首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We examined the effect of perfluorooctanoic acid (PFOA) on adipose cells using 3T3-L1 adipocytes and found that PFOA increased adipocyte differentiation, triglyceride accumulation, and the mRNA level of factors related to adipocyte differentiation. In addition, PFOA bound to peroxisome proliferator-activated receptor γ (PPAR γ). These results suggest that PFOA promotes adipocyte differentiation as a PPAR γ ligand.  相似文献   

3.
4.
GLUT4, a 12 transmembrane protein, plays a major role in insulin mediated glucose transport in muscle and adipocytes. For glucose transport, the GLUT4 protein needs to be translocated to the plasma membrane from the intracellular pool and it is possible that certain compounds may be able to enhance this process. In the present work, we have shown that gallic acid can increase GLUT4 translocation and glucose uptake activity in an Akt-independent but wortmannin-sensitive manner. Further analysis suggested the role of atypical protein kinase Cζ/λ in gallic acid mediated GLUT4 translocation and glucose uptake.  相似文献   

5.
Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0–2, D0–D2), intermediate (days 2–4, D2–D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0–D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPARγ, C/EBPα, and SREBP1c during the intermediate (D2–D4) and late stages (D4–D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.  相似文献   

6.
7.
We describe here a new component of the phosphatidylinositol 3-kinase/Akt signaling pathway that directly impacts mitochondria. Akt (protein kinase B) was shown for the first time to be localized in mitochondria, where it was found to reside in the matrix and the inner and outer membranes, and the level of mitochondrial Akt was very dynamically regulated. Stimulation of a variety of cell types with insulin-like growth factor-1, insulin, or stress (induced by heat shock), induced translocation of Akt to the mitochondria within only several minutes of stimulation, causing increases of nearly eight- to 12-fold, and the mitochondrial Akt was in its phosphorylated, active state. Two mitochondrial proteins were identified to be phosphorylated following stimulation of mitochondrial Akt, the beta-subunit of ATP synthase and glycogen synthase kinase-3beta. The finding that mitochondrial glycogen synthase kinase-3beta was rapidly and substantially modified by Ser9 phosphorylation, which inhibits its activity, following translocation of Akt to the mitochondria is the first evidence for a regulatory mechanism affecting mitochondrial glycogen synthase kinase-3beta. These results demonstrate that signals emanating from plasma membrane receptors or generated by stress rapidly modulate Akt and glycogen synthase kinase-3beta in mitochondria.  相似文献   

8.
目的: 观察过氧化物酶体增殖物激活受体δ(PPARδ)激动剂GW501516对低氧原代大鼠肺动脉平滑肌细胞(PASMCs)增殖的影响,并探讨其可能机制,为低氧肺血管重构的防治寻找新靶点。方法: 对照组PASMCs采用21%氧气培养,低氧组采用 3%氧气诱导PASMCs增殖,通过不同浓度的GW501516(10、30、100 nmol/L)低氧条件下孵育PASMCs 12、24、48 h筛选GW501516抑制低氧PASMCs增殖的最适浓度;选择100 nmol/L GW501516和(或)蛋白激酶B(AKT)激动剂SC79在低氧条件下孵育PASMCs 24 h,探讨GW501516抑制PASMCs增殖可能机制,通过CCK-8与BrdU试剂盒检测细胞增殖与DNA的合成,流式细胞仪分析细胞周期,实时定量PCR(RT-PCR)检测细胞周期蛋白(Cyclin)D1,细胞周期蛋白激酶抑制蛋白p27(p27)mRNA的表达,Western blot检测PPARδ、总的和磷酸化蛋白激酶B(AKT)与糖原合酶激酶3β(GSK3β)的表达。结果: 与低氧组相比,不同浓度的GW501516(10、30、100 nmol/L)干预12、24、48 h后能够抑制低氧条件下PASMCs增殖与DNA的合成,且100 nmol/L GW501516抑制作用最强(P<0.05或P<0.01);与对照组相比,100 nmol/L GW501516干预PASMCs 24 h能够显著上调PPARδ的表达,而低氧可显著下调PPARδ的表达(P<0.01);与低氧组相比,100 nmol/L GW501516干预24 h后能够显著抑制PASMCs增殖与DNA的合成(P<0.01),增加处于G0/G1期的PASMCs比例,明显减少S期和G2/M期的PASMCs比例(P<0.05 或P<0.01),显著抑制Cyclin D1 mRNA的表达并促进p27 mRNA的表达(P< 0.01),显著抑制AKT与GSK3β磷酸化(P<0.01),而与100 nmol/L GW501516低氧组相比,AKT激动剂SC79能够逆转100 nmol/L GW501516 上述作用(P<0.05或P<0.01)。结论: GW501516通过抑制AKT/GSK3β信号通路抑制低氧条件下PASMCs增殖。  相似文献   

9.
10.
11.
Kato Y  Ozaki N  Yamada T  Miura Y  Oiso Y 《Life sciences》2007,80(5):476-483
Among four kinds of protein kinase A (PKA) inhibitors tested, H-89 exhibited a unique action to remarkably enhance adipocyte differentiation of 3T3-L1 cells, whereas the other three PKA inhibitors, PKA inhibitor Fragment 14-22 (PKI), Rp-cAMP, and KT 5720, did not enhance adipocyte differentiation. H-85, which is an inactive form of H-89, exhibited a similar enhancing effect on adipocyte differentiation. H-89 also potentiated the phosphorylation of Akt and extracellular signal-regulated kinase (ERK) 1/2 in 3T3-L1 cells, which function as downstream signaling of insulin. Phosphoinositide 3-kinase (PI3K) inhibitor wortmannin and mitogen-activated protein kinase kinase (MEK) inhibitor PD 98059 suppressed both the H-89-induced promotion of adipocyte differentiation and the H-89-induced potentiation of phosphorylation of Akt and ERK1/2. Rho kinase inhibitor Y-27632 also promoted the phosphorylation of both Akt and ERK1/2 and enhanced adipocyte differentiation, although its effect was somewhat less than that of H-89. Even when cells were treated with a mixture of Y-27632 and H-89, the additive enhancing effects on both the insulin signaling and adipocyte differentiation were not detected. Therefore, it is suggested that the major possible mechanism whereby H-89 potentiates adipocyte differentiation of 3T3-L1 cells is activation of insulin signaling that is elicited mostly by inhibiting Rho/Rho kinase pathway.  相似文献   

12.
Thioethers are the main flavor compounds found in Liliaceae Allium vegetables and have been shown to have beneficial effects against several diseases correlated with metabolic syndrome. The inhibitory effects of six thioethers on fatty acid synthase (FAS) were investigated. Dose-dependent and time-dependent inhibitions of FAS by one trisulfide and two disulfides were revealed. Diallyl trisulfide (DATS, IC50 = 8.37 μM) was the most active of these thioethers. Inhibition kinetics, substrate protection analysis, and stoichiometric assay revealed that DATS interacted with both essential sulfhydryl groups on the acyl-carrier protein and β-ketoacyl synthase domain of FAS to inactivate the enzyme. The inactivation by DATS represented affinity-labeling kinetics. The active thioethers also inhibited the differentiation and lipid accumulation of 3T3-L1 preadipocytes, and the effect was related to their inhibition of FAS. It is suggested that the inhibition on FAS by thioethers and Allium vegetables is an important factor for their effects against metabolic syndrome.  相似文献   

13.
BackgroundAquaporin-8 (AQP8), a member of the aquaporin water channel family, is expressed in various tissue and cells, including liver, testis, and pancreas. AQP8 appears to have functions on the plasma membrane and/or on the mitochondrial inner membrane. Mitochondrial AQP8 with permeability for water, H2O2 and NH3 has been expected to have important role in various cells, but its information is limited to a few tissues and cells including liver and kidney. In the present study, we found that AQP8 was expressed in the mitochondria in mouse adipose tissues and 3T3-L1 preadipocytes, and investigated its role by suppressing its gene expression.MethodsAQP8-knocked down (shAQP8) cells were established using a vector expressing short hairpin RNA. Cellular localization of AQP8 was examined by western blotting and immunocytochemistry. Mitochondrial function was assessed by measuring mitochondrial membrane potential, oxygen consumption and ATP level measurements.ResultsIn 3T3-L1 cells, AQP8 was expressed in the mitochondria. In shAQP8 cells, mRNA and protein levels of AQP8 were decreased by about 75%. The shAQP8 showed reduced activities of complex IV and ATP synthase; it is probable that the impaired mitochondrial water handling in shAQP8 caused suppression of the electron transport and ADP phosphorylation through inhibition of the two steps which yield water. The reduced activities of the last two steps of oxidative phosphorylation in shAQP8 cause low routine and maximum capacity of respiration and mitochondrial hyperpolarization.ConclusionMitochondrial AQP8 contributes to mitochondrial respiratory function probably through maintenance of water homeostasis.General significanceThe AQP8-knocked down cells we established provides a model system for the studies on the relationships between water homeostasis and mitochondrial function.  相似文献   

14.
目的:通过培养3T3-L1前脂肪细胞,并诱导其分化至成熟,研究游离脂肪酸对脂肪细胞糖代谢的影响。方法:培养诱导3T3-L1脂肪细胞,用油红O染色鉴定并比较其形态结构的变化。LPS、EPA、SA、PA干预成熟脂肪细胞,收集不同时间的培养基,葡萄糖氧化酶法算出各组脂肪细胞的葡萄糖消耗量。用Western blot检测不同时间各组干预后细胞AMPK、GLUT4蛋白含量。结果:油红O染色鉴定成熟脂肪细胞胞浆中的脂滴染成红色,并出现戒环样结构;诱导分化第8天,90%以上细胞均分化成熟。含LPS、EPA、SA、PA的培养基作用于成熟脂肪细胞,随着时间的延长,显著抑制脂肪细胞对葡萄糖的吸收(P<0.05),同时,脂肪细胞AMPK、GLUT4蛋白含量在减少(P<0.05)。结论:游离脂肪酸可以诱导胰岛素抵抗的分子机制可能是通过胰岛素信号通路激活蛋白激酶(AMPK),进而影响GLUT4的蛋白表达,使脂肪细胞的葡萄糖吸收率减低,影响脂肪细胞的糖代谢。  相似文献   

15.
Tannic acid is a hydrolyzable tannin that exists in many widespread edible plants with a variety of biological activities. In this study, we found that tannic acid potently inhibited the activity of fatty acid synthase (FAS) in a concentration-dependent manner with a half-inhibitory concentration value (IC50) of 0.14 μM. The inhibition kinetic results showed that the inhibition of FAS by tannic acid was mixed competitive and noncompetitive manner with respect to acetyl-CoA and malonyl-CoA, but uncompetitive to NADPH. Tannic acid prevented the differentiation of 3T3-L1 pre-adipocytes, and thus repressed intracellular lipid accumulation. In the meantime, tannic acid decreased the expression of FAS and down-regulated the mRNA level of FAS and PPARγ during adipocyte differentiation. Further studies showed that the inhibitory effect of tannic acid did not relate to FAS non-specific sedimentation. Since FAS was believed to be a therapeutic target of obesity, these findings suggested that tannic acid was considered having potential in the prevention of obesity.  相似文献   

16.
We report here that octanoate, a medium chain fatty acid, induces adipocyte differentiation in 3T3-L1 cells by co-treatment with dexamethasone, although octanoate has been known not to stimulate 3T3-L1 adipogenesis. A low concentration of exogenous glucose prevented 3T3-L1 adipogenesis induced by 1-methyl 3-isobutylxanthine, dexamethasone, and insulin (MDI) treatment (a common protocol for adipocyte differentiation). In contrast, co-treatment with dexamethasone and octanoate (D-OCT) induced adipogenesis under the same conditions. These findings imply that octanoate, rather than glucose, is the source of accumulated lipids in D-OCT-induced adipogenesis. D-OCT increased expression of the differentiation markers peroxisome proliferator-activated receptor (PPAR)gamma2 and caveolin-1. A specific inhibitor of p38 mitogen-activated protein (MAP) kinase inhibited D-OCT-induced adipogenesis. These results suggest that the p38 MAP kinase pathway followed by up-regulation of PPARgamma2 may be involved in 3T3-L1 adipocyte differentiation induced by D-OCT, as well as by MDI.  相似文献   

17.
Mora A  Sakamoto K  McManus EJ  Alessi DR 《FEBS letters》2005,579(17):3632-3638
In order to investigate the importance of the PDK1-PKB-GSK3 signalling network in regulating glycogen synthase (GS) in the heart, we have employed tissue specific conditional knockout mice lacking PDK1 in muscle (mPDK1-/-), as well as knockin mice in which the protein kinase B (PKB) phosphorylation site on glycogen synthase kinase-3alpha (GSK3alpha) (Ser21) and GSK3beta (Ser9) is changed to Ala. We demonstrate that in hearts from mPDK1-/- or double GSK3alpha/GSK3beta knockin mice, insulin failed to stimulate the activity of GS or induce its dephosphorylation at residues that are phosphorylated by GSK3. We also establish that in the heart, both GSK3 isoforms participate in the regulation of GS, with GSK3beta playing a more prominent role. This contrasts with skeletal muscle where GSK3beta is the major regulator of insulin-induced GS activity. Despite the inability of insulin to stimulate glycogen synthesis in hearts from the mPDK1-/- or double GSK3alpha/GSK3beta knockin mice, these animals possessed normal levels of cardiac glycogen, demonstrating that total glycogen levels are regulated independently of insulin's ability to stimulate GS in the heart and that mechanisms such as allosteric activation of GS by glucose-6-phosphate and/or activation of GS by muscle contraction, could operate to maintain normal glycogen levels in these mice. We also demonstrate that in cardiomyocytes derived from the mPDK1-/- hearts, although the levels of glucose transporter type 4 (GLUT4) are increased 2-fold, insulin failed to stimulate glucose uptake, providing genetic evidence that PDK1 plays a crucial role in enabling insulin to promote glucose uptake in cardiac muscle.  相似文献   

18.
19.
We have previously reported an aberrant accumulation of activated protein kinase B (PKB), glycogen synthase kinase (GSK)-3beta, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), p38 and p70 S6 kinase (p70S6K) in neurons bearing neurofibrillary tangles (NFTs) in Alzheimer's disease (AD). However, the mechanism by which these tau candidate kinases are involved in the regulation of p70S6K and GSK-3beta phosphorylation is unknown. In the current study, 100 microM zinc sulfate was used, and influences of various components of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on p70S6K and GSK-3beta phosphorylation have been investigated in serum-deprived SH-SY5Y neuroblastoma cells. We found that zinc could induce an increase of phosphorylated (p) p70S6K, p-PKB, p-GSK-3beta, p-ERK1/2, p-JNK and p-p38, especially in long-term treatment (4-8 h). Treatment with different inhibitors including rapamycin, wortmannin, LY294002, and U0126, and their combinations, indicated that phosphorylation of p70S6K and GSK-3beta is regulated by rapamycin-dependent, PI3K and MAPK pathways. Furthermore, phosphorylation of p70S6K and GSK-3beta affected levels of tau unphosphorylated at the Tau-1 site and phosphorylated at the PHF-1 site, and p70S6K phosphorylation affected the total tau level. Thus, 100 microM zinc might activate PKB, GSK-3beta, ERK1/2, JNK, p38 and p70S6K, that are consequently involved in tau changes in SH-SY5Y cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号