首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast with the case in sea urchin sperm, in starfish the acrosome reaction is not spontaneously induced by simply increasing the extracellular Ca2+ concentration or pH. At higher pHs, starfish sperm undergo morphological changes accompanied by exocytosis of the acrosomal vacuole, but they do not form acrosomal filaments. Nomarski-microscopic observation confirmed that spermatozoa undergo the acrosome reaction within the jelly coat. Acrosome reaction-inducing substance, a glycoprotein from the egg jelly, required a diffusible cofactor(s) present in the egg jelly for full activity. Several lines of evidence showed that this diffusible factor(s) is not merely Ca2+.  相似文献   

2.
Induction of the Acrosome Reaction in Starfish   总被引:7,自引:6,他引:1  
In the starfish, Asterias amurensis , at least two distinct components of the egg jelly are required for inducing the acrosome reaction: a sulfated glycoprotein named acrosome reaction-inducing substance (ARIS) and a diffusible organic substance(s) named Co-ARIS. The following evidence suggested that ARIS and Co-ARIS cooperatively activate CA-channels of the sperm plasma membrane and eventually induce dramatic changes in sperm morphology, the acrosome reaction. 1) Pronase digest of ARIS (P-ARIS) and Co-ARIS, either as a pure or a crude preparation (Fraction M8), were fully effective in combination for induction of the acrosome reaction in normal sea water, although they were not effective individually. P- ARIS alone induced the acrosome reaction fully in high Ca2+ sea water and markedly at high pHs, whereas Fraction M8 alone did not induce the reaction even in these conditions. The reaction was not induced by increase in either the Ca2+ concentration or the pH of sea water, but was markedly induced in the absence of jelly components by raising both the pH and Ca2+ concentration together. 2) The ionophore A23187 induced the acrosome reaction appreciably when present alone and fully in the presence of monensin or Fraction M8. Monesin alone was ineffective. 3) The jelly or a combination of ARIS and Fraction M8 caused abrupt Ca2+ -uptake by the sperm. The Ca-channel blockers verapamil and diltiazem inhibited the jelly-induced acrosome reaction.  相似文献   

3.
We examined whether phospholipase A2 (PLA2) is involved in the initiation of the acrosome reaction of sperm of the sea urchin, Strongylocentrotus intermedius , using inhibitors and an activator of this enzyme. Quinacrine and p-bromophenacyl bromide (PBPB) inhibited the egg jelly-induced acrosome reaction at 100 μM, but not the ionomycin-induced one. Depression of egg jelly-induced increase of intracellular free Ca2+concentration ([Ca2+]i) by these reagents was expected and examined using fura 2. Quinacrine interfered with the flourescence of fura 2, but PBPB was found to depress at concentrations which could inhibit the acrosome reaction. Furthermore, melittin, which is known to stimulate PLA2, caused a [Ca2+]i increase and a formation of acrosomal process-like structure on sperm head. These results suggest that PLA2 participates in the early step(s) of the acrosome reaction of sea urchin sperm.  相似文献   

4.
It is well known that the motility of spermatozoa in rainbow trout is suppressed by K+. We showed here that although trout sperm are completely immotile in medium containing 5 mM K+, motility was initiated by the subsequent addition of several mM Ca2+, suggesting that both K+and Ca2+are related to the process of the initiation of sperm motility. It was further found that K+channel blockers tetraethylammonium, nonyltriethylammonium, Ba2+and Cs+, as well as the Ca2+channel blocker verapamil, inhibited the initiation of sperm motility at doses at which these reagents inhibit chnnel-related functions in other cells. However, Na+channel blocker, tetrodotoxin and anion channel blocker 4, 4-diisothiocyatatostilbene-2, 2'-disulfonic acid inhibited the motility only at extremely high doses. These results suggest that transport of K+and Ca2+through ion channels at the plasma membrane of spermatozoa is the first event that triggers the initiation of sperm motility in rainbow trout.  相似文献   

5.
Maitotoxin, a presumed activator of the voltage-sensitive calcium channel, induced the acrosome reaction in the mussel, Mytilus edulis at physiological pH and in the starfish, Asterias amurensis at pH 9.5. The induction of acrosome reaction by maitotoxin depended upon external Ca2+ and was inhibited by two types of calcium channel blockers; verapamil and diltiazem. These results suggest that the activation of the voltage-sensitive calcium channel takes an important part in the initiation of acrosome reaction in Mytilus and other animals.  相似文献   

6.
The Acrosome Reaction Induced by Dimethylsulfoxide in Sea Urchin Sperm   总被引:1,自引:1,他引:0  
The acrosome reaction in sea urchin sperm, as judged by disappearance of the acrosomal vesicles in Nomarski optics, was induced by dimethylsulfoxide (DMSO) at concentration above 0.1% in normal artificial sea water. The number of the acrosome-reacted spermatozoa increased in proportion to DMSO concentration. The DMSO-induced acrosome reaction, as well as the jelly water- or A23187-induced one, was inhibited by nifedipine and hardly occurred in Ca2+-free artificial sea water. However, the DMSO-induced acrosome reaction was found in a few number of spermatozoa in the presence of Ca2+at above 0.5 mM, though the jelly water- or A23187-induced acrosome reaction did not occur at external Ca2+levels lower than 1 mM. Dependency of the acrosome reaction by DMSO on external Ca2+is somewhat lower than that of the reaction by jelly water. In Ca2+-free artificial sea water, the acrosomal regions of DMSO-treated spermatozoa attached to their own tails. In some cases, spermatozoa thus treated with DMSO in Ca2+free artificial sea water caused formation of fertilization membrane in a few number of eggs kept in Ca2+-free artificial sea water. Even in the absence of extermal Ca2+, preliminary step of the acrosome reaction seems to be completed probably by DMSO-induced weak Ca2+-mobilization in spermatozoa.  相似文献   

7.
Polymerized actin sperm of the starfish Pisaster ochraceus is stained intensely by NBD-phallacidin in the fluorescence microscope. Parallel phase contrast, Nomarski and scanning electron microscopy (SEM) illustrate other changes brought about in sperm treated with the calcium ionophore A23187 and NH4Cl. A complete acrosome reaction is elicited by A23187, including exocytosis of the acrosomal vesicle and formation of a long acrosomal process which is filled with polymerized actin. Considerable actin polymerization is caused by NH4Cl, but the acrosomal vesicle is not exocytosed. The various patterns of NH4Cl-mediated polymerization of sperm actin always include bundles which project backward from the actomere and often others which project quite far forward in front of the acrosomal vesicle. These patterns are discussed in terms of the possible triggers and mechanisms of forming actin bundles in sperm.  相似文献   

8.
Previous studies indicated that two components of the egg jelly are required for induction of the acrosome reaction in starfish: a sulfated glycoprotein called acrosome reaction-inducing substance (ARIS) and a diffusible organic substance(s) called Co-ARIS. In the present study the sites of action of ARIS and Co-ARIS and their temporal relationships were examined. When sperm had been treated for a few minutes with ARIS, or a crude preparation of Co-ARIS (Fraction M8), or inadequate amounts of jelly, or sufficient jelly in low Ca2+ sea water, they did not undergo the acrosome reaction when the deficiencies were corrected. Moreover, they became nonresponsive to the jelly. Pronase digest of ARIS (P-ARIS) but not of Fraction M8 retained this capacity. A steroidal saponin purified as Co-ARIS did not have this capacity. This suggests the presence of a third jelly component, probably an oligopeptide(s), participating in induction of the acrosome reaction. Activation of Ca2+ -uptake seems to be at least one, if not the only, action site of ARIS and Co-ARIS, because ARIS, P-ARIS, and Fraction M8 inhibited jelly-induced Ca2+ -uptake by sperm, and because the calcium ionophore A23187 by-passed the blockage by these components of the jelly-induced acrosome reaction.  相似文献   

9.
Epac, a guanine nucleotide exchange factor for the small GTPase Rap, binds to and is activated by the second messenger cAMP. In sperm, there are a number of signaling pathways required to achieve egg-fertilizing ability that depend upon an intracellular rise of cAMP. Most of these processes were thought to be mediated by cAMP-dependent protein kinases. Here we report a new dependence for the cAMP-induced acrosome reaction involving Epac. The acrosome reaction is a specialized type of regulated exocytosis leading to a massive fusion between the outer acrosomal and the plasma membranes of sperm cells. Ca2+ is the archetypical trigger of regulated exocytosis, and we show here that its effects on acrosomal release are fully mediated by cAMP. Ca2+ failed to trigger acrosomal exocytosis when intracellular cAMP was depleted by an exogenously added phosphodiesterase or when Epac was sequestered by specific blocking antibodies. The nondiscriminating dibutyryl-cAMP and the Epac-selective 8-(p-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate analogues triggered the acrosome reaction in the effective absence of extracellular Ca2+. This indicates that cAMP, via Epac activation, has the ability to drive the whole cascade of events necessary to bring exocytosis to completion, including tethering and docking of the acrosome to the plasma membrane, priming of the fusion machinery, mobilization of intravesicular Ca2+, and ultimately, bilayer mixing and fusion. cAMP-elicited exocytosis was sensitive to anti-alpha-SNAP, anti-NSF, and anti-Rab3A antibodies, to intra-acrosomal Ca2+ chelators, and to botulinum toxins but was resistant to cAMP-dependent protein kinase blockers. These experiments thus identify Epac in human sperm and evince its indispensable role downstream of Ca2+ in exocytosis.  相似文献   

10.
Sperm of the shrimp, Sicyonia ingentis , undergo a biphasic acrosome reaction consisting of acrosomal exocytosis and acrosomal filament formation. These events are temporally separated by 10–20 min, in vivo. Using egg water preparations the complete reaction can be induced, in vitro, albeit the temporal separation of the two phases is lengthened. External Ca++ is required for the exocytotic phase, while a cytoplasmic acidification and K+ efflux are associated with polymerization of the acrosomal filament.  相似文献   

11.
The acrosome reaction in many animals is a coupled reaction involving an exocytotic step and a dramatic change in cell shape. It has been proposed that these morphological changes are regulated by intracellular ions such as Ca2+ and H+. We report here simultaneous visualization, under a multiview microscope, of intracellular free Ca2+ concentration ([Ca2+]i), intracellular pH (pHi), and morphological changes in a single starfish sperm (Asterina pectinifera). [Ca2+]i and pHi were monitored with the fluorescent probes indo-1 and SNARF-1, respectively. The acrosome reaction was induced with ionomycin. After the introduction of ionomycin in the medium, [Ca2+]i increased gradually and reached a plateau in approximately 30 s. The fusion of the acrosomal vacuole took place abruptly before the plateau, during the rising phase. Although the speed of the [Ca2+]i increase varied among the many sperm tested, exocytosis in all cases occurred at the same [Ca2+]i of approximately 2 microM (estimated using the dissociation constant of indo-1 for Ca2+ of 1.1 microM). This result suggests that the exocytotic mechanism in starfish sperm responds to [Ca2+]i rapidly, with a reaction time of the order of one second or less. Unlike the change in [Ca2+]i, an abrupt increase in pHi was observed immediately after exocytosis, suggesting the presence of a proton mobilizing system that is triggered by exocytosis. The rapid increase in pHi coincided with the formation of the acrosomal rod and the beginning of vigorous movement of the flagellum, both of which have been proposed to be pHi dependent. The exocytotic event itself was visualized with the fluorescent membrane probe RH292. The membrane of the acrosomal vacuole, concealed from the external medium in an unreacted sperm, was seen to fuse with the plasma membrane.  相似文献   

12.
In some animal species, the zona pellucida protein 3 (ZP3) plays a central role during fertilization, functioning as a specific receptor for sperm and as an inducer of the acrosome reaction. On the other hand, the zona pellucida protein 2 (ZP2) acts as a secondary receptor, binding to acrosome-reacted sperm. The objective of these studies was to identify ZP2 and ZP3 domains that may be of importance for the induction of the acrosome reaction. For this purpose, we synthesized a number of ZP2 and ZP3 peptides that were either conserved among species or that were species-specific according to their respective primary structures. We identified a defined, conserved ZP3 decapeptide (ZP3-6 peptide) that bound to the surface of the acrosomal region and induced the acrosome reaction in a concentration-dependent manner in capacitated bovine sperm; this effect was significant in the nanomolar range. Pertussis toxin inhibited the ZP3-6 peptide-induced acrosome reaction but had no effect on the progesterone-induced exocytotic event. Our data are in accordance with previous studies showing that progesterone induces acrosomal exocytosis via a different pathway than ZP3 and strengthen the hypothesis that the effect of ZP3-6 peptide upon acrosomal exocytosis is G protein regulated. Despite the commonly accepted idea that glycosylation of ZP proteins is required for successful sperm-oocyte interaction, we found that acrosomal exocytosis can be induced by a synthetic ZP3 peptide that is not glycosylated. The results presented in this study may be useful for the investigation of the molecular mechanisms of sperm-egg interaction in bovine and other species.  相似文献   

13.
Guanine nucleotide-binding regulatory proteins play key intermediary roles in regulating zona pellucida-mediated acrosomal exocytosis in mouse and bull sperm. Since human sperm possess a Gi-like protein and undergo the acrosome reaction in response to the human zona pellucida, we investigated whether this G protein plays a regulatory role in this exocytotic process. Zonae pellucidae isolated from eggs that had been inseminated but had shown no signs of fertilization after retrieval for in vitro fertilization and embryo transfer were pooled into groups of greater than or equal to 50 in order to reduce variability in biological responses due to the possible presence of ZP that had undergone modifications associated with the polyspermy block. Acid-solubilized zonae pellucidae were incubated with capacitated sperm, and the sperm then assessed for the acrosome reaction using both the P. sativum agglutinin and chlortetracycline fluorescence assays; both assays gave similar results. Sperm incubated with solubilized zonae pellucidae at a final concentration of 2, 4, or 6 ZP/microliter underwent acrosomal exocytosis to a similar extent as compared with A-23187. Sperm were incubated with 1 microgram/ml pertussis toxin during capacitation to functionally inactivate the Gi-like protein. Pertussis toxin treatment of sperm did not affect sperm motility and the ability of the cells to bind to structurally intact zonae pellucidae. Pertussis toxin, however, completely inhibited the percentage acrosome reactions induced by solubilized zonae pellucidae. By contrast, the A-23187-induced acrosome reaction was insensitive to PT treatment. Pertussis toxin inhibition of the zona pellucida-induced acrosome reaction occurred in a concentration-dependent manner with maximal effects observed at 100 ng/ml PT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Previous data showed that complexin I, a SNARE regulatory protein, is localized in and/or around the acrosome and is necessary for the acrosome reaction in sperm. To understand how complexin I regulates the acrosome reaction, we used complexin-GST pulldown assays to identify interacting proteins. We showed that both complexins I and II bound mouse sperm dynamin 2. Dynamin 2 is a 100 kDa GTPase essential to many aspects of endocytosis but its potential role in exocytosis is unknown. Dynamin 2 is expressed in rat testis and widely expressed in other tissues; however, the function of dynamin 2 in germ cells is uncertain. Dynamin 2 protein was detected in mouse testis and was most abundant in or around the developing acrosome of spermatids. In addition, dynamin 2 was co-localized with complexin I in the acrosomal region of mammalian sperm. Its co-localization and interaction with complexin I suggest that dynamin 2 may play a role during acrosome formation and/or acrosomal exocytosis.  相似文献   

15.
Calcium influx is required for the mammalian sperm acrosome reaction (AR), an exocytotic event occurring in the sperm head prior to fertilization. We show here that thapsigargin, a highly specific inhibitor of the microsomal Ca(2+)-Mg(2+)-ATPase (Ca(2+) pump), can initiate acrosomal exocytosis in capacitated bovine and ram spermatozoa. Initiation of acrosomal exocytosis by thapsigargin requires an influx of Ca(2+), since incubation of cells in the absence of added Ca(2+) or in the presence of the calcium channel blocker, La(3+), completely inhibited thapsigargin-induced acrosomal exocytosis. ATP-Dependent calcium accumulation into nonmitochondrial stores was detected in permeabilized sperm in the presence of ATP and mitochondrial uncoupler. This activity was inhibited by thapsigargin. Thapsigargin elevated the intracellular Ca(2+) concentration ([Ca(2+)](i)), and this increase was inhibited when extracellular Ca(2+) was chelated by EGTA, indicating that this rise in Ca(2+) is derived from the external medium. This rise of [Ca(2+)](i) took place first in the head and later in the midpiece of the spermatozoon. However, immunostaining using a polyclonal antibody directed against the purified inositol 1,4,5-tris-phosphate receptor (IP(3)-R) identified specific staining in the acrosome region, in the postacrosome, and along the tail, but not in the midpiece region. No staining in the acrosome region was observed in sperm without acrosome, indicating that the acrosome cap was stained in intact sperm. The presence of IP(3)-R in the anterior acrosomal region as well as the induction, by thapsigargin, of intracellular Ca(2+) elevation in the acrosomal region and acrosomal exocytosis, implicates the acrosome as a potential cellular Ca(2+) store. We suggest here that the cytosolic Ca(2+) is actively transported into the acrosome by an ATP-dependent, thapsigargin-sensitive Ca(2+) pump and that the accumulated Ca(2+) is released from the acrosome via an IP(3)-gated calcium channel. The ability of thapsigargin to increase [Ca(2+)](i) could be due to depletion of Ca(2+) in the acrosome, resulting in the opening of a capacitative calcium entry channel in the plasma membrane. The effect of thapsigargin on elevated [Ca(2+)](i) in capacitated cells was 2-fold higher than that in noncapacitated sperm, suggesting that the intracellular Ca pump is active during capacitation and that this pump may have a role in regulating [Ca(2+)](i) during capacitation and the AR.  相似文献   

16.
17.
The acrosome reaction includes a membrane fusion event that is a prerequisite for sperm penetration through the zona pellucida and subsequent fertilization. Since SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins have been shown to be key players in membrane fusion during regulated exocytosis in nerve terminals and secretory cells, and since the acrosome reaction has some features in common with regulated exocytosis, we hypothesized that SNARE proteins might also regulate acrosomal exocytosis. RT-PCR analysis demonstrated the expression of SNARE proteins, three isoforms of syntaxin 2 (2A, 2B, and 2C) and syntaxin 4A, in rat testes. Immunoblot analysis with anti-syntaxin 2 antibody showed that the protein was expressed in rodent spermatozoa, and that it was associated with membrane components of spermatozoa prepared by sucrose density gradient centrifugation. Confocal laser scanning microscopy with double immunolabeling revealed that syntaxin 2 was colocalized with acrin 1, a 90 kDa acrosomal protein, over the acrosomal region of spermatozoa but was not associated with the posterior half of head or tail. Localization of syntaxin 2 over the acrosomal region was supported by the finding that it was shed from sperm heads during an acrosome reaction induced by calcium ionophore A23187 in vitro. In view of the putative role of syntaxin proteins in other membrane fusion systems, these data suggest that syntaxin 2 may be involved in regulating the acrosomal reaction in rodent spermatozoa.  相似文献   

18.
Spermatozoa of the hagfishes Eptatretus burgeri and Eptatretus stouti, caught in the sea near Japan and North America, respectively, were found to undergo the acrosome reaction, which resulted in the formation of an acrosomal process with a filamentous core. The acrosomal region of spermatozoa of E. stouti exhibited immunofluorescent labeling using an actin antibody. The midpiece also labeled with the antibody. The acrosomal region showed a similar labeling pattern when sperm were probed with tetramethylrhodamine isothyocyanate (TRITC)-phalloidin; the midpiece did not label. Following induction of the acrosome reaction with the calcium (Ca2+) ionophore ionomycin, TRITC-phalloidin labeling was more intense in the acrosomal region, suggesting that the polymerization of actin occurs during formation of the acrosomal process, as seen in many invertebrates. The potential for sperm to undergo acrosomal exocytosis was already acquired by late spermatids. During acrosomal exocytosis, the outer acrosomal membrane and the overlying plasma membrane disappeared and were replaced by an array of vesicles; these resembled an early stage of the acrosome reaction in spermatozoa of higher vertebrates in which no formation of an acrosomal process occurs. It is phylogenetically interesting that such phenomena occur in spermatozoa of hagfish, a primitive vertebrate positioning between invertebrates and high vertebrates.  相似文献   

19.
Sperm acrosomal exocytosis is essential for successful fertilization, and the zona pellucida (ZP) has been classically considered as the primary initiator in vivo. At present, following what is referred to as primary binding of the sperm to the ZP, the acrosome reaction paradigm posits that the outer acrosomal membrane and plasma membrane fuse at random points, releasing the contents of the acrosome. It is then assumed that the inner acrosomal membrane mediates secondary binding of the sperm to the ZP. In the present work we used a live fluorescence imaging system and mouse sperm containing enhanced green fluorescent protein (EGFP) in their acrosomes. We compared the processes of acrosomal exocytosis stimulated by the calcium ionophore ionomycin or by solubilized ZP. As monitored by the loss of EGFP from the sperm, acrosomal exocytosis driven by these two agents occurred differently. When ionomycin was used, exocytosis started randomly (no preference for the anterior, middle or posterior acrosomal regions). In contrast, following treatment with solubilized ZP, the loss of acrosomal components always started at the posterior zone of the acrosome and progressed in an anterograde direction. The exocytosis was slower when stimulated with ZP and on the order of 10 sec, which is in accordance with other reports. These results demonstrate that ZP stimulates acrosomal exocytosis in an orderly manner and suggest that a receptor‐mediated event controls this process of membrane fusion and release of acrosomal components. These findings are incorporated into a model. J. Cell. Physiol. 220: 611–620, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
We have previously reported that synaptotagmin VI is present in human sperm cells and that a recombinant protein containing the C2A and C2B domains abrogates acrosomal exocytosis in permeabilized spermatozoa, an effect that was regulated by phosphorylation. In this report, we show that each individual C2 domain blocks acrosomal exocytosis. The inhibitory effect was completely abrogated by phosphorylation of the domains with purified PKCbetaII. We found by site-directed mutagenesis that Thr418 and/or Thr419 in the polybasic region (KKKTTIK) of the C2B domain--a key region for the function of synaptotagmins--are the PKC target that regulates its inhibitory effect on acrosomal exocytosis. Similarly, we showed that Thr284 in the polybasic region of C2A (KCKLQTR) is the target for PKC-mediated phosphorylation in this domain. An antibody that specifically binds to the phosphorylated polybasic region of the C2B domain recognized endogenous phosphorylated synaptotagmin in the sperm acrosomal region. The antibody was inhibitory only at early stages of exocytosis in sperm acrosome reaction assays, and the immunolabeling decreased upon sperm stimulation, indicating that the protein is dephosphorylated during acrosomal exocytosis. Our results indicate that acrosomal exocytosis is regulated through the PKC-mediated phosphorylation of conserved threonines in the polybasic regions of synaptotagmin VI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号