首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Luo  H F Lodish 《The EMBO journal》1996,15(17):4485-4496
Transforming growth factor-beta (TGF-beta) affects multiple cellular functions through the type I and type II receptor Ser/Thr kinases (TbetaRI and TbetaRII). Analysis of TGF-beta signaling pathways has been hampered by the lack of cell lines in which both TbetaRI and TbetaRII are deleted, and by the inability to study signal transduction by TbetaRI independently of TbetaRII since TbetaRI does not bind TGF-beta directly. To overcome these problems, we constructed and expressed chimeric receptors with the extracellular domain of the erythropoietin receptor (EpoR) and the cytoplasmic domains of TbetaRI or TbetaRII. When expressed in Ba/F3 cells, which do not express EpoR, Epo induces the formation of a heteromeric complex between cell surface EpoR-TbetaRI and EpoR-TbetaRII chimeras. Neither the EpoR-TbetaRI nor the EpoR-TbetaRII chimera interacts with endogenous TGF-beta receptors. Ba/F3 cells expressing both EpoR-TbetaRI and EpoR-TbetaRII chimeras, but not EpoR-TbetaRI or EpoR-TbetaRII alone, undergo Epo-induced growth arrest. When expressed in Ba/F3 cells in the absence of the EpoR-TbetaRII chimera, EpoR-TbetaRI(T204D), a chimeric receptor with a point mutation in the GS domain of TbetaRI that is autophosphorylated constitutively, triggers growth inhibition in response to Epo. Thus, both homo- and heterodimerization of the cytoplasmic domain of the type I TGF-beta receptor are required for intracellular signal transduction leading to inhibition of cell proliferation. These chimeric receptors provide a unique system to study the function and signal transduction of individual TGF-beta receptor subunits independently of endogenous TGF-beta receptors.  相似文献   

2.
We previously found that bikunin (bik), a Kunitz-type protease inhibitor, suppresses transforming growth factor-beta1 (TGF-beta1)-stimulated expression of urokinase-type plasminogen activator (uPA) in human ovarian cancer cells that lack endogenous bik. In the present study, we tried to elucidate the mechanism by which bik also inhibits plasminogen activator inhibitor type-1 (PAI-1) and collagen synthesis using human ovarian cancer cells. Here, we show that (a) there was an enhanced production of both uPA and PAI-1 in HRA cells in response to TGF-beta1; (b) the overexpression of bik in the cells or exogenous bik results in the inhibition of TGF-beta1 signaling as measured by phosphorylation of the downstream signaling effector Smad2, nuclear translocation of Smad3, and production of PAI-1 and collagen; (c) bik neither decreased expression of TGF-beta receptors (TbetaRI and TbetaRII) in either cell types nor altered the specific binding of 125I TGF-beta1 to the cells, indicating that the effects of bik in these cells are not mediated by ligand sequestration; (d) TbetaRI and TbetaRII present on the same cells exclusively form aggregates in TGF-beta1-stimulated cells; (e) co-treatment of TGF-beta1-stimulated cells with bik suppresses TGF-beta1-induced complex formation of TbetaRI and TbetaRII; and (f) a chondroitin-4-sulfate side chain-deleted bik (deglycosylated bik) does not inhibit TGF-beta1 signaling or association of type I/type II receptor. We conclude that glycosylated bik attenuates TGF-beta1-elicited signaling cascades in cells possibly by abrogating the coupling between TbetaRI and TbetaRII and that this probably provides the mechanism for the suppression of uPA and PAI-1 expression.  相似文献   

3.
Endoglin is an auxiliary component of the transforming growth factor-beta (TGF-beta) receptor system, able to associate with the signaling receptor types I (TbetaRI) and II (TbetaRII) in the presence of ligand and to modulate the cellular responses to TGF-beta1. Endoglin cannot bind ligand on its own but requires the presence of the signaling receptors, supporting a critical role for the interaction between endoglin and TbetaRI or TbetaRII. This study shows that full-length endoglin interacts with both TbetaRI and TbetaRII, independently of their kinase activation state or the presence of exogenous TGF-beta1. Truncated constructs encoding either the extracellular or the cytoplasmic domains of endoglin demonstrated that the association with the signaling receptors occurs through both extracellular and cytoplasmic domains. However, a more specific mapping revealed that the endoglin/TbetaRI interaction was different from that of endoglin/TbetaRII. TbetaRII interacts with the amino acid region 437-558 of the extracellular domain of endoglin, whereas TbetaRI interacts not only with the region 437-558 but also with the protein region located between amino acid 437 and the N terminus. Both TbetaRI and TbetaRII interact with the cytoplasmic domain of endoglin, but TbetaRI only interacts when the kinase domain is inactive, whereas TbetaRII remains associated in its active and inactive forms. Upon association, TbetaRI and TbetaRII phosphorylate the endoglin cytoplasmic domain, and then TbetaRI, but not TbetaRII, kinase dissociates from the complex. Conversely, endoglin expression results in an altered phosphorylation state of TbetaRII, TbetaRI, and downstream Smad proteins as well as a modulation of TGF-beta signaling, as measured by the reporter gene expression. These results suggest that by interacting through its extracellular and cytoplasmic domains with the signaling receptors, endoglin might affect TGF-beta responses.  相似文献   

4.
Vascular endothelial cells undergo albumin endocytosis using a set of albumin binding proteins. This process is important for maintaining cellular homeostasis. We showed by several criteria that the previously described 73-kDa endothelial cell surface albumin binding protein is the 75-kDa transforming growth factor (TGF)-beta receptor type II (TbetaRII). Albumin coimmunoprecipitated with TbetaRII from a membrane fraction from rat lung microvascular endothelial cells. Albumin endocytosis-negative COS-7 cells became albumin endocytosis competent when transfected with wild-type TbetaRII but not when transfected with a domain-negative kinase mutant of TbetaRII. An antibody specific for TbetaRII inhibited albumin endocytosis. A mink lung epithelial cell line, which expresses both the TGF-beta receptor type I (TbetaRI) and the TbetaRII receptor, exhibited albumin binding to the cell surface and endocytosis. In contrast, mutant L-17 and DR-26 cells lacking TbetaRI or TbetaRII, respectively, each showed a dramatic reduction in binding and endocytosis. Albumin endocytosis induced Smad2 phosphorylation and Smad4 translocation as well as increased protein expression of the inhibitory Smad, Smad7. We identified regions of significant homology between amino acid sequences of albumin and TGF-beta, suggesting a structural basis for the interaction of albumin with the TGF-beta receptors and subsequent activation of TbetaRII signaling. The observed albumin-induced internalization of TbetaRII signaling may be an important mechanism in the vessel wall for controlling TGF-beta responses in endothelial cells.  相似文献   

5.
Prostate cancers often develop insensitivity to TGF-beta to gain a growth advantage. In this study, we explored the status of promoter methylation of TGF-beta receptors (TbetaRs) in a prostate cancer cell line, LNCaP, which is insensitive to TGF-beta. Sensitivity to TGF-beta was restored in cells treated with 5-Aza-2'-deoxycytidine (5-Aza), as indicated by an increase in the expression of phosphorylated Smad-2, type I (TbetaRI), and type II (TbetaRII) TGF-beta receptors, and a reduced rate of proliferation. The same treatment did not significantly affect a benign prostate cell line, RWPE-1, which is sensitive to TGF-beta. Mapping of methylation sites was performed by screening 82 potential CpG methylation sites in the promoter of TbetaRI and 33 sites in TbetaRII using methylation-specific PCR and sequence analysis. There were six methylation sites (-365, -356, -348, -251, -244, -231) in the promoter of TbetaRI. The -244 site was located in an activator protein (AP)-2 box. There were three methylated sites (-140, +27, +32) in the TbetaRII promoter and the -140 site was located in one of the Sp1 boxes. Chromatin immunoprecipitation analysis demonstrated DNA binding activity of AP-2 in the TbetaRI promoter and of Sp1 in the TbetaRII promoter after treatment with 5-Aza. To test whether promoter methylation is present in clinical specimens, we analyzed human prostate specimens that showed negative staining for either TbetaRI or TbetaRII in a tissue microarray system. DNA samples were isolated from the microarray after laser capture microdissection. Methylation-specific PCR was performed for TbetaRI (six sites) and TbetaRII (three sites) promoters as identified in LNCaP cells. A significant number of clinical prostate cancer specimens lacked expression of either TbetaRI and/or TbetaRII, especially those with high Gleason's scores. In those specimens showing a loss of TbetaR expression, a promoter methylation pattern similar to that of LNCaP cells was a frequent event. These results demonstrate that insensitivity to TGF-beta in some prostate cancer cells is due to promoter methylation in TbetaRs.  相似文献   

6.
Transforming growth factor-beta (TGFbeta) isoforms initiate signaling by assembling a heterotetrameric complex of paired type I (TbetaRI) and type II (TbetaRII) receptors on the cell surface. Because two of the ligand isoforms (TGFbetas 1, 3) must first bind TbetaRII to recruit TbetaRI into the complex, and a third (TGFbeta2) requires a co-receptor, assembly is known to be sequential, cooperative and isoform-dependent. However the source of the cooperativity leading to recruitment of TbetaRI and the universality of the assembly mechanism with respect to isoforms remain unclear. Here, we show that the extracellular domain of TbetaRI (TbetaRI-ED) binds in vitro with high affinity to complexes of the extracellular domain of TbetaRII (TbetaRII-ED) and TGFbetas 1 or 3, but not to either ligand or receptor alone. Thus, recruitment of TbetaRI requires combined interactions with TbetaRII-ED and ligand, but not membrane attachment of the receptors. Cell-based assays show that TbetaRI-ED, like TbetaRII-ED, acts as an antagonist of TGFbeta signaling, indicating that receptor-receptor interaction is sufficient to compete against endogenous, membrane-localized receptors. On the other hand, neither TbetaRII-ED, nor TbetaRII-ED and TbetaRI-ED combined, form a complex with TGFbeta2, showing that receptor-receptor interaction is insufficient to compensate for weak ligand-receptor interaction. However, TbetaRII-ED does bind with high affinity to TGFbeta2-TM, a TGFbeta2 variant substituted at three positions to mimic TGFbetas 1 and 3 at the TbetaRII binding interface. This proves both necessary and sufficient for recruitment of TbetaRI-ED, suggesting that the three different TGFbeta isoforms induce assembly of the heterotetrameric receptor complex in the same general manner.  相似文献   

7.
Transforming growth factor-beta (TGF-beta) has multiple functions including increasing extracellular matrix deposition in fibrosis. It functions through a complex family of cell surface receptors that mediate downstream signaling. We report here that a transmembrane heparan sulfate proteoglycan, syndecan-2 (S2), can regulate TGF-beta signaling. S2 protein increased in the renal interstitium in diabetes and regulated TGF-beta-mediated increased matrix deposition in vitro. Transfection of renal papillary fibroblasts with S2 or a S2 construct that has a truncated cytoplasmic domain (S2DeltaS) promoted TGF-beta binding and S2 core protein ectodomain directly bound TGF-beta. Transfection with S2 increased the amounts of type I and type II TGF-beta receptors (TbetaRI and TbetaRII), whereas S2DeltaS was much less effective. In contrast, S2DeltaS dramatically increased the level of type III TGF-beta receptor (TbetaRIII), betaglycan, whereas S2 resulted in a decrease. Syndecan-2 specifically co-immunoprecipitated with betaglycan but not with TbetaRI or TbetaRII. This is a novel mechanism of control of TGF-beta action that may be important in fibrosis.  相似文献   

8.
9.
Transforming growth factor beta (TGF-beta) ligands exert their biological effects through type II (TbetaRII) and type I receptors (TbetaRI). Unlike TGF-beta1 and -beta3, TGF-beta2 appears to require the co-receptor betaglycan (type III receptor, TbetaRIII) for high affinity binding and signaling. Recently, the TbetaRIII null mouse was generated and revealed significant non-overlapping phenotypes with the TGF-beta2 null mouse, implying the existence of TbetaRIII independent mechanisms for TGF-beta2 signaling. Because a variant of the type II receptor, the type II-B receptor (TbetaRII-B), has been suggested to mediate TGF-beta2 signaling in the absence of TbetaRIII, we directly tested the ability of TbetaRII-B to bind TGF-beta2. Here we show that the soluble extracellular domain of the type II-B receptor (sTbetaRII-B.Fc) bound TGF-beta1 and TGF-beta3 with high affinity (K(d) values = 31.7 +/- 22.8 and 74.6 +/- 15.8 pm, respectively), but TGF-beta2 binding was undetectable at corresponding doses. Similar results were obtained for the soluble type II receptor (sTbetaRII.Fc). However, sTbetaRII.Fc or sTbetaRII-B.Fc in combination with soluble type I receptor (sTbetaRI.Fc) formed a high affinity complex that bound TGF-beta2, and this complex inhibited TGF-beta2 in a biological inhibition assay. These results show that TGF-beta2 has the potential to signal in the absence of TbetaRIII when sufficient TGF-beta2, TbetaRI, and TbetaRII or TbetaRII-B are present. Our data also support a cooperative model for receptor-ligand interactions, as has been suggested by crystallization studies of TGF-beta receptors and ligands. Our cell-free binding assay system will allow for testing of models of receptor-ligand complexes prior to actual solution of crystal structures.  相似文献   

10.
Transforming growth factor (TGF)-beta ligands signal through transmembrane type I and type II serine/threonine kinase receptors, which form heteromeric signalling complexes upon ligand binding. Type II TGF-beta receptors (TbetaRII) are reported to exist as homodimers at the cell surface, but the oligomerization pattern and dynamics of TbetaRII splice variants in live cells has not been demonstrated thus far. Using co-immunoprecipitation and bioluminescence resonance energy transfer (BRET), we demonstrate that the mouse TbetaRII receptor splice variant TbetaRII-B is capable of forming ligand-independent homodimers and heterodimers with TbetaRII. The homomeric interaction of mouse (m)TbetaRII-B isoforms, however, is less robust than the heteromeric interactions of mTbetaRII-B with wild-type TbetaRII, which indicates that these receptors may be more likely to heterodimerize when both receptors are expressed. Moreover, we demonstrate that mTbetaRII-B is a signalling receptor with ubiquitous tissue expression. Our study thus demonstrates previously unappreciated complex formation of TGF-beta type II receptors, and suggests that mTbetaRII-B can direct TGF-beta-induced signalling in vitro and in vivo.  相似文献   

11.
In many cancers, inactivating mutations in both alleles of the transforming growth factor beta (TGF-beta) type 11 receptor (TbetaRII) gene occur and correlate with loss of sensitivity to TGF-beta. Here we describe a novel mechanism for loss of sensitivity to growth inhibition by TGF-beta in tumor development. Mac-1 cells, isolated from the blood of a patient with an indolent form of cutaneous T-cell lymphoma, express wild-type TbetaRII and are sensitive to TGF-beta. Mac-2A cells, clonally related to Mac-1 and isolated from a skin nodule of the same patient at a later, clinically aggressive stage of lymphoma, are resistant to TGF-beta. They express both the wild-type TbetaRII and a receptor with a single point mutation (Asp-404-Gly [D404G]) in the kinase domain (D404G-->TbetaRII); no TbetaRI or TbetaRII is found on the plasma membrane, suggesting that D404G-TbetaRII dominantly inhibits the function of the wild-type receptor by inhibiting its appearance on the plasma membrane. Indeed, inducible expression, under control of a tetracycline-regulated promoter, of D404G-TbetaRII in TGF-beta- sensitive Mac-1 cells as well as in Hep3B hepatoma cells results in resistance to TGF-beta and disappearance of cell surface TbetaRI and TbetaRII. Overexpression of wild-type TbetaRII in Mac-2A cells restores cell surface TbetaRI and TbetaRH and sensitivity to TGF-beta. The ability of the D404G-TbetaRH to dominantly inhibit function of wild-type TGF-beta receptors represents a new mechanism for loss of sensitivity to the growth-inhibitory functions of TGF-beta in tumor development.  相似文献   

12.
13.
14.
Transforming growth factor-beta (TGF-beta) is a potent growth suppressor. Acquisition of TGF-beta resistance has been reported in many tumors, and has been associated with reduced TGF-beta receptor expression. In this study, we examined TGF-beta 1, TGF-beta type I receptor (TbetaRI) and TGF-beta type II receptor (TbetaRII) expression in SW-13 adrenocortical carcinoma cells by Northern and Western blot analysis. SW-13 cells did not express TbetaRII mRNA or protein. We have investigated the role of TbetaRII in modulating tumorigenic potential using stably transfected SW-13 cells with TbetaRII expression plasmid. TbetaRII-positive SW-13 cell growth was inhibited by exogenous human TGF-beta1 (hTGF-beta1) in a dose-dependent manner. In contrast, SW-13 cells and control clones transfected with empty vector remained hTGF-beta1-insensitive. Xenograft examination in athymic nude mice demonstrated that TbetaRII-positive SW-13 cells reduced tumor-forming activity. Reconstructing the TbetaRII can lead to reversion of the malignant phenotype of TbetaRII-negative human adrenocortical carcinoma, which contains SW-13 cells. Reduced TbetaRII expression may play a critical role in determining the malignant phenotype of human adrenocortical carcinoma.  相似文献   

15.
16.
Mature TGF-beta isoforms, which are covalent dimers, signal by binding to three types of cell surface receptors, the type I, II and III TGF-beta receptors. A complex composed of the TGF-beta ligand and the type I and II receptors is required for signaling. The type II receptor is responsible for recruiting TGF-beta into the heteromeric ligand/type I receptor/type II receptor complex. The purpose of this study was to test for the extent that avidity contributes to receptor affinity. Using a surface plasmon resonance (SPR)-based biosensor (the BIACORE), we captured the extracellular domain of the type II receptor (TbetaRIIED) at the biosensor surface in an oriented and stable manner by using a de novo designed coiled-coil (E/K coil) heterodimerizing system. We characterized the kinetics of binding of three TGF-beta isoforms to this immobilized TbetaRIIED. The results demonstrate that the stoichiometry of TGF-beta binding to TbetaRIIED was one dimeric ligand to two receptors. All three TGF-beta isoforms had rapid and similar association rates, but different dissociation rates, which resulted in the equilibrium dissociation constants being approximately 5pM for the TGF-beta1 and -beta3 isoforms, and 5nM for the TGF-beta2 isoform. Since these apparent affinities are at least four orders of magnitude higher than those determined when TGF-beta was immobilized, and are close to those determined for TbetaRII at the cell surface, we suggest that avidity contributes significantly to high affinity receptor binding both at the biosensor and cell surfaces. Finally, we demonstrated that the coiled-coil immobilization approach does not require the purification of the captured protein, making it an attractive tool for the rapid study of any protein-protein interaction.  相似文献   

17.
18.
19.
TGFbeta1, beta2, and beta3 are 25kDa homodimeric polypeptides that play crucial non-overlapping roles in development, tumor suppression, and wound healing. They exhibit 70-82% sequence identity and transduce their signals by binding and bringing together the TGFbeta type I and type II receptors, TbetaRI and TbetaRII. TGFbeta2 differs from the other isoforms in that it binds TbetaRII weakly and is dependent upon the co-receptor betaglycan for function. To explore the physicochemical basis underlying these differences, we generated a series of single amino acid TbetaRII variants based on the crystal structure of the TbetaRII:TGFbeta3 complex and examined these in terms of their TGFbeta isoform binding affinity and their equilibrium stability. The results showed that TbetaRII Ile53 and Glu119, which contact TGFbeta3 Val92 and Arg25, respectively, together with TbetaRII Asp32, Glu55, and Glu75, which contact TGFbeta3 Arg94, each contribute significantly, between 1 kcal mol(-1) to 1.5 kcal mol(-1), to ligand binding affinities. These contacts likely underlie the estimated 4.1 kcal mol(-1) lower affinity with which TbetaRII binds TGFbeta2 as these three ligand residues are unchanged in TGFbeta1 but are conservatively substituted in TGFbeta2 (Lys25, Ile92, and Lys94). To test this hypothesis, a TGFbeta2 variant was generated in which these three residues were changed to those in TGFbetas 1 and 3. This variant exhibited receptor binding affinities comparable to those of TGFbetas 1 and 3. Together, these results show that these three residues underlie the lowered affinity of TGFbeta2 for TbetaRII and that all isoforms likely induce assembly of the TGFbeta signaling receptors in the same overall manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号