首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three different serine proteinase inhibitors were isolated from rat serum and purified to apparent homogeneity. One of the inhibitors appears to be homologous to alpha 1-proteinase inhibitor isolated from man and other species, but the other two, designated rat proteinase inhibitor I and rat proteinase inhibitor II, seem to have no human counterpart. alpha 1-Proteinase inhibitor (Mr 55000) inhibits trypsin, chymotrypsin and elastase, the three serine proteinases tested. Rat proteinase inhibitor I (Mr 66000) is active towards trypsin and chymotrypsin, but is inactive towards elastase. Rat proteinase inhibitor II (Mr 65000) is an effective inhibitor of trypsin only. Their contributions to the trypsin-inhibitory capacity of rat serum are about 68, 14 and 18% for alpha 1-proteinase inhibitor, rat proteinase inhibitor I and rat proteinase inhibitor II respectively.  相似文献   

2.
Cell associated elastase activities of rat mammary tumour cells   总被引:1,自引:0,他引:1  
As part of our studies into the role of tumour cell proteinases in cancer invasion, we have adapted a fluorogenic assay to measure the elastase activities of intact rat mammary adenocarcinoma cells using the elastase specific substrates Cbz-Ala-Ala-Pro-Val-6-aminoquinoline and Ac-Ala-Ala-Pro-Ala-7-amino-4-methylcoumarin. This is a sensitive assay which enables rapid (30-120 min) measurement of enzyme activities under conditions of physiological pH and ionic strength and can differentiate between cell-associated and secreted enzyme activities. As the substrates are non-toxic and the method is non-invasive, cells can be reclaimed for further studies. This method thus provides a useful means for screening intact cells for elastase activity. Cell-surface elastase extracts were inhibited by phenylmethylsulphonyl fluoride but not by EDTA, indicating that they are serine proteinases. Extracts also degraded insoluble elastin confirming that these rat mammary adenocarcinoma cells produce elastase.  相似文献   

3.
Cathepsin G, elastase, and proteinase 3 are serine proteinases released by activated neutrophils. Cathepsin G can cleave angiotensinogen to release angiotensin II, but this activity has not been previously reported for elastase or proteinase 3. In this study we show that elastase and proteinase 3 can release angiotensin I from angiotensinogen and release angiotensin II from angiotensin I and angiotensinogen. The relative order of potency in releasing angiotensin II by the three proteinases at equivalent concentrations is cathepsin G > elastase > proteinase 3. When all three proteinases are used together, the release of angiotensin II is greater than the sum of the release when each proteinase is used individually. Cathepsin G and elastase can also degrade angiotensin II, reactions which might be important in regulating the activity of angiotensin II. The release and degradation of angiotensin II by the neutrophil proteinases are reactions which could play a role in the local inflammatory response and wound healing.  相似文献   

4.
P Hof  I Mayr  R Huber  E Korzus  J Potempa  J Travis  J C Powers    W Bode 《The EMBO journal》1996,15(20):5481-5491
The crystal structure of human neutrophil cathepsin G, complexed with the peptidyl phosphonate inhibitor Suc-Val-Pro-PheP-(OPh)2, has been determined to a resolution of 1.8 A using Patterson search techniques. The cathepsin G structure shows the polypeptide fold characteristic of trypsin-like serine proteinases and is especially similar to rat mast cell proteinase II. Unique to cathepsin G, however, is the presence of Glu226 (chymotrypsinogen numbering), which is situated at the bottom of the S1 specificity pocket, dividing it into two compartments. For this reason, the benzyl side chain of the inhibitor PheP residue does not fully occupy the pocket but is, instead, located at its entrance. Its positively charged equatorial edge is involved in a favourable electrostatic interaction with the negatively charged carboxylate group of Glu226. Arrangement of this Glu226 carboxylate would also allow accommodation of a Lys side chain in this S1 pocket, in agreement with the recently observed cathepsin G preference for Lys and Phe at P1. The cathepsin G complex with the covalently bound phosphonate inhibitor mimics a tetrahedral substrate intermediate. A comparison of the Arg surface distributions of cathepsin G, leukocyte elastase and rat mast cell protease II shows no simple common recognition pattern for a mannose-6-phosphate receptor-independent targeting mechanism for sorting of these granular proteinases.  相似文献   

5.
A new method for isolation of leukocyte serine proteinases has been developed. Elastase (EC 3.4.21.37) and cathepsin G (EC 3.4.21.20) have been isolated from dog neutrophils and purified to homogeneous state. The results of inhibitor analysis indicate that the enzymes belong to the group of serine proteinases. Some physical and chemical characteristics of the purified enzymes have been determined. The molecular weights of the enzymes are 24.5-26 kD for the elastase and 23.5-25.5 kD for the cathepsin G. The cathepsin G is a glycoprotein, while the elastase molecule lacks carbohydrate components. The cathepsin G exhibits a broad pH optimum of catalytic activity in the range of 7.0-9.0; the pH optimum for the elastase is 8.0-8.5. The Michaelis constant of the elastase for N-t-Boc-L-alanine p-nitrophenyl ester is 0.10 mM; the Michaelis constant of the cathepsin G for N-benzoyl-L-tyrosine ethyl ester is 0.42 mM.  相似文献   

6.
Proteinaceous inhibitors with high inhibitory activities against human neutrophil elastase (HNE) were found in seeds of the Tamarind tree (Tamarindus indica). A serine proteinase inhibitor denoted PG50 was purified using ammonium sulphate and acetone precipitation followed by Sephacryl S-300 and Sephadex G-50 gel filtration chromatographies. Inhibitor PG50 showed a Mr of 14.9 K on Sephadex G-50 calibrated column and a Mr of 11.6 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PG50 had selective activity while cysteine proteinases (papain and bromelain) and serine proteinases (porcine pancreatic elastase and bovine chymotrypsin) were not inhibited, it was strongly effective against serine proteinases such as bovine trypsin and isolated human neutrophil elastase. The IC50 value was determined to be 55.96 microg.mL-1. PG50 showed neither cytotoxic nor haemolytic activity on human blood cells. After pre-incubation of PG50 with cytochalasin B, the exocytosis of elastase was initiated using PAF and fMLP. PG50 exhibited different inhibition on elastase release by PAF, at 44.6% and on release by fMLP, at 28.4%. These results showed that PG50 preferentially affected elastase release by PAF stimuli and this may indicate selective inhibition on PAF receptors.  相似文献   

7.
G Salvesen  J J Enghild 《Biochemistry》1990,29(22):5304-5308
The majority of proteinases exist as zymogens whose activation usually results from a single proteolytic event. Two notable exceptions to this generalization are the serine proteinases neutrophil elastase (HNE) and cathepsin G (cat G), proteolytic enzymes of human neutrophils that are apparently fully active in their storage granules. On the basis of amino acid sequences inferred from the gene and cDNAs encoding these enzymes, it is likely that both are synthesized as precursors containing unusual C-terminal and N-terminal peptide extensions absent from the mature proteins. We have used biosynthetic radiolabeling and radiosequencing techniques to identify the kinetics of activation of both proteinases in the promonocyte-like cell line U937. We find that both N- and C-terminal extensions are removed about 90 min after the onset of synthesis, resulting in the activation of the proteinases. HNE and cat G are, therefore, transiently present as zymogens, presumably to protect the biosynthetic machinery of the cell from adventitious proteolysis. Activation results from cleavage following a glutamic acid residue to give an activation specificity opposite to those of almost all other serine proteinase zymogens, but shared, possibly, by the "granzyme" group of related serine proteinases present in the killer granules of cytotoxic T-lymphocytes and rat mast cell proteinase II.  相似文献   

8.
W Bode  A Z Wei  R Huber  E Meyer  J Travis    S Neumann 《The EMBO journal》1986,5(10):2453-2458
Orthorhombic crystals diffracting beyond 1.7 A resolution, have been grown from the stoichiometric complex formed between human leukocyte elastase (HLE) and the third domain of turkey ovomucoid inhibitor (OMTKY3). The crystal and molecular structure has been determined with the multiple isomorphous replacement technique. The complex has been modeled using the known structure of OMTKY3 and partial sequence information for HLE, and has been refined. The current crystallographic R-value is 0.21 for reflections from 25 to 1.8 A resolution. HLE shows the characteristic polypeptide fold of trypsin-like serine proteinases and consists of 218 amino acid residues. However, several loop segments, mainly arranged around the substrate binding site, have unique conformations. The largest deviations from the other vertebrate proteinases of known spatial structure are around Cys168. The specificity pocket is constricted by Val190, Val216 and Asp226 to preferentially accommodate medium sized hydrophobic amino acids at P1. Seven residues of the OMTKY3-binding segment are in specific contact with HLE. This interaction and geometry around the reactive site are similar as observed in other complexes. It is the first serine proteinase glycoprotein analysed, having two sugar chains attached to Asn159 and to residue 109.  相似文献   

9.
The serine and cysteine proteinases represent two important classes of enzymes that use a catalytic triad to hydrolyze peptides and esters. The active site of the serine proteinases consists of three key residues, Asp...His...Ser. The hydroxyl group of serine functions as a nucleophile and the imidazole ring of histidine functions as a general acid/general base during catalysis. Similarly, the active site of the cysteine proteinases also involves three key residues: Asn, His, and Cys. The active site of the cysteine proteinases is generally believed to exist as a zwitterion (Asn...His+...Cys-) with the thiolate anion of the cysteine functioning as a nucleophile during the initial stages of catalysis. Curiously, the mutant serine proteinases, thiol subtilisin and thiol trypsin, which have the hybrid Asp...His...Cys triad, are almost catalytically inert. In this study, ab initio Hartree-Fock calculations have been performed on the active sites of papain and the mutant serine proteinase S195C rat trypsin. These calculations predict that the active site of papain exists predominately as a zwitterion (Cys-...His+...Asn). However, similar calculations on S195C rat trypsin demonstrate that the thiol mutant is unable to form a reactive thiolate anion prior to catalysis. Furthermore, structural comparisons between native papain and S195C rat trypsin have demonstrated that the spatial juxtapositions of the triad residues have been inverted in the serine and cysteine proteinases and, on this basis, I argue that it is impossible to convert a serine proteinase to a cysteine proteinase by site-directed mutagenesis.  相似文献   

10.
The elastases]     
Elastases are proteinases capable of solubilizing fibrous elastin. They may belong to the class of serine proteinases, cysteine proteinases and metalloproteinases. Mammalian elastases occur mainly in the pancreas and the phagocytes. Among non-mammalian elastases there is a great variety of bacterial metallo and serine elastases. The elastolytic activity varies from one elastase to another and is usually not correlated with the catalytic efficiency of these proteinases. One may measure this activity using native or labelled elastins. With pure elastases one may use synthetic substrates. There is a large number of natural (proteins) and synthetic elastase inhibitors. Elastases play a pathologic role in pulmonary emphysema, cystic fibrosis, infections, inflammation and atherosclerosis.  相似文献   

11.
The human LEKTI gene encodes a putative 15-domain serine proteinase inhibitor and has been linked to the inherited disorder known as Netherton syndrome. In this study, human recombinant LEKTI (rLEKTI) was purified using a baculovirus/insect cell expression system, and the inhibitory profile of the full-length rLEKTI protein was examined. Expression of LEKTI in Sf9 cells showed the presence of disulfide bonds, suggesting the maintenance of the tertiary protein structure. rLEKTI inhibited the serine proteinases plasmin, subtilisin A, cathepsin G, human neutrophil elastase, and trypsin, but not chymotrypsin. Moreover, rLEKTI did not inhibit the cysteine proteinase papain or cathepsin K, L, or S. Further, rLEKTI inhibitory activity was inactivated by treatment with 20 mM DTT, suggesting that disulfide bonds are important to LEKTI function. The inhibition of plasmin, subtilisin A, cathepsin G, elastase, and trypsin by rLEKTI occurred through a noncompetitive-type mechanism, with inhibitory constants (K(i)) of 27 +/- 5, 49 +/- 3, 67 +/- 6, 317 +/-36, and 849 +/- 55 nM, respectively. Thus, LEKTI is likely to be a major physiological inhibitor of multiple serine proteinases.  相似文献   

12.
The mRNA sequences for two rat pancreatic elastolytic enzymes have been cloned by recombinant DNA technology and their nucleotide sequences determined. Rat elastase I mRNA is 1113 nucleotides in length, plus a poly(A) tail, and encodes a preproelastase of 266 amino acids. The amino acid sequence of the predicted active form of rat elastase I is 84% homologous to porcine elastase 1. Key amino acid residues involved in determining substrate specificity of porcine elastase 1 are retained in the rat enzyme. The activation peptide of the zymogen does not appear related to that of other mammalian pancreatic serine proteases. The mRNA for elastase I is localized in the rough endoplasmic reticulum of acinar cells, as expected for the site of synthesis of an exocrine secretory enzyme. Rat elastase II mRNA is 910 nucleotides in length, plus a poly(A) tail, and encodes a preproenzyme of 271 amino acids. The amino acid sequence is more closely related to porcine elastase 1 (58% sequence identity) than to the other pancreatic serine proteases (33-39% sequence identity). Predictions of substrate preference based upon key amino acid residues that define the substrate binding cleft are consistent with the broad specificity observed for mammalian pancreatic elastase 2. The activation peptide is similar to that of the chymotrypsinogens and retains an N-terminal cysteine available to form a disulfide link to an internal conserved cysteine residue.  相似文献   

13.
The Asteridae is one of the most successful clades of flowering plants comprising some 80,000 species. Despite this diversity, analysis of seeds from 398 species (representing 8 orders, 32 families and 181 genera) showed just two major types of serine proteinase inhibitors (PI). PIs of the potato inhibitor I family were widely distributed. These had M(r) of 7000-7500 and were inhibitory to subtilisin and one or more other proteinases (but only rarely elastase). The second major group was TI related to the well-characterised Bowman-Birk inhibitors of legume seeds but these varied widely in their sequences and structure. In addition to these two groups of inhibitors, seeds of the Solanaceae also often contained PI of the potato inhibitor II family while some other asterids contained inhibitors whose relationships were not established.  相似文献   

14.
Left-handed polyproline II (PPII) helices commonly occur in globular proteins in segments of 4-8 residues. This paper analyzes the structural conservation of PPII-helices in 3 protein families: serine proteinases, aspartic proteinases, and immunoglobulin constant domains. Calculations of the number of conserved segments based on structural alignment of homologous molecules yielded similar results for the PPII-helices, the alpha-helices, and the beta-strands. The PPII-helices are consistently conserved at the level of 100-80% in the proteins with sequence identity above 20% and RMS deviation of structure alignments below 3.0 A. The most structurally important PPII segments are conserved below this level of sequence identity. These results suggest that the PPII-helices, in addition to the other 2 secondary structure classes, should be identified as part of structurally conserved regions in proteins. This is supported by similar values for the local RMS deviations of the aligned segments for the structural classes of PPII-helices, alpha-helices, and beta-strands. The PPII-helices are shown to participate in supersecondary elements such as PPII-helix/alpha-helix. The conservation of PPII-helices depends on the conservation of a supersecondary element as a whole. PPII-helices also form links, possibly flexible, in the interdomain regions. The role of the PPII-helices in model building by homology is 2-fold; they serve as additional conserved elements in the structure allowing improvement of the accuracy of a model and provide correct chain geometry for modeling of the segments equivalenced to them in a target sequence. The improvement in model building is demonstrated in 2 test studies.  相似文献   

15.
The proteinases in the midguts of three scarab white grub species, Lepidiota noxia, L. negatoria, and Antitrogus consanguineus, were investigated to classify the proteinases present and to determine the most effective proteinase inhibitor for potential use as an insect control agent. pH activity profiles indicated the presence of serine proteinases and the absence of cysteine proteinases. This was confirmed by the lack of inhibition by specific cysteine proteinase inhibitors. Trypsin, chymotrypsin, elastase, and leucine aminopeptidase activities were detected by using specific synthetic substrates. A screen of 32 proteinase inhibitors produced 9 inhibitors of trypsin, chymotrypsin, and elastase which reduced proteolytic activity by greater than 75%. © 1995 Wiley-Liss, Inc.  相似文献   

16.
A solid-phase radioimmunoassay for measuring neutrophil elastase in the range 0.08-4 ng/ml has been developed. A monospecific, precipitating antibody capable of inhibiting elastinolysis was produced by repeated immunizations of a goat. The IgG fraction and affinity-purified antibodies of this serum were then obtained and used to develop this radioimmunoassay. There was no cross-reactivity in binding of the radiolabeled antisera with lactoferrin, cathepsin G, or serine proteinases with amino-terminal amino acid sequence homology. Although serum influences the measurement of catalytically active neutrophil elastase when compared to diisopropylfluorophosphate-treated neutrophil elastase, antigenic elastase may still be measured in body fluids. Furthermore, this assay is more sensitive than commercially available substrates used for quantitating neutrophil elastase by functional activity. We have found this quantitative assay extremely useful in balance studies to measure secreted and cell-associated elastase and in screening of biological fluids for the presence of the enzyme.  相似文献   

17.
Proteinases in chronic obstructive pulmonary disease   总被引:10,自引:0,他引:10  
Chronic obstructive pulmonary disease (COPD) is a major health problem worldwide, and we have little specific therapy to offer these patients. One potential strategy to limit loss of lung function in COPD would be to inhibit matrix-degrading proteinases. Several serine proteinases and matrix metalloproteinases are expressed in association with COPD in humans. Application of gene-targeted macrophage elastase and neutrophil elastase to a mouse model of cigarette-smoke-induced emphysema has uncovered roles for these proteinases in airspace enlargement, and has identified many interactions between these proteolytic systems.  相似文献   

18.
A general approach toward the rational design of potential inhibitors of serine proteinases is described. The approach is exemplified and validated through the use of appropriate heterocyclic systems in inhibiting human leukocytes elastase (HLE).  相似文献   

19.
Serine proteinases from inflammatory cells, including polymorphonuclear neutrophils, are involved in various inflammatory disorders, like pulmonary emphysema and rheumatoid arthritis. Inhibitors of these serine proteinases are potential drug candidates for the treatment of these disorders, since they prevent the unrestricted proteolysis. This study describes a novel specific antistasin-type inhibitor of neutrophil serine proteinases, we called Fahsin. This inhibitor was purified from the Nile leech Limnatis nilotica, sequenced and heterologously expressed using a synthetic gene in the methylotrophic yeast Pichia pastoris, yielding 0.5 g(-l) of the protein in the culture medium. Recombinant Fahsin was purified to homogeneity and characterised by N-terminal amino acid sequencing and mass spectrometry. Inhibition-kinetic analysis showed that recombinant Fahsin is a fast, tight-binding inhibitor of human neutrophil elastase with inhibition constant in the nanomolar range. Furthermore, recombinant Fahsin was, in contrast to various other neutrophil elastase inhibitors, insensitive to chemical oxidation and biological oxidation via myeloperoxidase-generated free oxygen radicals. Thus, Fahsin constitutes a novel member of a still expanding family of naturally occurring inhibitors of serine proteinases with potential therapeutic use for treatment of human diseases.  相似文献   

20.
The cleaved approximately 22-kDa form of Endothelial-Monocyte Activating Polypeptide [mature (m)EMAP II] functions as a potent inhibitor of tumor growth. Although the anti-tumor effect of mEMAP II has been described, little is known regarding the cleavage of mEMAP II from its precursor form (pEMAP II). We determined that pEMAP II is expressed at the cell membrane surface and proteinases MMP-9, elastase, and cathepsin L release protein fragments consistent with mEMAP II molecular mass. MMP-9 and elastase generate a approximately 25-26 kDa spanning fragments, while cathepsin L generates a approximately 22 kDa fragment. Although several fragments are processed from pEMAP II within a 44 AA residue stretch, cathepsin L cleaves pEMAP II within 4 amino acids of the determined N-terminal sequence, suggesting that this region is sensitive to proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号