首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ADP-ribosyltransferases (ADPRTs) form an interesting class of enzymes with well-established roles as potent bacterial toxins and metabolic regulators. ADPRTs catalyze the transfer of the ADP-ribose moiety from NAD(+) onto specific substrates including proteins. ADP-ribosylation usually inactivates the function of the target. ADPRTs have become adapted to function in extra- and intracellular settings. Regulation of ADPRT activity can be mediated by ligand binding to associated regulatory domains, proteolytic cleavage, disulphide bond reduction, and association with other proteins. Crystallisation has revealed a conserved core set of elements that define an unusual minimal scaffold of the catalytic domain with remarkably plastic sequence requirements--only a single glutamic acid residue critical to catalytic activity is invariant. These inherent properties of ADPRTs suggest that the ADPRT catalytic fold is an attractive, malleable subject for protein design.  相似文献   

2.
The short-chain oxidoreductase (SCOR) family of enzymes includes over 2000 members identified in sequenced genomes. Of these enzymes, approximately 200 have been characterized functionally, and the three-dimensional crystal structures of approximately 40 have been reported. Since some SCOR enzymes are involved in hypertension, diabetes, breast cancer, and polycystic kidney disease, it is important to characterize the other members of the family for which the biological functions are currently unknown. Although the SCOR family appears to have only a single fully conserved residue, it was possible, using bioinformatics methods, to determine characteristic fingerprints composed of 30-40 residues that are conserved at the 70% or greater level in SCOR subgroups. These fingerprints permit reliable prediction of several important structure-function features including NAD/NADP cofactor preference. For example, the correlation of aspartate or arginine residues with NAD or NADP binding, respectively, predicts the cofactor preference of more than 70% of the SCOR proteins with unknown function. The analysis of conserved residues surrounding the cofactor has revealed the presence of previously undetected CH em leader O hydrogen bonds in the majority of the SCOR crystal structures, predicts the presence of similar hydrogen bonds in 90% of the SCOR proteins of unknown function, and suggests that these hydrogen bonds may play a critical role in the catalytic functions of these enzymes.  相似文献   

3.
DUF2233, a domain of unknown function (DUF), is present in many bacterial and several viral proteins and was also identified in the mammalian transmembrane glycoprotein N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase (“uncovering enzyme” (UCE)). We report the crystal structure of BACOVA_00430, a 315-residue protein from the human gut bacterium Bacteroides ovatus that is the first structural representative of the DUF2233 protein family. A notable feature of this structure is the presence of a surface cavity that is populated by residues that are highly conserved across the entire family. The crystal structure was used to model the luminal portion of human UCE (hUCE), which is involved in targeting of lysosomal enzymes. Mutational analysis of several residues in a highly conserved surface cavity of hUCE revealed that they are essential for function. The bacterial enzyme (BACOVA_00430) has ∼1% of the catalytic activity of hUCE toward the substrate GlcNAc-P-mannose, the precursor of the Man-6-P lysosomal targeting signal. GlcNAc-1-P is a poor substrate for both enzymes. We conclude that, for at least a subset of proteins in this family, DUF2233 functions as a phosphodiester glycosidase.  相似文献   

4.
The protein tyrosine kinases (PTKs) are a large and structurally diverse family of enzymes. The conserved catalytic domain held in common by each member of this family is a self-contained 250–300 amino acid unit bearing sixteen highly conserved linear sequence elements, several of which have been shown to be important to the catalytic activity of this domain. The enzymic activity of the PTKs is clearly an evolutionarily successful theme, and at least 10 distinct morphotypes have been described. Many of these resemble cell surface receptors for growth factors, and for a small sub-set of these receptors a ligand has been discovered. The remainder are located intracellularly and presumably sense and respond to appropriate metabolic cues by exerting their physiologically powerful enzymic activity. A detailed examination of the structure/function relationships of the PTKs and their catalytic domains is particularly revealing in trying to establish the roles that these proteins play in signal transduction in eukaryotic cells.  相似文献   

5.
The alpha-mannosyltransferase AceA from Acetobacter xylinum belongs to the CaZY family 4 of retaining glycosyltransferases. We have identified a series of either highly conserved or invariant residues that are found in all family 4 enzymes as well as other retaining glycosyltransferases. These residues included Glu-287 and Glu-295, which comprise an EX(7)E motif and have been proposed to be involved in catalysis. Alanine replacements of each conserved residue were constructed by site-directed mutagenesis. The mannosyltransferase activity of each mutant was examined by both an in vitro transferase assay using recombinant mutant AceA expressed in Escherichia coli and by an in vivo rescue assay by expressing the mutant AceA in a Xanthomonas campestris gumH(-) strain. We found that only mutants K211A and E287A lost all detectable activity both in vitro and in vivo, whereas E295A retained residual activity in the more sensitive in vivo assay. H127A and S162A each retained reduced but significant activities both in vitro and in vivo. Secondary structure predictions of AceA and subsequent comparison with the crystal structures of the T4 beta-glucosyltransferase and MurG suggest that AceA Lys-211 and Glu-295 are involved in nucleotide sugar donor binding, leaving Glu-287 of the EX(7)E as a potential catalytic residue.  相似文献   

6.
RNase III enzymes are a highly conserved family of proteins that specifically cleave double-stranded (ds)RNA. These proteins are involved in a diverse group of functions, including ribosomal RNA processing, mRNA maturation and decay, snRNA and snoRNA processing, and RNA interference. Here we report the crystal structure of the nuclease domain of RNase III from the pathogen Mycobacterium tuberculosis. Although globally similar to other RNase III folds, this structure has some features not observed in previously reported models. These include the presence of an additional metal ion near the catalytic site, as well as conserved secondary structural elements that are proposed to have functional roles in the recognition of dsRNAs.  相似文献   

7.
The committed step in the biosynthesis of cysteinyl-leukotrienes is catalyzed by leukotriene C(4) synthase as well as microsomal glutathione S-transferase (MGST) type 2 and type 3, which belong to a family of membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG). We cloned and characterized these three enzymes from the rat to allow a side-by-side comparison of structural and catalytic properties. The proteins are 79.6-86.7% identical to the human orthologs. Rat MGST3 fails to convert leukotriene A(4) into leukotriene C(4), which in turn challenges the proposed catalytic role of a conserved Arg and Tyr residue for the leukotriene C(4) synthase reaction. Comparative inhibitor studies of all three enzymes, using MK-886 and cysteinyl-leukotrienes, indicate that their catalytic centers originate from structurally related and overlapping active sites. Hence, it seems feasible to design enzyme inhibitors, which simultaneously target several members of this protein family to yield compounds with increased anti-inflammatory action.  相似文献   

8.
The 14-3-3 proteins are a family of highly conserved proteins found in all eukaryotes - from the yeasts to mammals. They regulate several cellular processes recognizing unique conservative, mostly phosphorylated motif of partner proteins. Binding of the 14-3-3 proteins regulates their partners through a variety of mechanisms, such as altering their catalytic activity, subcellular localization, stability or altering their interactions with other protein molecules. The native 14-3-3 proteins are present in form of homo- and hetero-dimers. The most structurally variable N-and C-termini are responsible for isoform specific protein-protein interactions, and cellular localization. In plant cell, 14-3-3 proteins appear to play an important role in regulation of key enzymes of carbon and nitrogen metabolism, modulation ion pumps and channels. They are also involved in signal transduction pathways and even in gene expression.  相似文献   

9.
10.
BACKGROUND: N-carbamyl-D-amino acid amidohydrolase (DCase) catalyzes the hydrolysis of N-carbamyl-D-amino acids to the corresponding D-amino acids, which are useful intermediates in the preparation of beta-lactam antibiotics. To understand the catalytic mechanism of N-carbamyl-D-amino acid hydrolysis, the substrate specificity and thermostability of the enzyme, we have determined the structure of DCase from Agrobacterium sp. strain KNK712. RESULTS: The crystal structure of DCase has been determined to 1.7 A resolution. The enzyme forms a homotetramer and each monomer consists of a variant of the alpha + beta fold. The topology of the enzyme comprises a sandwich of parallel beta sheets surrounded by two layers of alpha helices, this topology has not been observed in other amidohydrolases such as the N-terminal nucleophile (Ntn) hydrolases. CONCLUSIONS: The catalytic center could be identified and consists of Glu46, Lys126 and Cys171. Cys171 was found to be the catalytic nucleophile, and its nucleophilic character appeared to be increased through general-base activation by Glu46. DCase shows only weak sequence similarity with a family of amidohydrolases, including beta-alanine synthase, aliphatic amidases and nitrilases, but might share highly conserved residues in a novel framework, which could provide a possible explanation for the catalytic mechanism for this family of enzymes.  相似文献   

11.
A phospholipase D (PLD) superfamily was recently identified that contains proteins of highly diverse functions with the conserved motif HXKX4DX6G(G/S). The superfamily includes a bacterial nuclease, human and plant PLD enzymes, cardiolipin synthases, phosphatidylserine synthases, and the murine toxin from Yersinia pestis (Ymt). Ymt is particularly effective as a prototype for family members containing two conserved motifs, because it is smaller than many other two-domain superfamily enzymes, and it can be overexpressed. Large quantities of pure recombinant Ymt allowed the formation of diffraction-quality crystals for x-ray structure determination. Dimeric Ymt was shown to have PLD-like activity as demonstrated by the hydrolysis of phosphatidylcholine. Ymt also used bis(para-nitrophenol) phosphate as a substrate. Using these substrates, the amino acids essential for Ymt function were determined. Specifically, substitution of histidine or lysine in the conserved motifs reduced the turnover rate of bis(para-nitrophenol) phosphate by a factor of 10(4) and phospholipid turnover to an undetectable level. The role of the conserved residues in catalysis was further defined by the isolation of a radiolabeled phosphoenzyme intermediate, which identified a conserved histidine residue as the nucleophile in the catalytic reaction. Based on these data, a unifying two-step catalytic mechanism is proposed for this diverse family of enzymes.  相似文献   

12.
13.
The Mycobacterium tuberculosis genome has revealed a remarkable array of polyketide synthases (PKSs); however, no polyketide product has been isolated thus far. Most of the PKS genes have been implicated in the biosynthesis of complex lipids. We report here the characterization of two novel type III PKSs from M. tuberculosis that are involved in the biosynthesis of long-chain alpha-pyrones. Measurement of steady-state kinetic parameters demonstrated that the catalytic efficiency of PKS18 protein was severalfold higher for long-chain acyl-coenzyme A substrates as compared with the small-chain precursors. The specificity of PKS18 and PKS11 proteins toward long-chain aliphatic acyl-coenzyme A (C12 to C20) substrates is unprecedented in the chalcone synthase (CHS) family of condensing enzymes. Based on comparative modeling studies, we propose that these proteins might have evolved by fusing the catalytic machinery of CHS and beta-ketoacyl synthases, the two evolutionarily related members with conserved thiolase fold. The mechanistic and structural importance of several active site residues, as predicted by our structural model, was investigated by performing site-directed mutagenesis. The functional identification of diverse catalytic activity in mycobacterial type III PKSs provide a fascinating example of metabolite divergence in CHS-like proteins.  相似文献   

14.
Using computational analysis, a novel superfamily of beta-strand-rich domains was identified in the Molybdenum cofactor sulfurase and several other proteins from both prokaryotes and eukaryotes. These MOSC domains contain an absolutely conserved cysteine and occur either as stand-alone forms such as the bacterial YiiM proteins, or fused to other domains such as a NifS-like catalytic domain in Molybdenum cofactor sulfurase. The MOSC domain is predicted to be a sulfur-carrier domain that receives sulfur abstracted by the pyridoxal phosphate-dependent NifS-like enzymes, on its conserved cysteine, and delivers it for the formation of diverse sulfur-metal clusters. The identification of this domain may clarify the mechanism of biogenesis of various metallo-enzymes including Molybdenum cofactor-containing enzymes that are compromised in human type II xanthinuria.  相似文献   

15.
Rv2118c belongs to the class of conserved hypothetical proteins from Mycobacterium tuberculosis H37Rv. The crystal structure of Rv2118c in complex with S-adenosyl-l-methionine (AdoMet) has been determined at 1.98 A resolution. The crystallographic asymmetric unit consists of a monomer, but symmetry-related subunits interact extensively, leading to a tetrameric structure. The structure of the monomer can be divided functionally into two domains: the larger catalytic C-terminal domain that binds the cofactor AdoMet and is involved in the transfer of methyl group from AdoMet to the substrate and a smaller N-terminal domain. The structure of the catalytic domain is very similar to that of other AdoMet-dependent methyltransferases. The N-terminal domain is primarily a beta-structure with a fold not found in other methyltransferases of known structure. Database searches reveal a conserved family of Rv2118c-like proteins from various organisms. Multiple sequence alignments show several regions of high sequence similarity (motifs) in this family of proteins. Structure analysis and homology to yeast Gcd14p suggest that Rv2118c could be an RNA methyltransferase, but further studies are required to establish its functional role conclusively. Copyright 12001 Academic Press.  相似文献   

16.
Actin cross-linking domains (ACDs) are distinct domains found in several bacterial toxins, including the Vibrio cholerae MARTX toxin. The ACD of V. cholerae (ACDVc) catalyses the formation of an irreversible iso-peptide bond between lysine 50 and glutamic acid 270 on two actin molecules in an ATP- and Mg/Mn2+-dependent manner. In vivo , cross-linking depletes the cellular pool of G-actin leading to actin cytoskeleton depolymerization. While the actin cross-linking reaction performed by these effector domains has been significantly characterized, the ACDVc catalytic site has remained elusive due to lack of significant homology to known proteins. Using multiple genetic approaches, we have identified regions and amino acids of ACDVc required for full actin cross-linking activity. Then, using these functional data and structural homology predictions, it was determined that several residues demonstrated to be important for ACDVc activity are conserved with active-site residues of the glutamine synthetase family of enzymes. Thus, the ACDs are a family of bacterial toxin effectors that may be evolutionarily related to ligases involved in amino acid biosynthesis.  相似文献   

17.
The alpha-amylase family is a large group of starch processing enzymes [Svensson, B. (1994) Plant Mol. Biol. 25, 141-157]. It is characterized by four short sequence motifs that contain the seven fully conserved amino acid residues in this family: two catalytic carboxylic acid residues and four substrate binding residues. The seventh conserved residue (Asp135) has no direct interactions with either substrates or products, but it is hydrogen-bonded to Arg227, which does bind the substrate in the catalytic site. Using cyclodextrin glycosyltransferase as an example, this paper provides for the first time definite biochemical and structural evidence that Asp135 is required for the proper conformation of several catalytic site residues and therefore for activity.  相似文献   

18.
Zhong S  Hsu F  Stefan CJ  Wu X  Patel A  Cosgrove MS  Mao Y 《Biochemistry》2012,51(15):3170-3177
Sac family phosphoinositide phosphatases comprise an evolutionarily conserved family of enzymes in eukaryotes. Our recently determined crystal structure of the Sac phosphatase domain of yeast Sac1, the founding member of the Sac family proteins, revealed a unique conformation of the catalytic P-loop and a large positively charged groove at the catalytic site. We now report a unique mechanism for the regulation of its phosphatase activity. Sac1 is an allosteric enzyme that can be activated by its product phosphatidylinositol or anionic phospholipid phosphatidylserine. The activation of Sac1 may involve conformational changes of the catalytic P-loop induced by direct binding with the regulatory anionic phospholipids in the large cationic catalytic groove. These findings highlight the fact that lipid composition of the substrate membrane plays an important role in the control of Sac1 function.  相似文献   

19.
The detailed catalytic mechanism by which glycosyltransferases catalyze the transfer of a glycosyl residue from a donor sugar to an acceptor is not known. Through the multiple alignment of all known eukaryotic glycogen synthases we have found an invariant 17-amino acid stretch enclosed within the most conserved region of the members of this family. This peptide includes an E-X(7)-E motif, which is highly conserved in four families of retaining glycosyltransferases. Site-directed mutagenesis was performed in human muscle glycogen synthase to analyze the roles of the two conserved Glu residues (Glu-510 and Glu-518) of the motif. Proteins were transiently expressed in COS-1 cells as fusions to green fluorescence protein. The E510A and E518A mutant proteins retained the ability to translocate from the nucleus to the cytosol in response to glucose and to bind to intracellular glycogen. Although the E518A variant had approximately 6% of the catalytic activity shown by the green fluorescence protein-human muscle glycogen synthase fusion protein, the E510A mutation inactivated the enzyme. These results led us to conclude that the E-X(7)-E motif is part of the active site of eukaryotic glycogen synthases and that both conserved Glu residues are involved in catalysis. We propose that Glu-510 may function as the nucleophile and Glu-518 as the general acid/base catalyst.  相似文献   

20.
A family of hypothetical proteins, identified predominantly from archaeal genomes, has been analyzed in order to understand its functional characteristics. Using extensive sequence similarity searches it is inferred that this family is remotely related (best sequence identity is 19%) to ClpP proteinases that belongs to serine proteinase class. This family of hypothetical proteins is referred to as SDH proteinase family based on conserved sequential order of Ser, Asp and His residues and predicted serine proteinase activity. Results of fold recognition of SDH family sequences confirmed the remote relationship between SDH proteinases and Clp proteinases and revealed similar tertiary location of putative catalytic triad residues critical for serine proteinase function. However, the best sequence alignment we could obtain suggests that while catalytic Ser is conserved across Clp and SDH proteinases the location of the other catalytic triad residues, namely, His and Asp are swapped in their amino acid alignment positions and hence in 3-D structure. The evidence of conserved catalytic triad suggests that SDH could be a new family of serine proteinases with the fold of Clp proteinase, however sharing the catalytic triad order of carboxypeptidase clan. Signal peptide sequence identified at the N-terminus of some of the homologues suggests that these might be secretory serine proteinases involved in cleavage of extracellular proteins while the remote homologues, ClpP proteinases, are known to work in intracellular environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号