首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tsetse flies (Glossina spp.) can harbor up to three distinct species of endosymbiotic bacteria that exhibit unique modes of transmission and evolutionary histories with their host. Two mutualist enterics, Wigglesworthia and Sodalis, are transmitted maternally to tsetse flies' intrauterine larvae. The third symbiont, from the genus Wolbachia, parasitizes developing oocytes. In this study, we determined that Sodalis isolates from several tsetse fly species are virtually identical based on a phylogenetic analysis of their ftsZ gene sequences. Furthermore, restriction fragment-length polymorphism analysis revealed little variation in the genomes of Sodalis isolates from tsetse fly species within different subgenera (Glossina fuscipes fuscipes and Glossina morsitans morsitans). We also examined the impact on host fitness of transinfecting G. fuscipes fuscipes and G. morsitans morsitans flies with reciprocal Sodalis strains. Tsetse flies cleared of their native Sodalis symbionts were successfully repopulated with the Sodalis species isolated from a different tsetse fly species. These transinfected flies effectively transmitted the novel symbionts to their offspring and experienced no detrimental fitness effects compared to their wild-type counterparts, as measured by longevity and fecundity. Quantitative PCR analysis revealed that transinfected flies maintained their Sodalis populations at densities comparable to those in flies harboring native symbionts. Our ability to transinfect tsetse flies is indicative of Sodalis ' recent evolutionary history with its tsetse fly host and demonstrates that this procedure may be used as a means of streamlining future paratransgenesis experiments.  相似文献   

2.
Proteins containing a glutamic acid-proline (EP) repeat epitope were immunologically detected in midguts from eight species of Glossina (tsetse flies). The molecular masses of the tsetse EP proteins differed among species groups. The amino acid sequence of one of these proteins, from Glossina palpalis palpalis, was determined and compared to the sequence of a homologue, the tsetse midgut EP protein of Glossina m. morsitans. The extended EP repeat domains comprised between 36% (G. m. morsitans) and 46% (G. p. palpalis) of the amino acid residues, but otherwise the two polypeptide chains shared most of their sequences and predicted functional domains. The levels of expression of tsetse EP protein in adult teneral midguts were markedly higher than in midguts from larvae. The EP protein was detected by immunoblotting in the fat body, proventriculus and midgut, the known major immune tissues of tsetse and is likely secreted as it was also detected in hemolymph. The EP protein was not produced by the bacterial symbionts of tsetse midguts as determined by genome analysis of Wigglesworthia glossinidia and immunoblot analysis of Sodalis glossinidius. Bacterial challenge of G. m. morsitans, by injection of live E. coli, induced augmented expression of the tsetse EP protein. The presence of EP proteins in a wide variety of tsetse, their constitutive expression in adult fat body and midguts and their upregulation after immunogen challenge suggest they play an important role as a component of the immune system in tsetse.  相似文献   

3.
Abstract Teneral Glossina morsitans mositans, G.m.submorsitans, G.palpalis gambiensis and G.tachinoides were allowed to feed on rabbits infected with Trypanosoma congolense savannah type or on mice infected with T.congolense riverine-forest type. The four tsetse species and subspecies were also infected simultaneously in vitro on the blood of mice infected with the two clones of T.congolense via a silicone membrane. The infected tsetse were maintained on rabbits and from the day 25 after the infective feed, the surviving tsetse were dissected in order to determine the infection rates.
Results showed higher mature infection rates in morsitans-gwup tsetse flies than in palpalis-group tsetse flies when infected with the savannah type of T.congolense. In contrast, infection rates with the riverine-forest type of T.congolense were lower, and fewer flies showed full development cycle. The intrinsec vectorial capacity of G.m.submorsitans for the two T.congolense types was the highest, whereas the intrinsic vectorial capacity of G.p.gambiensis for the Savannah type and G.m.morsitans for the riverine-forest type were the lowest. Among all tsetse which were infected simultaneously with the two types of T.congolense , the polymerase chain reaction detected only five flies which had both trypanosome taxa in the midgut and the proboscis. All the other infections were attributable to the savannah type.
The differences in the gut of different Glossina species and subspecies allowing these two sub-groups of T.congolense to survive better and undergo the complete developmental cycle more readily in some species than other are discussed.  相似文献   

4.
The present study was carried out in order to investigate if there was really a failure of PCR in identifying parasitologically positive tsetse flies in the field. Tsetse flies (Glossina palpalis gambiensis and Glossina morsitans morsitans) were therefore experimentally infected with two different species of Trypanosoma (Trypanosoma brucei gambiense or Trypanosoma congolense). A total of 152 tsetse flies were dissected, and organs of each fly (midgut, proboscis or salivary glands) were examined. The positive organs were then analysed using PCR. Results showed that, regardless of the trypanosome species, PCR failed to amplify 40% of the parasitologically positive midguts. This failure, which does not occur with diluted samples, is likely to be caused by an inhibition of the amplification reaction. This finding has important implications for the detection and the identification of trypanosome species in wild tsetse flies.  相似文献   

5.
Tsetse flies (Glossina spp.) can harbor up to three distinct species of endosymbiotic bacteria that exhibit unique modes of transmission and evolutionary histories with their host. Two mutualist enterics, Wigglesworthia and Sodalis, are transmitted maternally to tsetse flies' intrauterine larvae. The third symbiont, from the genus Wolbachia, parasitizes developing oocytes. In this study, we determined that Sodalis isolates from several tsetse fly species are virtually identical based on a phylogenetic analysis of their ftsZ gene sequences. Furthermore, restriction fragment-length polymorphism analysis revealed little variation in the genomes of Sodalis isolates from tsetse fly species within different subgenera (Glossina fuscipes fuscipes and Glossina morsitans morsitans). We also examined the impact on host fitness of transinfecting G. fuscipes fuscipes and G. morsitans morsitans flies with reciprocal Sodalis strains. Tsetse flies cleared of their native Sodalis symbionts were successfully repopulated with the Sodalis species isolated from a different tsetse fly species. These transinfected flies effectively transmitted the novel symbionts to their offspring and experienced no detrimental fitness effects compared to their wild-type counterparts, as measured by longevity and fecundity. Quantitative PCR analysis revealed that transinfected flies maintained their Sodalis populations at densities comparable to those in flies harboring native symbionts. Our ability to transinfect tsetse flies is indicative of Sodalis ' recent evolutionary history with its tsetse fly host and demonstrates that this procedure may be used as a means of streamlining future paratransgenesis experiments.  相似文献   

6.
Gooding, R. H., and McIntyre, G. S. 1998.Glossina morsitans morsitansandGlossina palpalis palpalis: Dosage compensation raises questions about the Milligan model for control of trypanosome development.Experimental Parasitology90, 244–249. Evidence that dosage compensation occurs in tsetse flies was obtained by comparing the activities of X chromosome-linked enzymes, arginine phosphokinase and glucose-6-phosphate dehydrogenase inGlossina m. morsitansand hexokinase and phosphoglucomutase inGlossina p. palpalis, with the activity of an autosome-linked enzyme, malate dehydrogenase, in each species. The shortcomings of the X chromosome model for the control ofTrypanozoonmaturation in tsetse are discussed in light of these findings and previously published reports on the lack of fitness effects of matureTrypanozooninfections in tsetse and on published results on antitrypanosomal factors in male and female tsetse flies.  相似文献   

7.
New trap designs for tsetse (Glossinidae), stable flies (Muscidae: Stomoxyinae), and horse flies (Tabanidae) were tested in Kenya to develop a multipurpose trap for biting flies. Many configurations and colour/fabric combinations were compared to a simplified, blue-black triangular trap to identify features of design and materials that result in equitable catches. New designs were tested against conventional traps, with a focus on Glossina pallidipes Austen and G. longipennis Corti, Stomoxys niger Macquart, and Atylotus agrestis (Wiedemann). A simple design based on minimal blue and black rectangular panels, for attraction and contrast, with a trap body consisting of an innovative configuration of netting, proved best. This 'Nzi' trap (Swahili for fly) caught as many or significantly more tsetse and biting flies than any conventional trap. The Nzi trap represents a major improvement for Stomoxyinae, including the cosmopolitan species S. calcitrans (Linnaeus), with up to eight times the catch for key African Stomoxys spp. relative to the best trap for this group (the Vavoua). Catches of many genera of Tabanidae, including species almost never caught in traps (Philoliche Wiedemann), are excellent, and are similar to those of larger traps designed for this purpose (the Canopy). Improvements in capturing biting flies were achieved without compromising efficiency for the savannah tsetse species G. pallidipes. Catches of fusca tsetse (G. longipennis and G. brevipalpis Newstead) were higher or were the same as catches in good traps for these species (NG2G, Siamese). Altogether, the objective of developing a simple, economical trap with harmonized efficiency was achieved.  相似文献   

8.
In tsetse both sexes feed exclusively on the blood of vertebrates for a few minutes every 2-3 days. Tsetse flies seek cover from high temperatures to conserve energy and plants provide shelter for tsetse in all the biotopes they occupy. Recently, tsetse have taken cover in plantations and under the invasive bush Lantana camara that has invaded large areas of the tsetse fly belt of Africa. Flies from such refugia are implicated in sleeping sickness epidemics. In a wind tunnel we show that both foliage and an extract of volatiles from foliage of L. camara attract three tsetse spp. from different habitats: Glossina fuscipes fuscipes (riverine), G. brevipalpis (sylvatic) and G. pallidipes (savannah). Gas chromatography analysis of volatiles extracted from leaves and flowers of L. camara coupled to electroantennograme recordings show that 1-octen-3-ol and beta-caryophyllene are the major chemostimuli for the antennal receptor cells of the three tsetse spp. studied. A binary mixture of these products attracted these flies in the wind tunnel. The gas chromatography linked electroantennograme analysis of the L. camara extracts also show that the antennal receptor cells of the three tsetse spp. respond similarly to groups of volatiles derived from the major biosynthetic and catabolic pathways of plants, i.e. to mono- and sesquiterpenes, to lipoxidation products and to aromatics. Mixtures of these plant volatiles also attracted tsetse in the wind tunnel. These findings show that tsetse flies have conserved a strong sensitivity to volatile secondary products of plants, underlining the fundamental role of vegetation in tsetse survival.  相似文献   

9.
Glossina (G.) spp. (Diptera: Glossinidae), known as tsetse flies, are vectors of African trypanosomes that cause sleeping sickness in humans and nagana in domestic livestock. Knowledge on tsetse distribution and accurate species identification help identify potential vector intervention sites. Morphological species identification of tsetse is challenging and sometimes not accurate. The matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI TOF MS) technique, already standardised for microbial identification, could become a standard method for tsetse fly diagnostics. Therefore, a unique spectra reference database was created for five lab-reared species of riverine-, savannah- and forest- type tsetse flies and incorporated with the commercial Biotyper 3.0 database. The standard formic acid/acetonitrile extraction of male and female whole insects and their body parts (head, thorax, abdomen, wings and legs) was used to obtain the flies'' proteins. The computed composite correlation index and cluster analysis revealed the suitability of any tsetse body part for a rapid taxonomical identification. Phyloproteomic analysis revealed that the peak patterns of G. brevipalpis differed greatly from the other tsetse. This outcome was comparable to previous theories that they might be considered as a sister group to other tsetse spp. Freshly extracted samples were found to be matched at the species level. However, sex differentiation proved to be less reliable. Similarly processed samples of the common house fly Musca domestica (Diptera: Muscidae; strain: Lei) did not yield any match with the tsetse reference database. The inclusion of additional strains of morphologically defined wild caught flies of known origin and the availability of large-scale mass spectrometry data could facilitate rapid tsetse species identification in the future.  相似文献   

10.
The invertebrate microbiome contributes to multiple aspects of host physiology, including nutrient supplementation and immune maturation processes. We identified and compared gut microbial abundance and diversity in natural tsetse flies from Uganda using five genetically distinct populations of Glossina fuscipes fuscipes and multiple tsetse species (Glossina morsitans morsitans, G. f. fuscipes, and Glossina pallidipes) that occur in sympatry in one location. We used multiple approaches, including deep sequencing of the V4 hypervariable region of the 16S rRNA gene, 16S rRNA gene clone libraries, and bacterium-specific quantitative PCR (qPCR), to investigate the levels and patterns of gut microbial diversity from a total of 151 individuals. Our results show extremely limited diversity in field flies of different tsetse species. The obligate endosymbiont Wigglesworthia dominated all samples (>99%), but we also observed wide prevalence of low-density Sodalis (tsetse''s commensal endosymbiont) infections (<0.05%). There were also several individuals (22%) with high Sodalis density, which also carried coinfections with Serratia. Albeit in low density, we noted differences in microbiota composition among the genetically distinct G. f. fuscipes flies and between different sympatric species. Interestingly, Wigglesworthia density varied in different species (104 to 106 normalized genomes), with G. f. fuscipes having the highest levels. We describe the factors that may be responsible for the reduced diversity of tsetse''s gut microbiota compared to those of other insects. Additionally, we discuss the implications of Wigglesworthia and Sodalis density variations as they relate to trypanosome transmission dynamics and vector competence variations associated with different tsetse species.  相似文献   

11.
In the Mouhoun River basin, Burkina Faso, the main vectors of African animal trypanosomoses are Glossina palpalis gambiensis Vanderplank and Glossina tachinoides Westwood (Diptera: Glossinidae), both of which are riverine tsetse species. The aim of our study was to understand the impact of landscape anthropogenic changes on the seasonal dynamics of vectors and associated trypanosomosis risk. Three sites were selected on the basis of the level of disturbance of tsetse habitats and predominant tsetse species: disturbed (Boromo, for G. tachinoides) and half-disturbed (Douroula for G. tachinoides and Kadomba for G. p. gambiensis). At each of these sites, seasonal variations in the apparent densities of tsetse and mechanical vectors and tsetse infection rates were monitored over 17 months. Tsetse densities differed significantly between sites and seasons. Of 5613 captured tsetse, 1897 were dissected; 34 of these were found to be infected with trypanosomes. The most frequent infection was Trypanosoma vivax (1.4%), followed by Trypanosoma congolense (0.3%) and Trypanosoma brucei (0.05%). The mean physiological age of 703 tsetse females was investigated to better characterize the transmission risk. Despite the environmental changes, it appeared that tsetse lived long enough to transmit trypanosomes, especially in half-disturbed landscapes. A total of 3021 other biting flies from 15 species (mainly Tabanidae and Stomoxyinae) were also caught: their densities also differed significantly among sites and seasons. Their relative importance regarding trypanosome transmission is discussed; the trypanosomosis risk in cattle was similar at all sites despite very low tsetse densities (but high mechanical vector densities) in one of them.  相似文献   

12.
1. The significance of Glossina fusca group tsetse flies as vectors of cattle trypanosomiasis was examined using biconical traps to survey tsetse populations at one site in Gabon and two sites in Zaire. 2. Mean trypanosome infection rates in G.tabaniformis Westwood over the study period ranged from a minimum of 8.9% at one site to a maximum of 17.7% at another. The mean infection rate in G.nashi Potts was 6.0%. 3. Up to 49% of bloodmeals of G.tabaniformis were from cattle. Trypanosome prevalence in cattle where G.tabaniformis appeared to be the main vector was 9.5% and 5.4% at the Mushie and OGAPROV ranches, respectively. 4. A highly significant positive correlation was found between tsetse challenge and trypanosome prevalence in N'Dama cattle across sites. Tsetse challenge was defined as the product of tsetse relative densities, trypanosome infection rates in the flies and the proportion of feeds taken by them from cattle. Thus, G.tabaniformis can be an important vector of pathogenic Trypanosoma species in cattle.  相似文献   

13.
Ten years after the large-scale tsetse control campaigns in the important cattle rearing areas of the Faro and Deo Division of the Adamaoua Plateau in Cameroon, the seasonal distribution and abundance of tsetse flies (Glossina spp.) were determined. During a period of 12 consecutive months (January-December 2005), the tsetse population was monitored along four trap transects consisting of a total of 32 traps and two flyround transects traversing the study area, which comprised the tsetse-infested valley, a buffer zone and the supposedly tsetse-free plateau. Throughout the study period, a total of 2195 Glossina morsitans submorsitans and 23 Glossina tachinoides were captured in the traps and 1007 G. m. submorsitans (78.8% male flies) were captured along the flyround transects. All G. tachinoides and almost all G. m. submorsitans were captured in the valley. Five G. m. submorsitans were captured in traps located in the buffer zone, whereas no flies were captured in traps located on the plateau. The index of apparent abundance (IAA) of G. m. submorsitans was substantially higher in the areas close to game reserves. In the remaining part of the valley, where wildlife is scarce and cattle are present during transhumance (dry season), the IAA of tsetse was substantially lower. In this part of the valley, the abundance of tsetse seemed to be associated with the presence of cattle, with the highest IAA during transhumance when cattle are present and the lowest apparent abundance during the rainy season when cattle have moved to the plateau. It is concluded that the distribution of tsetse in a large part of the valley undergoes substantial seasonal changes depending on the presence or absence of cattle. The repercussions of those findings for the control of tsetse in the valley and the probability of reinvasion of the plateau are discussed.  相似文献   

14.
An enzyme-linked immunosorbent assay (ELISA) was developed to identify the origin of vertebrate blood in the guts of 29 245 wild-caught flies of eleven Glossina species from various ecological zones of Africa. Depending on the quality of the bloodmeal samples, 62.8% of the samples were identified and could be assigned to a host-group (e.g. ruminant), family (e.g. Bovidae) or species (e.g. Bos spp.). A total of 13 145 samples (44.9%) was identifiable up to the species level. With a few exceptions, the present results are in agreement with earlier published reports. Glossina austeni and G. fuscipleuris seemed to have a distinct feeding preference for Suidae (mainly bushpig). Glossina morsitans ssp. fed mainly on Suidae (mainly warthog), although local variations were observed and in some areas hippopotamus or ruminants replaced the warthog as the main host. Bushbuck seemed to be the principal food source for G. longipalpis and G. fusca . Glossina pallidipes fed mainly on ruminants (buffalo, bushbuck and cattle) but, depending on host availability and location, Suidae were also important hosts. Hippopotamus was identified as the main source of blood-meals for G. brevipalpis . The main hosts for G. longipennis were Suidae (mainly bushpig) and not rhinoceros as had been reported 40 years earlier. The opportunistic feeding behaviour of the palpalis tsetse group was confirmed. The results showed that changes in environment, fauna and host availability may result in modification of tsetse feeding patterns.  相似文献   

15.
Tsetse flies (Glossina spp.), the vector for African trypanosomiasis, are highly attracted by blue and black surfaces. This phototactic behaviour has long been exploited to trap tsetse flies as one measure in the control of African trypanosomiasis. However, why blue and black are so attractive for tsetse flies is still unknown. We propose that the combination of blue and black is attractive for many Glossina species because when searching for a shady resting place to pass the day, the flies are probably guided by the blueness and darkness of daytime shadows. In contrast to people's experience that daytime shadows are colourless, actually on a sunny day all shadows are tinted bluish by the scattered blue skylight.  相似文献   

16.
BACKGROUND: Wolbachia is a genus of endosymbiotic α-Proteobacteria infecting a wide range of arthropods and filarial nematodes. Wolbachia is able to induce reproductive abnormalities such as cytoplasmic incompatibility (CI), thelytokous parthenogenesis, feminization and male killing, thus affecting biology, ecology and evolution of its hosts. The bacterial group has prompted research regarding its potential for the control of agricultural and medical disease vectors, including Glossina spp., which transmits African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals. RESULTS: In the present study, we employed a Wolbachia specific 16S rRNA PCR assay to investigate the presence of Wolbachia in six different laboratory stocks as well as in natural populations of nine different Glossina species originating from 10 African countries. Wolbachia was prevalent in Glossina morsitans morsitans, G. morsitans centralis and G. austeni populations. It was also detected in G. brevipalpis, and, for the first time, in G. pallidipes and G. palpalis gambiensis. On the other hand, Wolbachia was not found in G. p. palpalis, G. fuscipes fuscipes and G. tachinoides. Wolbachia infections of different laboratory and natural populations of Glossina species were characterized using 16S rRNA, the wsp (Wolbachia Surface Protein) gene and MLST (Multi Locus Sequence Typing) gene markers. This analysis led to the detection of horizontal gene transfer events, in which Wobachia genes were inserted into the tsetse flies fly nuclear genome. CONCLUSIONS: Wolbachia infections were detected in both laboratory and natural populations of several different Glossina species. The characterization of these Wolbachia strains promises to lead to a deeper insight in tsetse flies-Wolbachia interactions, which is essential for the development and use of Wolbachia-based biological control methods.  相似文献   

17.
Many species of tsetse flies are infected with a virus that causes salivary gland hypertrophy (SGH) symptoms associated with a reduced fecundity and fertility. A high prevalence of SGH has been correlated with the collapse of two laboratory colonies of Glossina pallidipes and colony maintenance problems in a mass rearing facility in Ethiopia. Mass-production of G. pallidipes is crucial for programs of tsetse control including the sterile insect technique (SIT), and therefore requires a management strategy for this virus. Based on the homology of DNA polymerase between salivary gland hypertrophy virus and herpes viruses at the amino acid level, two antiviral drugs, valacyclovir and acyclovir, classically used against herpes viruses were selected and tested for their toxicity on tsetse flies and their impact on virus replication. While long term per os administration of acyclovir resulted in a significant reduction of productivity of the colonies, no negative effect was observed in colonies fed with valacyclovir-treated blood. Furthermore, treatment of a tsetse colony with valacyclovir for 83 weeks resulted in a significant reduction of viral loads and consequently suppression of SGH symptoms. The combination of initial selection of SGHV-negative flies by non-destructive PCR, a clean feeding system, and valacyclovir treatment resulted in a colony that was free of SGH syndromes in 33 weeks. This is the first report of the use of a drug to control a viral infection in an insect and of the demonstration that valacyclovir can be used to suppress SGH in colonies of G. pallidipes.  相似文献   

18.
Three different bacterial species are regularly described from tsetse flies. However, no broad screens have been performed to investigate the existence of other bacteria in this medically and agriculturally important vector insect. Utilising both culture dependent and independent methods we show that Kenyan populations of Glossina fuscipes fuscipes harbour a surprising diversity of bacteria. Bacteria were isolated from 72% of flies with 23 different bacterial species identified. The Firmicutes phylum dominated with 16 species of which seven belong to the genus Bacillus. The tsetse fly primary symbiont, Wigglesworthia glossinidia, was identified by the culture independent pathway. However, neither the secondary symbiont Sodalis nor Wolbachia was detected with either of the methods used. Two other bacterial species were identified with the DNA based method, Bacillus subtilis and Serratia marcescens. Further studies are needed to determine how tsetse flies, which only ever feed on vertebrate blood, pick up bacteria and to investigate the possible impact of these bacteria on Glossina longevity and vector competence.  相似文献   

19.
A multidisciplinary work was undertaken in the agropastoral zone of Sidéradougou, Burkina Faso to try to elucidate the key factors determining the presence of tsetse flies. In this study the PCR was used to characterize trypanosomes infecting the vector ( Glossina tachinoides and Glossina palpalis gambiensis ) and the host, i.e. cattle. A 2-year survey involved dissecting 2211 tsetse of the two Glossina species. A total of 298 parasitologically infected tsetse were analysed by PCR. Trypanosoma vivax was the most frequently identified trypanosome followed by the savannah type of T. congolense and, to a lesser extent, the riverine forest type of T. congolense , and by T. brucei . No cases of T. simiae were found. From the 107 identified infections in cattle, the taxa were the same, but T. congolense savannah type was more frequent, whereas T. vivax and T. congolense riverine forest types were found less frequently. A correlation was found between midgut infection rates of tsetse, nonidentified infections and reptile bloodmeals. These rates were higher in G.p. gambiensis , and in the western part of the study area. T. vivax infections were related to cattle bloodmeals, and were more frequent in G. tachinoides and in the eastern study area. The PCR results combined with bloodmeal analysis helped us to establish the relationships between the vector and the host, to assess the trypanosome challenge in the two parts of the area, to elucidate the differences between the two types of T. congolense , and to suspect that most midgut infections were originating from reptilian trypanosomes.  相似文献   

20.
Abstract. The effect of ox skin secretions (sebum) on the behaviour of tsetse flies, Glossina spp., was investigated in the field using electrified targets, some of which operated intermittently, and by direct observations of flies landing on treated and untreated cloth. As the off-period of an intermittently operating electrified target increased, the catch decreased both with and without the sebum present. Targets with sebum always caught more flies than targets without sebum, but there was no evidence to suggest that sebum increased the duration of stay on a target. Direct observations of flies on cloth targets revealed that for both species the presence of sebum reduced the duration of contact and for G. pallidipes the number of return contacts was increased. The results from direct observations were used to predict the number of repeat landings that would need to be made by flies in order to account for the catch of tsetse at intermittently electrified targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号