首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An obvious consequence of habitat fragmentation is an increasing role of habitat edges for species survival. Recently it has been suggested that the endangered butterfly Maculinea nausithous prefers forested edges of its meadow habitats. However, the prevalence of forests in the study area used for this analysis makes it impossible to distinguish whether the effect detected is a genuine preference for forest edges or a preference for any natural patch edges as opposed to patch interiors. We investigated habitat selection by Maculinea nausithous and Maculinea teleius occurring sympatrically at five habitat patches surrounded by mosaic landscape. Butterfly capture positions were marked with GPS and subsequently analysed with GIS software. Both species avoided the interiors of their patches and concentrated in the edge zone, but these preferences were visible only at three larger patches exceeding 1 ha in area. Among different types of edges those bordering densely built-up areas were avoided, whereas all natural edges (adjacent to forests, reeds or grasslands) were similarly used. We hypothesise that preferences towards natural patch edges, regardless of their type, can be explained by the spatial interactions between Maculinea butterflies and Myrmica ants they parasitise. Patch surroundings constitute refuge space for the ants, and hence their densities may be expected to be higher near patch edges. Our findings indicate the importance of patch surroundings for the persistence of Maculinea populations. Regretfully, current legal framework makes it difficult to protect patch surroundings, where neither priority species nor their habitats occur.  相似文献   

2.
Aim This study investigated whether habitat fragmentation at the landscape level influences patch occupancy and abundance of the black‐headed gull, Chroicocephalus ridibundus, and whether the response of the species to environmental factors is consistent across replicated landscape plots. Location Water bodies (habitat patches) in southern Poland. Methods Surveys were conducted in two landscape types (four plots in each): (1) more‐fragmented landscape, in which habitat patches were small (mean size 2.2–6.2 ha) and far apart (mean distance 2.5–3.1 km); and (2) less‐fragmented landscape, in which habitat patches were large (mean size 9.2–16.5 ha) and separated by short distances (mean 0.9–1.4 km). Observations were performed twice in 284 potential habitat patches during the 2007 breeding season. Results Colonies were significantly more frequent and larger in the less‐fragmented landscapes than in the more‐fragmented ones. Probability of patch occupancy and number of breeding birds were positively related with patch size and these relationships were especially strong in the more‐fragmented landscapes. In the less‐fragmented landscapes, the occurrence of black‐headed gulls was negatively related to the distance to the nearest local population, but in the more‐fragmented landscapes such a relationship was not detected. As distance to the nearest habitat patch increased, the probability of the patch occupancy decreased in the more‐fragmented landscapes. Moreover, abundance was negatively influenced by distance to the nearest habitat patch, especially strongly in more‐fragmented landscapes. Proximity of corridors (rivers) positively influenced the occupation of patches regardless of landscape type. The number of islets positively influenced occupancy and abundance of local populations, and this relationship was stronger in the more‐fragmented landscapes. Main conclusions Our results are in agreement with predictions from metapopulation theory and are the first evidence that populations of black‐headed gulls may have a metapopulation structure. However, patch occupancy and abundance were differentially affected by explanatory variables in the more‐fragmented landscapes than in the less‐fragmented ones. This implies that it is impossible to derive, a priori, predictions about presence/abundance patterns based on only a single landscape.  相似文献   

3.
Habitat fragmentation involves a reduction in the effective area available to a population and the imposition of hard patch edges. Studies seeking to measure effects of habitat fragmentation have compared populations in fragments of different size to estimate and area effect but few have examined the effect of converting open populations to closed ones (an effect of edges). To do so requires a shift in spatial scope-from comparison of individual fragments to that of fragmented versus unfragmented landscapes. Here we note that large-scale, controlled studies of habitat fragmentation have rarely been performed and are needed. In making our case we develop a simple computer simulation model based on how individual animals with home ranges are affected by the imposition of habitat edges, and use it to predict population-level responses to habitat fragmentation. We then compare predictions of the model with results from a field experiment on Peromyscus and Microtus. Our model treats the case where home ranges/territories fall entirely within or partially overlap with that of sample areas in continuous landscapes, but are restricted to areas within habitat fragments in impacted landscapes. Results of the simulations demonstrate that the imposition of hard edges can produce different population abundances for similar-sized areas in continuous and fragmented landscapes. This edge effect is disproportionately greater in small than large fragments and for species with larger than smaller home ranges. These predictions were generally supported by our field experiment. We argue that large-scale studies of habitat fragmentation are sorely needed, and that control-experiment contrasts of fragmented and unfragmented microlandscapes provide a logical starting point.  相似文献   

4.
We studied the space use of the Siberian flying squirrel in fragmented forest landscapes in southern Finland in 1996- 1999. Twenty-four adult males and 23 adult females were radio trucked in three different study areas. The use of different landscape elements by flying squirrels was compared to their availability using compositional analysis. Effects of fragmentation on flying squirrels were studied by comparing the use of different habitat types, number of used patches, and size of home range to the principal components formed from the landscape variables patch size, patch isolation, area of spruce-dominated forests, and area of other habitats with trees.
Flying squirrels preferred spruce- and deciduous-dominated forests, but other habitats with trees were also used for moving and foraging. These less preferred habitats connected spruce and deciduous forest patches in a matrix of open areas. Males used several separate patches of preferred habitat, but females usually stayed in one patch. The spacing behaviour of males was affected by the structure of the landscape in a way that home ranges were larger and males used more spruce patches in the more highly fragmented landscape. Home-range size of females was not affected by the landscape structure. Basically, the space use of males seemed lo be reflected by the location and number of female home ranges. In the study area where female density was high, the home ranges of males were small. Our results give empirical evidence of the effects of habitat loss and landscape connectivity for the Siberian flying squirrel and the implications of these for the conservation of the species.  相似文献   

5.
Bird communities in tropical forests are strongly affected by both patch area and habitat edges. The fact that both effects are intrinsically confounded in space raises questions about how these two widely reported ecological patterns interact, and whether they are independent or simply different spatial manifestations of the same phenomenon. Moreover, do small patches of secondary forest, in landscapes where the most sensitive species have gone locally extinct, exhibit similar patterns to those previously observed in fragmented and continuous primary forests? We addressed these questions by testing edge‐related differences in vegetation structure and bird community composition at 31 sites in fragmented and continuous landscapes in the imperilled Atlantic forest of Brazil. Over a two‐year period, birds were captured with mist nets to a standardized effort of 680 net‐hours at each site (~22 000 net‐hours resulting in 3381 captures from 114 species). We found that the bird community in patches of secondary forest was degraded in species composition compared to primary continuous forest, but still exhibited a strong response to edge effects. In fragmented secondary forests, edge and area effects also interacted, such that the magnitude of edge to interior differences on bird community composition declined markedly with patch size. The change in bird species composition between forest interiors and edges was similar to the change in community composition between large and small patches (because species had congruent responses to edge and area), but after controlling for edge effects community composition was no longer affected by patch area. Our results show that although secondary forests hold an impoverished bird community, ecological patterns such as area and edge effects are similar to those reported for primary forests. Our data provide further evidence that edge effects are the main drivers of area effects in fragmented landscapes.  相似文献   

6.
1. Local extinctions in habitat patches and asymmetric dispersal between patches are key processes structuring animal populations in heterogeneous environments. Effective landscape conservation requires an understanding of how habitat loss and fragmentation influence demographic processes within populations and movement between populations. 2. We used patch occupancy surveys and molecular data for a rainforest bird, the logrunner (Orthonyx temminckii), to determine (i) the effects of landscape change and patch structure on local extinction; (ii) the asymmetry of emigration and immigration rates; (iii) the relative influence of local and between-population landscapes on asymmetric emigration and immigration; and (iv) the relative contributions of habitat loss and habitat fragmentation to asymmetric emigration and immigration. 3. Whether or not a patch was occupied by logrunners was primarily determined by the isolation of that patch. After controlling for patch isolation, patch occupancy declined in landscapes experiencing high levels of rainforest loss over the last 100 years. Habitat loss and fragmentation over the last century was more important than the current pattern of patch isolation alone, which suggested that immigration from neighbouring patches was unable to prevent local extinction in highly modified landscapes. 4. We discovered that dispersal between logrunner populations is highly asymmetric. Emigration rates were 39% lower when local landscapes were fragmented, but emigration was not limited by the structure of the between-population landscapes. In contrast, immigration was 37% greater when local landscapes were fragmented and was lower when the between-population landscapes were fragmented. Rainforest fragmentation influenced asymmetric dispersal to a greater extent than did rainforest loss, and a 60% reduction in mean patch area was capable of switching a population from being a net exporter to a net importer of dispersing logrunners. 5. The synergistic effects of landscape change on species occurrence and asymmetric dispersal have important implications for conservation. Conservation measures that maintain large patch sizes in the landscape may promote asymmetric dispersal from intact to fragmented landscapes and allow rainforest bird populations to persist in fragmented and degraded landscapes. These sink populations could form the kernel of source populations given sufficient habitat restoration. However, the success of this rescue effect will depend on the quality of the between-population landscapes.  相似文献   

7.
Habitat edges frequently possess distinct ecological conditions that affect interactions such as competition and predation. Within a species' preferred habitat, the structural complexity and resource availability of adjacent habitats may influence the effect of edges on ecological processes. In nearshore waters of New England, American lobsters (Homarus americanus) inhabit fragmented cobble reefs that often are bordered by unvegetated sediment and occasionally by seagrass. We determined whether proximity to cobble patch edges, microhabitat characteristics within cobble habitat, and the type of habitat adjacent to cobble patches (seagrass or unvegetated sediment) influence the density and survival of juvenile and adult American lobsters in Narragansett Bay, Rhode Island, USA. We surveyed naturally occurring cobble patches and artificial cobble reefs to determine how the odds of finding lobsters varied with distance from the edge and habitat type. Additionally, we tethered lobsters at different distances from the edge inside and outside of cobble patches to determine how lobster relative survival varied with edge proximity and habitat type. In cobble habitat, the odds of finding large lobsters (adolescents and adults > 40 mm carapace length (CL)) were highest near patch edges regardless of adjacent habitat type, whereas smaller lobsters (e.g. emergent juveniles 15-25 mm CL) were more abundant in patch interiors when seagrass bordered cobble patches. The odds of finding lobsters also increased with the relative amount of cobble cover within patches. In predation experiments, lobster relative survival after 6 h was lowest outside of cobble and increased toward cobble patch interiors, but after 24 h this trend disappeared or reversed. Seagrass appeared to offer greater refuge for lobsters than did unvegetated sediment. Our results suggest that proximity to patch edges influences lobster distribution and survival, and that edge effects on lobsters vary with life history phase and with the type of habitat adjacent to cobble patches.  相似文献   

8.
Habitat fragmentation is thought to be an important process structuring landscapes in marine and estuarine environments, but effects on fauna are poorly understood, in part because of a focus on patchiness rather than fragmentation. Furthermore, despite concomitant increases in perimeter:area ratios with fragmentation, we have little understanding of how fauna change from patch edges to interiors during fragmentation. Densities of meiofauna were measured at different distances across the edges of four artificial seagrass treatments [continuous, fragmented, procedural control (to control for disturbance by fragmenting then restoring experimental plots), and patchy] 1 day, 1 week and 1 month after fragmentation. Experimental plots were established 1 week prior to fragmentation/disturbance. Samples were numerically dominated by harpacticoid copepods, densities of which were greater at the edge than 0.5 m into patches for continuous, procedural control and patchy treatments; densities were similar between the edge and 0.5 m in fragmented patches. For taxa that demonstrated edge effects, densities exhibited log-linear declines to 0.5 m into a patch with no differences observed between 0.5 m and 1 m into continuous treatments. In patchy treatments densities were similar at the internal and external edges for many taxa. The strong positive edge effect (higher densities at edge than interior) for taxa such as harpacticoid copepods implies some benefit of patchy landscapes. But the lack of edge effects during patch fragmentation itself demonstrates the importance of the mechanisms by which habitats become patchy.  相似文献   

9.
In fragmented landscapes, changes in habitat availability, patch size, shape and isolation may affect survival of local populations. Proposing efficient conservation strategies for such species relies initially on distinguishing the particular effects of those factors. To address these issues, we investigated the occurrence of 3 bird species in fragmented Brazilian Atlantic Forest landscapes. Playback techniques were used to collect presence/absence data of these species inside 80 forest patches, and incidence models were used to infer their occupancy pattern from landscape spatial structure. The relative importance of patch size, shape and surrounding forest cover and isolation was assessed using a model selection approach based on maximum likelihood estimation. The presence of all species was in general positively affected by the amount of surrounding habitat and negatively affected by inter‐patch distances. The joint effects of patch size and the surrounding landscape characteristics were important determinants of occupancy for two species. The third species was affected only by forest cover and mean patch isolation. Our results suggest that local species presence is in general more influenced by the isolation from surrounding forests than by patch size alone. We found evidence that, in highly fragmented landscapes, birds that can not find patches large enough to settle may be able to overcome short distances through the matrix and include several nearby patches within their home‐ranges to complement their resource needs. In these cases, patches must be defined as functionally connected habitat networks rather than mere continuous forest segments. Bird conservation strategies in the Atlantic forest should focus on increasing patch density and connectivity, in order to implement forest networks that reduce the functional isolation between large remnants with remaining core habitat.  相似文献   

10.

Background

The total amount of native vegetation is an important property of fragmented landscapes and is known to exert a strong influence on population and metapopulation dynamics. As the relationship between habitat loss and local patch and gap characteristics is strongly non-linear, theoretical models predict that immigration rates should decrease dramatically at low levels of remaining native vegetation cover, leading to patch-area effects and the existence of species extinction thresholds across fragmented landscapes with different proportions of remaining native vegetation. Although empirical patterns of species distribution and richness give support to these models, direct measurements of immigration rates across fragmented landscapes are still lacking.

Methodology/Principal Findings

Using the Brazilian Atlantic forest marsupial Gray Slender Mouse Opossum (Marmosops incanus) as a model species and estimating demographic parameters of populations in patches situated in three landscapes differing in the total amount of remaining forest, we tested the hypotheses that patch-area effects on population density are apparent only at intermediate levels of forest cover, and that immigration rates into forest patches are defined primarily by landscape context surrounding patches. As expected, we observed a positive patch-area effect on M. incanus density only within the landscape with intermediate forest cover. Density was independent of patch size in the most forested landscape and the species was absent from the most deforested landscape. Specifically, the mean estimated numbers of immigrants into small patches were lower in the landscape with intermediate forest cover compared to the most forested landscape.

Conclusions/Significance

Our results reveal the crucial importance of the total amount of remaining native vegetation for species persistence in fragmented landscapes, and specifically as to the role of variable immigration rates in providing the underlying mechanism that drives both patch-area effects and species extinction thresholds.  相似文献   

11.
Recent studies on the effects of tropical forest fragmentation indicate that fragmented landscapes are complex and heterogeneous systems influenced by factors other than the size or degree of isolation of forest remnants: of particular importance are the quality of the matrix and the edge-induced habitat changes. In order to investigate the influence of these factors, small mammals were surveyed in 36 sites in the landscape of Una, a region that encompasses some of the last and largest Atlantic Forest remnants in northeastern Brazil. Six sites were distributed on each of six landscape components – the interiors and edges of small remnants, the interiors and edges of large remnants, and the most common forested habitats found in the matrix. The survey comprised 46,656 trap-nights and yielded 1725 individuals of 20 species of rodents and marsupials. Results revealed: an increase in beta-diversity caused by fragmentation; the contrasting effects of the altered forested habitats of the matrix, which harbor both forest and disturbance-adapted species; a greater importance of edge effect than of patch size to the observed changes in small mammal community in remnants; an association among terrestrial forest species and among arboreal forest species in terms of the distribution and abundance in the Una mosaic; and a distinctive vulnerability of these two groups of species to fragmentation. Results emphasize the biological importance and conservation value of both fragmented landscapes and small remnants in the Atlantic Forest, as well as the importance of management techniques to control and attenuate edge effects.  相似文献   

12.
Habitat fragmentation has become one of the major threats to biodiversity worldwide, particularly in the case of forests, which have suffered enormous losses during the past decades. We analyzed how changes in patch configuration and habitat quality derived from the fragmentation of austral temperate rainforests affect the distribution of six species of forest-dwelling climbing and epiphytic angiosperms. Epiphyte and vine abundance is primarily affected by the internal characteristics of patches (such as tree size, the presence of logging gaps or the proximity to patch edges) rather than patch and landscape features (such as patch size, shape or connectivity). These responses were intimately related to species-specific characteristics such as drought- or shade-tolerance. Our study therefore suggests that plant responses to fragmentation are contingent on both the species'' ecology and the specific pathways through which the study area is being fragmented, (i.e. extensive logging that shaped the boundaries of current forest patches plus recent, unregulated logging that creates gaps within patches). Management practices in fragmented landscapes should therefore consider habitat quality within patches together with other spatial attributes at landscape or patch scales.  相似文献   

13.
Importance of patch scale vs landscape scale on selected forest birds   总被引:8,自引:0,他引:8  
The management and protection of natural areas have primarily occurred in isolation from surrounding land management. The structure of surrounding land cover, however, may be important to the abundance and reproductive success of birds within a habitat patch. We investigated the relative importance of forest patch area, within patch habitat and surrounding landscape forest cover on the abundance of three Neotropical migrant bird species thought to be area-sensitive (ovenbird [ Seiurus aurocapillus ], wood thrush [ Hylocichla mustelina ] and red-eyed vireo [ Vireo olivaceus ]), and on pairing success of the ovenbird. We selected 31 isolated forest patches of differing sizes, and three 80-ha plots in continuous forest each centered within non-overlapping 200-ha landscapes, such that patch area and landscape forest cover were uncorrelated among landscapes. Each study plot was surveyed to estimate abundances of territorial males and ovenbird pairing success. Landscape forest cover ( p <0.05) explained the most variation in ovenbird abundance, while percent deciduous forest cover within patches ( p <0.05) and patch size ( p <0.05) explained the most variation in red-eyed vireo and wood thrush abundance, respectively. Patch size was a significant ( p <0.05) predictor of abundance for all three study species; however, density for all species decreased significantly ( p <0.05) with patch size. Ovenbird pairing success was higher in continuous forest plots than in forest patches ( p =0.018). This study's findings suggest that the relative importance of within patch characteristics, patch size and landscape forest cover varies for different bird species, and that conservation efforts would benefit from the inclusion of all three factors.  相似文献   

14.
Because spatial connectivity is critical to dispersal success and persistence of species in highly fragmented landscapes, the way that we envision and measure connectivity is consequential for biodiversity conservation. Connectivity metrics used for predictive modeling of spatial turnover and patch occupancy for metapopulations, such as with Incidence Function Models (IFM), incorporate distances to and sizes of possible source populations. Here, our focus is on whether habitat quality of source patches also is considered in these connectivity metrics. We propose that effective areas (weighted by habitat quality) of source patches should be better surrogates for population size and dispersal potential compared to unadjusted patch areas. Our review of a representative sample of the literature revealed that only 12.5% of studies incorporated habitat quality of source patches into IFM-type connectivity metrics. Quality of source patches generally was not taken into account in studies even if habitat quality of focal patches was included in analyses. We provide an empirical example for a metapopulation of a rare wetland species, the round-tailed muskrat (Neofiber alleni), demonstrating that a connectivity metric based on effective areas of source patches better predicts patch colonization and occupancy than a metric that used simple patch areas. The ongoing integration of landscape ecology and metapopulation dynamics could be hastened by incorporating habitat quality of source patches into spatial connectivity metrics applied to species conservation in fragmented landscapes.  相似文献   

15.
Amphibians and reptiles are sensitive to changes in the thermal environment, which varies considerably in human-modified landscapes. Although it is known that thermal traits of species influence their distribution in modified landscapes, how herpetofauna respond specifically to shifts in ambient temperature along forest edges remains unclear. This may be because most studies focus on local-scale metrics of edge exposure, which only account for a single edge or habitat patch. We predicted that accounting for the combined effect of multiple habitat edges in a landscape would best explain herpetofaunal response to thermally mediated edge effects. We (1) surveyed herpetofauna at two lowland, fragmented forest sites in central Colombia, (2) measured the critical thermal maximum (CTmax) of the species sampled, (3) measured their edge exposure at both local and landscape scales, and (4) created a thermal profile of the landscape itself. We found that species with low CTmax occurred both further from forest edges and in areas of denser vegetation, but were unaffected by the landscape-scale configuration of habitat edges. Variation in the thermal landscape was driven primarily by changes in vegetation density. Our results suggest that amphibians and reptiles with low CTmax are limited by both canopy gaps and proximity to edge, making them especially vulnerable to human modification of tropical forest. Abstract in Spanish is available with online material.  相似文献   

16.
我们在斑块化的景观中实验测定了犬尾田鼠(Microtus canicaudus)的生境喜好,验证下列假说:在一斑块生境中,与边缘区域相比,雌性田鼠喜好内部区域.在低密度和高密度时成年雌性的巢区在生境内部区域分别占100% 和76%.高密度时在边缘区域雌性的捕获率较低,这种差异在低密度时更突出.在高密度时通过选择性去除生境内部和边缘区域的一些雌体,边缘区域13只雌体中8只(占62%)的巢区发生从边缘到内部区域的转移,内部区域20只雌体中只有3只(占15%)的巢区向边缘区域转移.动物的繁殖率、生存和体重在两个区域之间没有差异.但是,边缘区域个体的巢区比内部区域的要小.这些结果支持一些关于其他啮齿动物的研究观察结果(如鼠平类和田鼠类),但与草原田鼠不同.因此在一斑块生境中,与边缘区域相比,长尾田鼠更喜好内部区域,边缘区域与内部区域的比率可潜在影响动物的生境选择,也可能会影响斑块化生境中的种群统计学特征.  相似文献   

17.
Urban landscapes often expose wildlife populations to enhanced edge effects where the biotic and abiotic attributes of native ecosystems have been significantly altered. While some species may respond favourably to edges, there are likely to be varying negative consequences for many forest‐dependent species. In particular, marsupial gliders are influenced by changes in forest composition and structure near edges due to highly specific feeding and nesting requirements, and a high reliance on tree cover to traverse a landscape. We addressed this problem using the squirrel glider (Petaurus norfolcensis) in the fragmented urban landscape of southeast Queensland, Australia. Analysis of variance was applied to determine differences in habitat resources and structure in relation to glider presence and trap success rates in forest fragment interiors compared with road (minor & major) and residential edge habitats. We postulate that an increased presence of squirrel gliders in sites adjacent to minor road and residential edges may be due to the availability of additional resources and/or varying dispersal opportunities. Conversely, forest fragment interiors contain a higher abundance of nest hollows and large trees, together with a greater floristic species richness providing more reliable seasonal foraging sources, which may explain the greater trap success rates of squirrel gliders in these sites. We conclude that while forest fragment interiors provide habitat suitable for year‐round use by greater numbers of squirrel gliders, the conservation value of some edge habitats that provide additional resources and dispersal opportunities should not be underestimated for forest‐dependent mammals; however, each edge type must be assessed individually.  相似文献   

18.
Previous breeding-season studies of threatened New Zealand falcons (Falco novaeseelandiae) in plantation forests have suggested that falcons benefit when harvesting creates a mosaic of differently aged stands, especially where young and mature tree stands are adjacent. Thus, changes in the rate and pattern of harvesting may affect habitat heterogeneity by altering the size and distribution of forest patches. We sought to determine guidelines for harvesting that would most benefit falcons by increasing the carrying capacity of the forest for falcons. We used radio-tracking to determine the home-range sizes of non-breeding falcons over 3 seasons and compared winter home-range overlap in the most-selected land cover types by falcons (mature-young edges and open patches) with other land cover types. The distribution of open patches and edges between mature stands and recently cleared areas affected falcon home ranges, home-range overlap, and the likelihood of nesting. Specifically, home ranges were smaller as the density of edges and percentage of open patch increased, and there was greater home-range overlap between individuals in the most-selected land cover types. Numbers of falcons decreased as the size of open patches increased, concomitant with a decrease in edge size, the number of edge borders, and the number of open patches. The likelihood of nesting also decreased as open patch size increased. Our results indicate that smaller open patches spread through a forest, maximizing the amount of mature-young edges, will favor smaller home ranges and therefore potentially greater numbers of falcons. We recommend harvesting protocols that ensure that open patches (0–3-yr-old stands) are <4 km2 in size and retain at least small stands of mature pine to maintain a high density of edges. Similar protocols may increase the carrying capacity for other species occurring in managed systems involving fragmented landscapes or small reserves. © 2021 The Wildlife Society.  相似文献   

19.
Population consequences of movement decisions in a patchy landscape   总被引:2,自引:0,他引:2  
Complex, human‐dominated landscapes provide unique challenges to animals. In landscapes fragmented by human activity, species whose home ranges ordinarily consist of continuous habitat in pristine environments may be forced to forage among multiple smaller habitat patches embedded in an inhospitable environment. Furthermore, foragers often must decide whether to traverse a heterogeneous suite of landscape elements that differ in risk of predation or energetic costs. We modeled population consequences of foraging decisions for animals occupying patches embedded in a heterogeneous landscape. In our simulations, animals were allowed to use three different rules for moving between patches: a) optimal selection resulting from always choosing the least‐cost path; b) random selection of a movement path; and c) probabilistic selection in which path choice was proportional to an animal's probability of survival while traversing the path. The resulting distribution of the population throughout the landscape was dependent on the movement rule used. Least‐cost movement rules (a) produced landscapes that contained the highest average density of consumers per patch. However, optimal movement resulted in an all‐or‐none pattern of occupancy and a coupling of occupied patches into pairs that effectively reduced the population to a set of sub‐populations. Random and probabilistic rules, (b and c), in relatively safe landscapes produced similar average densities and 100% occupancy of patches. However, as the level of risk associated with travel between patches increased, random movement resulted in an all‐or‐none occupancy pattern while occupied patches in probabilistic populations went extinct independently of the other patches. Our results demonstrate strong effects of inter‐patch heterogeneity and movement decisions on population dynamics, and suggest that models investigating the persistence of species in complex landscapes should take into account the effects of the intervening landscape on behavioral decisions affecting animal movements between patches.  相似文献   

20.
During community assembly, plant functional traits are under selective pressure from processes operating at multiple spatial scales. However, in fragmented landscapes, there is little understanding of the relative importance of local-, patch- and landscape-scale processes in shaping trait distributions. Here, we investigate cross-scale influences of landscape change on traits that dictate plant life history strategies in re-assembling plant communities in a fragmented landscape in eastern China. Using forest dynamics plots (FDPs) on 29 land-bridge islands in which all woody plants have been georeferenced and identified to species, we characterized and derived two composite measures of trait variation, representing variation across the leaf economics spectrum and plant size. We then tested for trait shifts in response to local-, patch- and landscape-scale factors, and their potential cross-scale interactions. We found substantial community-wide trait changes along local-scale gradients (i.e. forest edge to interior): more acquisitive leaf economic traits and larger sized species occurred at edges, with a significant increase in trait means and trait range. Moreover, there were significant cross-scale interaction effects of patch and landscape variables on local-scale edge effects. Altered spatial arrangement of habitat in the surrounding landscape (i.e. declining habitat amount and increasing patch density), as well as decreasing area at the patch level, exacerbated edge effects on traits distributions. We suggest that synergistic interactions of landscape- and patch-scale processes, such as dispersal limitation, on local-scale environmental filtering at edges, together shape the spatial distributions of plant life history strategies in fragmented plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号