energy function of arteries are determined for diabetic and control rats. The meaning of these coefficients are explained. The influence of diabetes on the elastic property of the arteries is expressed by the changes of these coefficients. A point of departure of the present paper from all other blood vessel papers published so far is that all strains used here are referred to the zero-stress state of the arteries, whereas all other papers refer strains to the no-load state. The existence of a large difference between the zero-stress state and no-load state of arteries is one of our recent findings. We have explained that the use of zero-stress state as a basis of strain measurements reveals that the in vivo circumferential stress distribution is quite uniform in the vessel wall at the homeostatic condition. It also makes the strain energy function much more accurate than those in which the residual stress is ignored. Using these new results, the stress and strain distribution in normal and diabetic arteries are presented.  相似文献   

11.
It is well known that blood vessels shorten axially when excised. This is due to the perivascular tethering constraint by side branches and the existence of pre-stretch of blood vessels at the \textit {in situ} state. Furthermore, vessels are radially constrained to various extents by the surrounding tissues at physiological loading. Our hypothesis is that the axial pre-stretch and radial constraint by the surrounding tissue homogenizes the stress and strain distributions in the vessel wall. A finite element analysis of porcine coronary artery and rabbit thoracic aorta based on measured material properties, geometry, residual strain and physiological loading is used to compute the intramural stresses and strains. We systematically examined the effect of pre-stretch and external radial constraint in both vessels. Our results show that both stretching in the axial direction and compression in the radial direction lead to a more homogeneous strain and stress state in the blood vessel wall. A ``uniform biaxial strain' hypothesis is proposed for the blood vessel wall and the ramifications are discussed.  相似文献   

12.
The stability of blood vessel under lumen pressure load is essential to the maintenance of normal arterial function. Previous mechanical models showed that blood vessels may buckle into a half sine wave but arteries and veins in vivo often demonstrate tortuous paths with multiple waves. The objective of this study was to analyze the buckling of blood vessels under lumen pressure with surrounding tissue support. Blood vessels were modeled as elastic cylindrical vessels within an elastic substrate. Buckling equations were established to determine the critical pressure and the wavelength. These equations and simulation results demonstrated that blood vessels do take higher order mode shapes when buckling inside an elastic substrate while they take the basal mode shape without the substrate. The wave number increases i.e. blood vessels take a higher mode shape, as the stiffness of the substrate increases. These results suggest that mechanical buckling is a possible mechanism for the development of tortuous blood vessels. The current model provides a powerful tool for further studying the tortuosity of arteries and veins.  相似文献   

13.
The "zero-stress state" of blood vessels is usually defined with respect to the atmospheric pressure p(a) ( approximately 750 mmHg). As a consequence, circumferential and axial wall stresses due to a positive transmural pressure can only be positive and thus, by definition, only tensile. If the zero-stress state were defined with respect to vacuum pressure (0 mmHg), the compressive stress -p(a) generated by p(a) everywhere in the wall would, however, be included so that negative (=compressive) wall stresses would formally become possible. In order to examine the consequences this alternative definition would have for arteries, we have compared radial, circumferential, and axial stresses calculated "conventionally" to the values they take when the zero-stress state is defined "correctly" by reference to the vacuum pressure. It turns out that, under normal physiologic conditions, axial stress and perhaps also circumferential stress might well be compressive in many elastic and conductance arteries, contrary to the intuitive conviction of many people. Since the type of stresses a vessel wall is submitted to may be highly relevant for its structure and mechanical properties, this unconventional way of considering wall stresses may reveal unsuspected relationships between wall stresses on one side, and wall structure, vessel growth, adaptation and repair processes, atherosclerosis, angioplasty or stenting on the other side. Similar considerations might also prove useful with regard to cardiac hypertrophy.  相似文献   

14.
To characterize the effect of postnatal development on the viscoelastic behavior of the respiratory system, we quantified the amplitude and time course of stress relaxation in the lungs and chest wall of seven newborn and eight 8-wk-old anesthetized piglets. Stress relaxation was distinguished from other dissipative pressure losses by performing airway occlusions at various constant inspiratory flows and fitting the pressure decays that ensue during the occlusions to a double-exponential function. We found that the amplitude of stress relaxation related linearly to the increase in elastic recoil (and, by extension, in the volume) of the lungs, chest wall, and respiratory system during the inflations preceding the occlusions. On the average, the slope of this relationship was 38-44% lower in the 8-wk-old than in the newborn piglets for the lungs and was not different for the chest wall. The time course of stress relaxation, expressed as a time constant, was not influenced by age. Our results indicate that respiratory system viscoelasticity is sensitive to the geometric and structural changes experienced by the lungs during the period of rapid somatic growth that follow birth in most mammals.  相似文献   

15.
Transmission characteristics of axial waves in blood vessels   总被引:2,自引:0,他引:2  
The elastic behavior of blood vessels can be quantitatively examined by measuring the propagation characteristics of waves transmitted by them. In addition, specific information regarding the viscoelastic properties of the vessel wall can be deduced by comparing the observed wave transmission data with theoretical predictions. The relevance of these deductions is directly dependent on the validity of the mathematical model for the mechanical behavior of blood vessels used in the theoretical analysis. Previous experimental investigations of waves in blood vessels have been restricted to pressure waves even though theoretical studies predict three types of waves with distinctly different transmission characteristics. These waves can be distinguished by the dominant displacement component of the vessel wall and are accordingly referred to as radial, axial and circumferential waves. The radial waves are also referred to as pressure waves since they exhibit pronounced pressure fluctuations. For a thorough evaluation of the mathematical models used in the analysis it is necessary to measure also the dispersion and attenuation of the axial and circumferential (torsion) waves.

To this end a method has been developed to determine the phase velocities and damping of sinusoidal axial waves in the carotid artery of anesthetized dogs with the aid of an electro-optical tracking system. For frequencies between 25 and 150 Hz the speed of the axial waves was between 20 and 40 m/sec and generally increased with frequency, while the natural pressure wave travelled at a speed of about 10 m/sec. On the basis of an isotropic wall model the axial wave speed should however be approximately 5 times higher than the pressure wave speed. This discrepancy can be interpreted as an indication for an anisotropic behavior of the carotid wall. The carotid artery appears to be more elastic in the axial than in the circumferential direction.  相似文献   


16.
The material properties of passive skeletal muscle are critical to proper function and are frequently a target for therapeutic and interventional strategies. Investigations into the passive viscoelasticity of muscle have primarily focused on characterizing the elastic behavior, largely neglecting the viscous component. However, viscosity is a sizeable contributor to muscle stress and extensibility during passive stretch and thus there is a need for characterization of the viscous as well as the elastic components of muscle viscoelasticity. Single mouse muscle fibers were subjected to incremental stress relaxation tests to characterize the dependence of passive muscle stress on time, strain and strain rate. A model was then developed to describe fiber viscoelasticity incorporating the observed nonlinearities. The results of this model were compared with two commonly used linear viscoelastic models in their ability to represent fiber stress relaxation and strain rate sensitivity. The viscous component of mouse muscle fiber stress was not linear as is typically assumed, but rather a more complex function of time, strain and strain rate. The model developed here, which incorporates these nonlinearities, was better able to represent the stress relaxation behavior of fibers under the conditions tested than commonly used models with linear viscosity. It presents a new tool to investigate the changes in muscle viscous stresses with age, injury and disuse.  相似文献   

17.

Percutaneous coronary intervention (PCI) has become the primary treatment for patients with coronary heart disease because of its minimally invasive nature and high efficiency. Anatomical studies have shown that most coronary vessels gradually shrink, and the vessels gradually become thinner from the proximal to the distal end. In this paper, the effects of different stent expansion methods on the mechanical and hemodynamic behaviors of coronary vessels and stents were studied. To perform a structural-mechanical analysis of stent implantation, the coronary vessels with branching vessels and the coronary vessels with large bending curvature are selected. The two characteristic structures are implanted in equal diameter expansion mode and conical expansion mode, and the stress and mechanical behaviors of the coronary vessels and stents are analyzed. The results of the structural-mechanical analysis showed that the mechanical behaviors and fatigue performance of the cobalt-chromium alloy stent were good, and the different expansion modes of the stent had little effect on the fatigue performance of the stent. However, the equal diameter expansion mode increased distal coronary artery stress and the risk of vascular injury. The computational fluid dynamics analysis results showed that different stent expansion methods had varied effects on coronary vessel hemodynamics and that the wall shear stress distribution of conical stent expansion is more uniform compared with equal diameter expansion. Additionally, the vortex phenomenon is not apparent, the blood flow velocity is slightly increased, the hydrodynamic environment is more reasonable, and the risk of coronary artery injury is reduced.

  相似文献   

18.
Viscoplasticity of respiratory tissues   总被引:2,自引:0,他引:2  
Low-frequency mechanical behavior of various respiratory tissues shows certain similarities. In this study we test the hypothesis that rate-independent plastic processes along with rate-dependent viscoelastic processes are responsible. We considered oscillatory responses of several respiratory tissues measured over prescribed ranges of frequency (up to 6 Hz) and amplitude of forcing. These included the excised cat lung, the human chest wall in vivo, and two components of the chest wall: the excised dog rib cage and the excised rabbit abdominal viscera; some data were previously reported and some are new. We analyzed these data using the viscoplastic model of Hildebrandt (J. Appl. Physiol. 28: 365-372, 1970). It consists of three compartments: a plastoelastic compartment mechanically in parallel with a viscoelastic compartment, both in series with a lumped inertia. We fitted oscillatory data of the above respiratory tissues to the model by a least-squares technique. The fit was qualitatively consistent with the observations and exhibited moderately good to very good quantitative correspondence. As an independent verification of this approach, we obtained the stress relaxation after a step-volume change. Based on the oscillatory response of cat lungs, the calculated stress relaxation function was found to be generally consistent with corresponding observations. This study indicates that both plasticity and viscoelasticity appear to be important determinants of mechanical behavior of respiratory tissues at low frequencies and that inertial effects are negligible.  相似文献   

19.
20.
金丽  张耀光 《四川动物》2007,26(2):395-396,I0007
2005年10月~2006年5月,用组织学技术研究中华蟾蜍颈动脉腺结构。结果表明,颈动脉腺位于外颈动脉基部,圆球形,深红色至棕褐色。组织结构显示:颈动脉腺的外壁是动脉管壁的延续,包括外膜、中膜和内膜。整个外壁厚薄不均。颈动脉腺的最大特点是中膜和内膜并不像一般血管形成环圈状,而是从不同部位向管腔突出延伸、相互连接构成大小不一、形状各异、迂回曲折的网状血管。管腔大者,管壁厚,弹性纤维、平滑肌纤维多,内膜靠腔面内皮细胞多成立方状,细胞核端位近圆形;管腔小者,管壁薄,弹性纤维、平滑肌纤维少,内皮细胞扁平、排列稀疏,胞核长梭形;一些区域管径极小,管壁极薄,成为开放的血窦,只允许一个血细胞通过。网状管壁间有密集成团的大型类上皮细胞等细胞分布。据结构推测中华蟾蜍颈动脉腺有调节血压等功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号