首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. In Arabidopsis thaliana, there are genes encoding at least five phytochromes, and it is of interest to learn if the different phytochromes have overlapping or distinct functions. To address this question for two of the phytochromes in Arabidopsis, we have compared light responses of the wild type with those of a phyA null mutant, a phyB null mutant, and a phyA phyB double mutant. We have found that both phyA and phyB mutants have a deficiency in germination, the phyA mutant in far-red light and the phyB mutant in the dark. Furthermore, the germination defect caused by the phyA mutation in far- red light could be suppressed by a phyB mutation, suggesting that phytochrome B (PHYB) can have an inhibitory as well as a stimulatory effect on germination. In red light, the phyA phyB double mutant, but neither single mutant, had poorly developed cotyledons, as well as reduced red-light induction of CAB gene expression and potentiation of chlorophyll induction. The phyA mutant was deficient in sensing a flowering response inductive photoperiod, suggesting that PHYA participates in sensing daylength. In contrast, the phyB mutant flowered earlier than the wild type (and the phyA mutant) under all photoperiods tested, but responded to an inductive photoperiod. Thus, PHYA and PHYB appear to have complementary functions in controlling germination, seedling development, and flowering. We discuss the implications of these results for possible mechanisms of PHYA and PHYB signal transduction.  相似文献   

2.
The shade avoidance syndrome (SAS) allows plants to anticipate and avoid shading by neighbouring plants by initiating an elongation growth response. The phytochrome photoreceptors are able to detect a reduction in the red:far red ratio in incident light, the result of selective absorption of red and blue wavelengths by proximal vegetation. A shade-responsive luciferase reporter line (PHYB::LUC) was used to carry out a high-throughput screen to identify novel SAS mutants. The dracula 1 (dra1) mutant, that showed no avoidance of shade for the PHYB::LUC response, was the result of a mutation in the PHYA gene. Like previously characterized phyA mutants, dra1 showed a long hypocotyl in far red light and an enhanced hypocotyl elongation response to shade. However, dra1 additionally showed a long hypocotyl in red light. Since phyB levels are relatively unaffected in dra1, this gain-of-function red light phenotype strongly suggests a disruption of phyB signalling. The dra1 mutation, G773E within the phyA PAS2 domain, occurs at a residue absolutely conserved among phyA sequences. The equivalent residue in phyB is absolutely conserved as a threonine. PAS domains are structurally conserved domains involved in molecular interaction. Structural modelling of the dra1 mutation within the phyA PAS2 domain shows some similarity with the structure of the phyB PAS2 domain, suggesting that the interference with phyB signalling may be the result of non-functional mimicry. Hence, it was hypothesized that this PAS2 residue forms a key distinction between the phyA and phyB phytochrome species.  相似文献   

3.
Weller JL  Murfet IC  Reid JB 《Plant physiology》1997,114(4):1225-1236
In garden pea (Pisum sativum L.), a long-day plant, long photoperiods promote flowering by reducing the synthesis or transport of a graft-transmissible inhibitor of flowering. Previous physiological studies have indicated that this promotive effect is predominantly achieved through a response that requires long exposures to light and for which far-red (FR) light is the most effective. These characteristics implicate the action of phytochrome A (phyA). To investigate this matter further, we screened ethylmethane sulfonate-mutagenized pea seedlings for FR-unresponsive, potentially phyA-deficient mutants. Two allelic, recessive mutants were isolated and were designated fun1 for FR unresponsive. The fun1-1 mutant is specifically deficient in the PHYA apoprotein and has a seedling phenotype indistinguishable from wild type when grown under white light. However, fun1-1 plants grown to maturity under long photoperiods show a highly pleiotropic phenotype, with short internodes, thickened stems, delayed flowering and senescence, longer peduncles, and higher seed yield. This phenotype results in large part from an inability of fun1-1 to detect day extensions. These results establish a crucial role for phyA in the control of flowering in pea, and show that phyA mediates responses to both red and FR light. Furthermore, grafting and epistasis studies with fun1 and dne, a mutant deficient in the floral inhibitor, show that the roles of phyA in seedling deetiolation and in day-length detection are genetically separable and that the phyA-mediated promotion of flowering results from a reduction in the synthesis or transport of the floral inhibitor.  相似文献   

4.
The interactions of phytochrome A (phyA) and phytochrome B (phyB) in the photocontrol of vegetative and reproductive development in pea have been investigated using null mutants for each phytochrome. White-light-grown phyA phyB double mutant plants show severely impaired de-etiolation both at the seedling stage and later in development, with a reduced rate of leaf production and swollen, twisted internodes, and enlarged cells in all stem tissues. PhyA and phyB act in a highly redundant manner to control de-etiolation under continuous, high-irradiance red light. The phyA phyB double mutant shows no significant residual phytochrome responses for either de-etiolation or shade-avoidance, but undergoes partial de-etiolation in blue light. PhyB is shown to inhibit flowering under both long and short photoperiods and this inhibition is required for expression of the promotive effect of phyA. PhyA is solely responsible for the promotion of flowering by night-breaks with white light, whereas phyB appears to play a major role in detection of light quality in end-of-day light treatments, night breaks and day extensions. Finally, the inhibitory effect of phyB is not graft-transmissible, suggesting that phyB acts in a different manner and after phyA in the control of flower induction.  相似文献   

5.
Cryptochromes are widespread in higher plants but their physiological roles as blue-light photoreceptors have been examined in relatively few species. Screening in a phyA null mutant background has identified several blue-light response mutants in pea (Pisum sativum), including one that carries a substitution of a highly conserved glycine residue in the N-terminal photolyase-homologous domain of the pea CRY1 gene. Analyses of cry1, phyA, and phyB mutants show that all three photoreceptors contribute to seedling photomorphogenesis under high-irradiance blue light, whereas phyA is the main photoreceptor active under low irradiances. Triple phyA phyB cry1 mutants grown under high-irradiance blue light are indistinguishable from dark-grown wild-type plants in length and leaf expansion but show a small residual response to higher-irradiance white light. Monogenic cry1 mutants have little discernable phenotype at the seedling stage, but later in development are more elongated than wild-type plants. In addition, the loss of cry1 moderates the short-internode phenotype of older phyA mutants, suggesting an antagonism between phyA and cry1 under some conditions. Pea cry1 has a small inhibitory effect on flowering under long and short days. However, the phyA cry1 double mutant retains a clear promotion of flowering in response to blue-light photoperiod extensions, indicating a role for one or more additional blue-light photoreceptors in the control of flowering in pea.  相似文献   

6.
To investigate the role of distinct phytochrome pools in photoperiodic timekeeping, we characterized four phytochrome genes in the short-day plant Pharbitis nil. Each PHY gene had different photosensory properties and sensitivity to night break that inhibits flowering. During extended dark periods, PHYE, PHYB, and PHYC mRNA accumulation exhibited a circadian rhythmicity indicative of control by an endogenous clock. Phylogenetic analysis recovered four clades of angiosperm phytochrome genes, phyA, phyB, phyC, and phyE. All except the phyE clade included sequences from both monocots and eudicots. In addition, phyA is sister to phyC and phyE sister to phyB, with gymnosperm sequences sister to either the phyA-phyC clade or to the phyB-phyE clade. These results suggest that a single duplication occurred in an ancestral seed plant before the divergence of extant gymnosperms from angiosperms and that two subsequent duplications occurred in an ancestral angiosperm before the divergence of monocots from eudicots. Thus in P. nil, a multigene family with different patterns of mRNA abundance in light and darkness contributes to the total phytochrome pool: one pool is light labile (phyA), whereas the other is light stable (phyB and phyE). In addition, PHYC mRNA represents a third phytochrome pool with intermediate photosensory properties.  相似文献   

7.
We have isolated phytochrome B (phyB) and phyC mutants from rice (Oryza sativa) and have produced all combinations of double mutants. Seedlings of phyB and phyB phyC mutants exhibited a partial loss of sensitivity to continuous red light (Rc) but still showed significant deetiolation responses. The responses to Rc were completely canceled in phyA phyB double mutants. These results indicate that phyA and phyB act in a highly redundant manner to control deetiolation under Rc. Under continuous far-red light (FRc), phyA mutants showed partially impaired deetiolation, and phyA phyC double mutants showed no significant residual phytochrome responses, indicating that not only phyA but also phyC is involved in the photoperception of FRc in rice. Interestingly, the phyB phyC double mutant displayed clear R/FR reversibility in the pulse irradiation experiments, indicating that both phyA and phyB can mediate the low-fluence response for gene expression. Rice is a short-day plant, and we found that mutation in either phyB or phyC caused moderate early flowering under the long-day photoperiod, while monogenic phyA mutation had little effect on the flowering time. The phyA mutation, however, in combination with phyB or phyC mutation caused dramatic early flowering.  相似文献   

8.
Phytochrome B mediates the photoperiodic control of tuber formation in potato   总被引:14,自引:1,他引:13  
To determine whether phytochrome B is involved in the response of potato plants to photoperiod, a potato PHYB cDNA fragment was inserted in the antisense orientation behind the 35S CaMV promoter in Bin19 and this construct was transformed into Solanum tuberosum ssp. andigena plants which normally require short days for tuberization. Two independent transformants were obtained that had much lower levels of PHYB mRNA and protein, and which exhibited phenotypes characteristic of phyB mutants, for example, elongated stems and decreased chlorophyll content. The level of phyA, and of several phytochrome A-controlled responses, was unaffected in these plants. The photoperiodic control of tuberization in these antisense PHYB plants was abolished, the plants tuberizing in short day, long day, or short day plus night break conditions. This result shows that phytochrome B is required for the photoperiodic control of tuberization in potato ( Solanum tuberosum ssp. andigena ) and that it regulates this developmental process by preventing tuber formation in non-inductive photoperiods rather than by promoting tuberization in inductive photoperiods.  相似文献   

9.
The role of phytochrome B2 (phyB2) in the control of photomorphogenesis in tomato (Solanum lycopersicum L.) has been investigated using recently isolated mutants carrying lesions in the PHYB2 gene. The physiological interactions of phytochrome A (phyA), phytochrome B1 (phyB1) and phyB2 have also been explored, using an isogenic series of all possible mutant combinations and several different phenotypic characteristics. The loss of phyB2 had a negligible effect on the development of white-light-grown wild-type or phyA-deficient plants, but substantially enhanced the elongated pale phenotype of the phyB1 mutant. This redundancy was also seen in the control of de-etiolation under continuous red light (R), where the loss of phyB2 had no detectable effect in the presence of phyB1. Under continuous R, phyA action was largely independent of phyB1 and phyB2 in terms of the control of hypocotyl elongation, but antagonized the effects of phyB1 in the control of anthocyanin synthesis, indicating that photoreceptors may interact differently to control different traits. Irradiance response curves for anthocyanin synthesis revealed that phyB1 and phyB2 together mediate all the detectable response to high-irradiance R, and, surprisingly, that the phyA-dependent low-irradiance component is also strongly reduced in the phyB1 phyB2 double mutant. This is not associated with a reduction in phyA protein content or responsiveness to continuous far-red light (FR), suggesting that phyB1 and phyB2 specifically influence phyA activity under low-irradiance R. Finally, the phyA phyB1 phyB2 triple mutant showed strong residual responsiveness to supplementary daytime FR, indicating that at least one of the two remaining phytochromes plays a significant role in tomato photomorphogenesis.  相似文献   

10.
The control of phytochrome A expression at the protein and mRNA levels was investigated in wild-type and phyB-1 mutant sorghum ( Sorghum bicolor [L.] Moench). PHYA mRNA abundance follows a diurnal rhythm in both genotypes, with maximal accumulation near the latter part of the light period. PHYA mRNA is more abundant in the phyB-1 mutant. The level of PHYA message correlates with both R : FR and photon flux density in wild-type, but only with photon flux density in the phyB-1 mutant. The differences in mRNA abundance are reflected in the level of phyA protein, which is elevated in the phyB-1 mutant and accumulates under low photon flux density. During de-etiolation, PHYA message accumulation is initially repressed solely by a very low fluence response (VLFR) presumably mediated by phyA. The phyB-mediated low fluence response maintains the repression of accumulation past the time controlled by the VLFR. With repetitive photoperiods, the transition from the etiolated growth form to autotrophic competency is accompanied by a transition from light-induced reduction of PHYA mRNA abundance to enhanced accumulation during the light period. The loss of phyB function allows partial de-repression of PHYA message accumulation under repetitive photoperiods, resulting in plants deficient in phyB but enriched in phyA. The modification of PHYA mRNA and protein levels in the phyB-1 mutant documented in this study may help clarify the molecular basis of the phyB-1 phenotype. The tailoring of phyA abundance in wild-type to the time of day and shade signals suggests a plastic role for this pigment in controlling development in light-grown plants.  相似文献   

11.
Aerial parts of plants curve towards the light (i.e. positive phototropism), and roots typically grow away from the light (i.e. negative phototropism). In addition, Arabidopsis roots exhibit positive phototropism relative to red light (RL), and this response is mediated by phytochromes A and B (phyA and phyB). Upon light stimulation, phyA and phyB interact with the phytochrome kinase substrate (PKS1) in the cytoplasm. In this study, we investigated the role of PKS1, along with phyA and phyB, in the positive phototropic responses to RL in roots. Using a high-resolution feedback system, we studied the phenotypic responses of roots of phyA, phyB, pks1, phyA pks1 and phyB pks1 null mutants as well as the PKS1-overexpressing line in response to RL. PKS1 emerged as an intermediary in the signalling pathways and appears to promote a negative curvature to RL in roots. In addition, phyA and phyB were both essential for a positive response to RL and act in a complementary fashion. However, either photoreceptor acting without the other results in negative curvature in response to red illumination so that the mode of action differs depending on whether phyA and phyB act independently or together. Our results suggest that PKS1 is part of a signalling pathway independent of phyA and phyB and that PKS1 modulates RL-based root phototropism.  相似文献   

12.
13.
The interaction of light perception with development is the subject of intensive genetic analysis in the model plant Arabidopsis. We performed genetic screens in low white light-a threshold condition in which photomorphogenetic signaling pathways are only partially active-for ethyl methane sulfonate-generated mutants with altered developmental phenotypes. Recessive mutants with exaggerated developmental responses were obtained in eight complementation groups designated shl for seedlings hyperresponsive to light. shl1, shl2, shl5, and shl3 shl4 (double mutant) seedlings showed limited or no phenotypic effects in darkness, but showed significantly enhanced inhibition of hypocotyl elongation in low-white, red, far-red, blue, and green light across a range of fluences. These results reflect developmental hyper-responsiveness to signals generated by both phytochrome and cryptochrome photoreceptors. The shl11 mutant retained significant phenotypic effects on hypocotyl length in both the phyA mutant and phyB mutant backgrounds but may be dependent on CRY1 for phenotypic expression in blue light. The shl2 phenotype was partially dependent on PHYB, PHYA, and CRY1 in red, far-red, and blue light, respectively. shl2 and, in particular, shl1 were partially dependent on HY5 activity for their light-hyperresponsive phenotypes. The SHL genes act (genetically) as light-dependent negative regulators of photomorphogenesis, possibly in a downstream signaling or developmental pathway that is shared by CRY1, PHYA, and PHYB and other photoreceptors (CRY2, PHYC, PHYD, and PHYE).  相似文献   

14.
Su YS  Lagarias JC 《The Plant cell》2007,19(7):2124-2139
The photoreversibility of plant phytochromes enables continuous surveillance of the ambient light environment. Through expression of profluorescent, photoinsensitive Tyr-to-His mutant alleles of Arabidopsis thaliana phytochrome B (PHYB(Y276H)) and Arabidopsis phytochrome A (PHYA(Y242H)) in transgenic Arabidopsis plants, we demonstrate that photoconversion is not a prerequisite for phytochrome signaling. PHYB(Y276H)-expressing plants exhibit chromophore-dependent constitutive photomorphogenesis, light-independent phyB(Y276H) nuclear localization, constitutive activation of genes normally repressed in darkness, and light-insensitive seed germination. Fluence rate analyses of transgenic plants expressing PHYB(Y276H), PHYA(Y242H), and other Y(GAF) mutant alleles of PHYB demonstrate that a range of altered light-signaling activities are associated with mutation of this residue. We conclude that the universally conserved GAF domain Tyr residue, with which the bilin chromophore is intimately associated, performs a critical role in coupling light perception to signal transduction by plant phytochromes.  相似文献   

15.
Transgenic tomato [Lycopersicon esculentum (=Solanum lycopersicum)] lines overexpressing tomato PHYA, PHYB1, or PHYB2, under control of the constitutive double-35S promoter from cauliflower mosaic virus (CaMV) have been generated to test the level of saturation in individual phytochrome-signalling pathways in tomato. Western blot analysis confirmed the elevated phytochrome protein levels in dark-grown seedlings of the respective PHY overexpressing (PHYOE) lines. Exposure to 4 h of red light resulted in a decrease in phytochrome A protein level in the PHYAOE lines, indicating that the chromophore availability is not limiting for assembly into holoprotein and that the excess of phytochrome A protein is also targeted for light-regulated destruction. The elongation and anthocyanin accumulation responses of plants grown under white light, red light, far-red light, and end-of-day far-red light were used for characterization of selected PHYOE lines. In addition, the anthocyanin accumulation response to different fluence rates of red light of 4-d-old dark-grown seedlings was studied. The elevated levels of phyA in the PHYAOE lines had little effect on seedling and adult plant phenotype. Both PHYAOE in the phyA mutant background and PHYB2OE in the double-mutant background rescued the mutant phenotype, proving that expression of the transgene results in biologically active phytochrome. The PHYB1OE lines showed mild effects on the inhibition of stem elongation and anthocyanin accumulation and little or no effect on the red light high irradiance response. By contrast, the PHYB2OE lines showed a strong inhibition of elongation, enhancement of anthocyanin accumulation, and a strong amplification of the red light high irradiance response.  相似文献   

16.
The Ma3 gene is one of six genes that regulate the photoperiodic sensitivity of flowering in sorghum (Sorghum bicolor [L.] Moench). The ma3R mutation of this gene causes a phenotype that is similar to plants that are known to lack phytochrome B, and ma3 sorghum lacks a 123-KD phytochrome that predominates in light-grown plants and that is present in non-ma3 plants. A population segregating for Ma3 and ma3 was created and used to identify two randomly amplified polymorphic DNA markers linked to Ma3. These two markers were cloned and mapped in a recombinant inbred population as restriction fragment length polymorphisms. cDNA clones of PHYA and PHYC were cloned and sequenced from a cDNA library prepared from green sorghum leaves. Using a genome-walking technique, a 7941-bp partial sequence of PHYB, was determined from genomic DNA from ma3 sorghum. PHYA, PHYB, and PHYC all mapped to the same linkage group. The Ma3-linked markers mapped with PHYB more than 121 centimorgans from PHYA and PHYC. A frameshift mutation resulting in a premature stop codon was found in the PHYB sequence from ma3 sorghum. Therefore, we conclude that the Ma3 locus in sorghum is a PHYB gene that encodes a 123-kD phytochrome.  相似文献   

17.
Phytochrome A (phyA) and phytochrome B (phyB) share the control of many processes but little is known about mutual signaling regulation. Here, we report on the interactions between phyA and phyB in the control of the activity of an Lhcb1*2 gene fused to a reporter, hypocotyl growth and cotyledon unfolding in etiolated Arabidopsis thaliana. The very-low fluence responses (VLFR) induced by pulsed far-red light and the high-irradiance responses (HIR) observed under continuous far-red light were absent in the phyA and phyA phyB mutants, normal in the phyB mutant, and reduced in the fhy1 mutant that is defective in phyA signaling. VLFR were also impaired in Columbia compared to Landsberg erecta. The low-fluence responses (LFR) induced by red-light pulses and reversed by subsequent far-red light pulses were small in the wild type, absent in phyB and phyA phyB mutants but strong in the phyA and fhy1 mutants. This indicates a negative effect of phyA and FHY1 on phyB-mediated responses. However, a pre-treatment with continuous far-red light enhanced the LFR induced by a subsequent red-light pulse. This enhancement was absent in phyA, phyB, or phyA phyB and partial in fhy1. The levels of phyB were not affected by the phyA or fhy1 mutations or by far-red light pre-treatments. We conclude that phyA acting in the VLFR mode (i.e. under light pulses) is antagonistic to phyB signaling whereas phyA acting in the HIR mode (i.e. under continuous far-red light) operates synergistically with phyB signaling, and that both types of interaction require FHY1.  相似文献   

18.
Here, we report the isolation and characterization of a strong dominant-negative phytochrome A (phyA) mutation (phyA-300D) in Arabidopsis. This mutation carries a single amino acid substitution at residue 631, from valine to methionine (V631M), in the core region within the C-terminal half of PHYA. This PHYA core region contains two protein-interactive motifs, PAS1 and PAS2. Val-631 is located within the PAS1 motif. The phyA-V631M mutant protein is photochemically active and accumulates to a level similar to wild type in dark-grown seedlings. Overexpression of PHYA-V631M in a wild-type background results in a dominant-negative interference with endogenous wild-type phyA, whereas PHYA-V631M in a phyA null mutant background is inactive. To investigate the specificity of this mutation within the phytochrome family, the corresponding amino acid substitution (V664M) was created in the PHYTOCHROME B (PHYB) polypeptide. We found that the phyB-V664M mutant protein is physiologically active in phyB mutant and causes no interfering effect in a wild-type background. Together, our results reveal a unique feature in phyA signal propagation through the C-terminal core region.  相似文献   

19.
TZP(TANDEM ZINC-FINGER/PLUS3)是近年来鉴定到的一个光信号转导途径新组分,在光介导的植物生长发育过程中发挥重要调控作用。TZP不仅负调控蓝光信号途径,参与光敏色素B(phyB)介导的开花调控过程,还参与调控phyA在体内的蛋白质磷酸化。对TZP生化活性和作用机制的深入研究,不仅有助于进一步完善光信号调控网络,也可为设计和培育具有耐密理想株型及高光效作物新品种提供理论依据。该文系统总结了TZP在植物光信号途径中发挥的重要调控作用,并提出未来TZP功能研究的重要问题。  相似文献   

20.
In this study, oat phytochrome A (phyA), Arabidopsis phytochrome B (phyB) or Arabidopsis phytochrome C (phyC) were expressed in both day-neutral and photo-period-sensitive (short-day) tobacco (Nicotiana tabacum cv. Hicks). Introgression of the Maryland Mammoth (MM) gene into cv Hicks was used to confer short-day photo-periodic sensitivity. Expression of oat phyA led to characteristic hypersensitivity of hypocotyls to red light (R) and far-red light (FR) and an overall dwarfing of the mature plant. Expression of Arabidopsis phyB enhanced the sensitivity of hypocotyls to R and caused even more marked dwarfing of the mature plant. In contrast, the expression of Arabidopsis phyC had no detectable consequences for the photocontrol of hypocotyl elongation. However, phyC expression did lead to a R-dependent increase in cotyledon expansion in de-etiolating seedlings and to a significant increase in leaf area in mature plants. This provides the first experimental evidence that phyC is biologically active. The flowering time of cv Hicks plants grown under 8 h photoperiods was virtually unaffected by a 30 min white light (W) night break given 8 h into the dark period. In contrast, cv Hicks MM plants responded to a night break with a delay in flowering. Expression of phyA or phyB led to a night break-dependent delay in flowering in cv Hicks plants. For cv Hicks MM plants, the expression of any of phyA, phyB or phyC caused a marked enhancement of the flower-delaying effect of a night break. These observations indicate that transgenic phyA, phyB or phyC can interact with the endogenous mechanisms controlling flowering time in tobacco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号