首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of latent and nominal rabbit Ig VHa1 allotype cDNA sequences   总被引:1,自引:0,他引:1  
The genetic basis for the expression of a latent VH allotype in the rabbit was investigated. VH region cDNA libraries were produced from spleen mRNA derived from a homozygous a2a2 rabbit expressing an induced latent VHa1 allotype and, for comparison, from a normal homozygus a1a1 rabbit expressing nominal VHa1 allotype. The deduced amino acid sequences of the nominal VHa1 cDNA were concordant with previously published VHa1 protein sequences. A comparison of two complete VH-DH-JH and six partial VHa1 sequences reveals highly conserved sequence within VH framework regions (FR) and considerable diversity in complementarity-determining regions and D region sequences. Two functional JH genes or alleles are evident. Amino acid sequencing of the N-terminal 15 residues of pooled affinity-purified latent VHa1 H chain showed complete sequence identity with the nominal VHa1 sequences. Possible latent VHa1-encoding cDNA clones, derived from the a2a2 rabbit, were selected by hybridization with oligonucleotide probes corresponding to the VHa1 allotype-associated segments of the first and third framework regions (FR1 and FR3). cDNA sequence analysis reveals that the 5' untranslated regions of nominal and latent VHa1 cDNA were virtually identical to each other and to previously reported sequences associated with VHa2 and VHa-negative genes. Moreover, some latent VHa1 genes encode FR1 segments that are essentially homologous to the corresponding segment of a nominal VHa1 allotype. In contrast, other putative latent genes display blocks of VHa1 sequence in either FR1 or FR3 that are flanked by blocks of sequence identical to other rabbit VH genes (i.e., VHa2 or VHa-negative). These composite sequences may be directly encoded by composite germ-line VH genes or may be the products of somatically generated recombination or gene conversion between genes encoding latent and nominal allotypes. The data do not support the hypothesis that latent genes are the result of extensive modification by somatic point mutation.  相似文献   

2.
We have previously reported the sequences of putative latent a1 cDNA derived from an alpha 2 alpha 2 rabbit. Significant similarity to nominal a1 cDNA sequences was noted, but none of the latent sequences were completely a1-like. We have now probed a genomic library, produced from the same alpha 2 alpha 2 rabbit, for evidence of germline latent a1 VH genes. Four hundred ninety-four VH+ clones were screened with oligonucleotides specific for a1 diagnostic regions of framework region 1 (FR1) and FR3. Twenty-two percent of the VH+ clones hybridized with an a1FR3 oligonucleotide probe. Two a1 FR1 probes yielded weak signals with 6% to 13% of the VH+ clones. Twenty VH genes from clones positive for one or more of the a1-specific oligonucleotide probes were sequenced, revealing 14 unique germline VH genes. All but one of these genes were 85% to 92% identical to the VH1-a1 nominal gene prototype, with sequence identity extending into the leader intron. Most genes displayed extended regions of similarity to a1 in FR1, FR3, or both and expressed 13 to 17 of the 21 allotype-associated residues, consistent with the nominal a1 sequence. The a1-like sequences were variously interspersed with short non-a1 segments, suggestive of germline gene conversion. Although none of the germline a1-like VH genes we have isolated from the alpha 2 alpha 2 rabbits are identical to the known a1 genes or protein sequences from alpha 1 alpha 1 rabbits and 8 of 14 are pseudogenes, most could make significant contributions to the synthesis of a complete nominal a1 sequence by serving as a pool of sequence donors during somatic gene conversion.  相似文献   

3.
The immunoglobulin (Ig) heavy chain variable (VH) gene family of Heterodontus francisci (horned shark), a phylogenetically distant vertebrate, is unique in that VH, diversity (DH), joining (JH) and constant region (CH) gene segments are linked closely, in multiple individual clusters. The V regions of 12 genomic (liver and gonad) DNA clones have been sequenced completely and three organization patterns are evident: (i) VH-D1-D2-JH-CH with unique 12/22 and 12/12 spacers in the respective D recombination signal sequences (RSSs); VH and JH segments have 23 nucleotide (nt) spacers, (ii) VHDH-JH-CH, an unusual germline configuration with joined VH and DH segments and (iii) VHDHJH-CH, with all segmental elements being joined. The latter two configurations do not appear to be pseudogenes. Another VH-D1-D2-JH-CH gene possesses a D1 segment that is flanked by RSSs with 12 nt spacers and a D2 segment with 22/12 spacers. Based on the comparison of spleen, VH+ cDNA sequences to a germline consensus, it is evident that both DH segments as well as junctional and N-type diversity account for Ig variability. In this early vertebrate, the Ig genes share unique properties with higher vertebrate T-cell receptor as well as with Ig and may reflect the structure of a common ancestral antigen binding receptor gene.  相似文献   

4.
Synthetic DNA oligomers specific for the VHa allotypes of rabbit Ig genes have been used to identify latent allotypic sequences in homozygous a1 and a2 rabbits. Two Ig VH pseudogenes containing latent a3 regions have been cloned from the genome of a homozygous a2 rabbit. Analysis of the regions associated with allotype expression indicates that these two pseudogenes contain VHa- sequences in framework region 1 (FR1) and VHa3 sequences in FR3. One gene has undergone an unusual rearrangement with a third VH gene, deleting their intervening sequences and recombining in FR3 with sequences 5' to the leader exon. Our results demonstrate the presence of latent VH sequences in the genomic DNA of normal rabbits and suggest that a mechanism such as gene conversion is responsible for expression of genetically-unexpected Ig VH genes.  相似文献   

5.
VDJ genes were cloned from leukemic B cells of an a1/a2 heterozygous Emu-cmyc transgenic rabbit. Restriction mapping and nucleotide sequence analysis indicated that one clone, 5C3, had a VHa1-encoding gene segment functionally rearranged to a JH gene segment from the a2 chromosome. This VDJ gene may be the result of a trans recombination between a VH gene on the a1 chromosome and a JH gene segment on the a2 chromosome or, it may be the result of a cis recombination if the a2 chromosome contains VHa1-encoding gene segments.  相似文献   

6.
Somatic mutations are not distributed randomly throughout Ab V region genes. A sequence-specific target bias is revealed by a defined hierarchy of mutability among di- and trinucleotide sequences located within Ig intronic DNA. Here we report that the di- and trinucleotide mutability preference pattern is shared by mouse intronic JH and Jkappa clusters and by human VH genes, suggesting that a common mutation mechanism exists for all Ig V genes of both species. Using di- and trinucleotide target preferences, we performed a comprehensive analysis of human and murine germline V genes to predict regional mutabilities. Heavy chain genes of both species exhibit indistinguishable patterns in which complementarity-determining region 1 (CDR1), CDR2, and framework region 3 (FR3) are predicted to be more mutable than FR1 and FR2. This prediction is borne out by empirical mutation data from nonproductively rearranged human VH genes. Analysis of light chain genes in both species also revealed a common, but unexpected, pattern in which FR2 is predicted to be highly mutable. While our analyses of nonfunctional Ig genes accurately predicts regional mutation preferences in VH genes, observed relative mutability differences between regions are more extreme than expected. This cannot be readily accounted for by nascent mRNA secondary structure or by a supplemental gene conversion mechanism that might favor nucleotide replacements in CDR. Collectively, our data support the concept of a common mutation mechanism for heavy and light chain genes of mice and humans with regional bias that is qualitatively, but not quantitatively, accounted for by short nucleotide sequence composition.  相似文献   

7.
Partial molecular genetic map of the rabbit VH chromosomal region   总被引:6,自引:0,他引:6  
Thirty VH-containing cosmid clones, isolated from rabbit germ-line DNA libraries, were restriction mapped and shown to contain approximately 100 VH genes in 765-kb of DNA. Twenty-two of the cosmid clones were grouped into seven distinct clusters. The VH genes were separated by an average of 8 kb, although some were separated by less than 3 kb. Comparison of the nucleotide sequences of two of these VH genes with the sequences of another 11 VH genes showed that they were all generally more than 80% homologous suggesting that rabbit VH genes are members of one highly homologous gene family. Most rabbit Ig molecules have the VH allotypic specificities a1, a2, or a3 and are designated VHa-positive. A small number (less than 30%) of Ig molecules lack these VHa allotypic specificities and are designated VHa-negative. The VH containing cosmid clones were hybridized with synthetic oligomer probes designed to be specific for genes encoding VHa-positive or VHa-negative molecules. At least 50% of the germ-line VH genes hybridized with the VHa-negative oligomer and thus presumably encode VHa-negative molecules; as few as 15% of the genes could be identified as encoding VHa-positive molecules based on hybridization with the VHa-positive oligomer. Approximately 35% of the VH genes did not hybridize with either oligomer and could not be classified as VHa-negative or VHa-positive. We propose that the predominance of serum VHa-positive molecules, in contrast to the predominance of VHa-negative encoding germ-line genes, may reflect preferential usage of a few germline VH genes. The implications of this idea toward explaining the allelic inheritance of VHa allotypes are discussed.  相似文献   

8.
In this study we investigate the molecular genetic basis for VHa- Ig. Knowing that the expression of VHa allotype Ig is suppressed by neonatal injection of rabbits with anti-VHa allotype antibody, and that the decreased level of VHa allotype Ig, VHa+, in the suppressed rabbits is compensated for by an increase in VHa- Ig, we determined the nucleotide sequences of 41 VDJ genes from a2/a2 rabbits neonatally suppressed for the expression of a2 Ig. We compared these nucleotide sequences to each other and identified two groups of VH sequences. We predict that the molecules of each group are encoded by one germline VH gene. Inasmuch as VHa+ Ig is encoded predominantly by one germline VH gene, VH1, it appears that more than 95% of the VDJ repertoire of rabbits may be encoded by as few as three germline VH genes. A genomic VDJ gene whose VH sequence was similar to those of group I molecules was expressed in vitro and was shown by ELISA to encode molecules of the VHa- allotype, y33. Analysis of the D regions in the VDJ gene indicated that germline D2b and D3 gene segments were preferentially used in the VDJ gene rearrangement. A comparison of sequences of D regions of the 41 VDJ gene rearrangements in 3-, 6-, and 9-wk-old rabbits to sequences of germline D gene segments showed an accumulation of mutations in the D region. Inasmuch as we have previously shown that V regions of rabbit VDJ genes are diversified, in part, by somatic gene conversion, it appears now that rabbit VDJ genes diversify by a combination of somatic mutation and somatic gene conversion.  相似文献   

9.
K L Knight  R S Becker 《Cell》1990,60(6):963-970
Rabbits are unique in that their immunoglobulin VH regions bear allotypic markers encoded by allelic genes. The presence of these markers on most serum immunoglobulins is difficult to explain, as the germline contains several hundred VH genes. We cloned VH genes from normal rabbits of the VHa allotypes a1, a2, and a3 and from a mutant a2 rabbit, Alicia, which expresses almost no a2 allotype. The D-proximal VH gene VH1 of normal rabbits encoded prototype a1, a2, or a3 allotype VH regions in a1, a2, or a3 rabbits, respectively; VH1 was shown to be preferentially utilized in leukemic rabbit B cells. This VH1 gene was deleted from the germline of the Alicia rabbit. These data suggest that the allelic inheritance of a allotypes results from preferential utilization of VH1 in VDJ rearrangements. We suggest that antibody diversity in rabbit primarily results from somatic hypermutation and gene conversion.  相似文献   

10.
R S Becker  K L Knight 《Cell》1990,63(5):987-997
Rabbits preferentially utilize only one of their multiple functional germline immunoglobulin VH genes. This preferential usage of one gene, VH1, raises the question of how rabbits generate antibody diversity. VDJ diversification was analyzed by cloning and sequencing VH1 gene rearrangements. Comparison of these sequences with that of germline VH1 identified clusters of nucleotide changes, including codon insertions and deletions. To investigate whether gene conversion was involved in this somatic diversification, we searched a data base of rabbit germline VH gene sequences for donor VH genes; potential donors were identified for five diversified regions. We conclude that somatic gene conversion has a major role in generating antibody diversity in rabbits. These studies provide clear evidence for somatic gene conversion of mammalian VDJ genes.  相似文献   

11.
The predominance of germ-line genes in IgM expression was evaluated from the nucleotide sequences of mRNA, derived from 10 hybridoma cell lines, coding for the VH and VL regions of anti-5-dimethylaminonaphthalene-1-sulfonyl (anti-Dns) IgM antibody. At least six germ-line VH gene segments distributed among four families are used in this response. Seven of the 10 independently rear-ranged VH genes were identified as germ line, with the other three possibly germ line. In all of them the D and JH portions retained the germ-line sequences of the D and JH segments from which they were derived. Maximum diversity was found in the D segments and the use of noncoded nucleotides at the VH-D and D-JH junctions. Of the eight cell lines expressing the lambda light chains, all were germ line and involved the three subtypes. Maximum affinity for the homologous ligand was found among the seven cell lines identified as expressing germ-line gene segments. Thus any somatic mutation among the remaining 3 cell lines did not provide enhanced affinity and the observed affinity of each cell line can be described as germ-line affinity. It is further suggested that the anti-Dns selectivity of the IgM antibodies is associated primarily with the CDR3 regions.  相似文献   

12.
The V regions of channel catfish H chain cDNA clones have been analyzed. Based upon sequence relationships and hybridization analyses, five different groups of VH genes are identified whose definition is consistent with that of five different VH families. Genomic Southern blots indicate that as many as 100 different germ-line VH genes are likely represented by these families. The sequence diversity between identified members of these different families is similar in magnitude to the divergence represented between members of different human or mouse VH families. The FR regions are the most conserved regions when members of different catfish VH families are compared; specific amino acid positions appear to be highly conserved in phylogeny. Equally important is that diversity is represented in complementarity-determining regions CDR1 and CDR2 in members of the different families as well as in members of the same VH family. These results suggest that an extensive repertoire of VH genes can contribute to antibody diversity in this lower vertebrate. Sequence comparisons indicate that one of the catfish VH families shares considerable structural similarity to several higher vertebrate VH gene families--a relationship which suggests that this VH family may be ancestral to some VH gene families of higher vertebrates. Characteristic of the genomic organization of higher vertebrate H chains, catfish appear to have different VH families wherein a VH gene likely undergoes functional recombination with putative DH gene segments and one of apparently several different JH segments. The recombined V region is expressed with the same C region gene. These combined results suggest that bony fishes are the earliest known phylogenetic representatives to have evolved extensive V region gene families.  相似文献   

13.
A cDNA clone (pDH7) has been isolated which encodes the entire leader peptide and variable (V) region and most of the constant (C) region of a rabbit lambda-light chain. Although similar to amino acid sequences derived from fragments of isolated lambda-chains from several Basilea rabbits, differences in the first framework region (FR1) suggest that at least two germ-line V lambda genes are expressed. There are major differences between rabbit V lambda sequences and light chains of other species: in particular, rabbit lambda-chains have an additional four amino acids in the vicinity of the FR2-CDR2 junction. The same region also has significant homology with the human D2 germ-line mini-gene sequence, especially with a 14-nucleotide sequence previously shown to be homologous to human and rabbit heavy chain CDR2 sequences. Similar homologies in other heavy and light chain sequences suggest that D-gene segments may be derived from VH genes, perhaps by transposition. The framework regions of the rabbit lambda-chain encoded by clone pDH7 show the greatest homologies with those of human kappa- and lambda-sequences (46 to 54% homology), with that of chicken sequence (55%), and least with murine V lambda sequences (40%).  相似文献   

14.
Two rabbit germ-line VH gene segments have been isolated from a recombinant phage DNA library. Nucleotide sequence analysis indicates that both of the genes share structural and regulatory features common to mouse and human VH genes, although one appears to be a pseudogene. Comparison of the protein sequences encoded by these genes to the protein sequences of rabbit immunoglobulin V regions indicates that both genes encode VH a-negative-like molecules. Quantitative genomic blot analysis with a VH probe capable of recognizing most, if not all, germ-line VH genes indicates that there are approximately 100 VH genes in the haploid genome of rabbits. The average spacing between the germ-line VH genes was determined to be approximately 6 kb. The molecular basis for the allelic inheritance of rabbit VH allotypes is discussed in view of the structural organization of germ-line VH genes.  相似文献   

15.
16.
We have cloned and determined the nucleotide sequence of the Ig VH and VL region genes of an IgM kappa mAb that binds to denatured DNA and myelin from a patient (POP) with chronic lymphocytic leukemia and peripheral neuropathy. Sequence analysis indicates that the V region of the kappa L chain gene (PopVK) has 99% homology to a V kappa IIIa germ-line gene and the V region of the mu H chain gene (PopVH) has 96% homology to the VH26 germ-line gene that is a member of the VH3 gene family. It is likely the V kappa and VH genes arose from these respective germ-line genes via somatic mutation or from closely related genes. V kappa III genes have frequently been used by other IgMk mAb especially those with rheumatoid factor activity, and the VH26 gene with no somatic mutation has been used by several anti-DNA antibodies, suggesting the possibility of preferential association of these or related germ-line genes with autoantibodies. The minor differences between the sequences of POP's VH and V kappa genes and sequences used by other autoantibodies, may be responsible for this antibody's crossreactivity with myelin and, as a result, the autoimmune neuropathy.  相似文献   

17.
We have generated a mouse x human heterohybridoma that contains a single copy of chromosome 14 and, thus, a haploid set of Ig VH genes. This cell line was used to investigate the germ-line content and nucleotide sequences of members of the VH4 gene family in a polymerase chain reaction-based approach. The analysis of 58 full-length sequences revealed the presence of 12 different germ-line VH4 genes, each of which is potentially functional. These germ-line VH4 genes were compared with the nucleotide sequences of published VH4 genes. Three VH4 genes were 100% identical to previously published sequences and belong to a group of VH4 genes that are strongly conserved and highly prevalent in the human population. Three VH4 genes in our collection displayed greater than 99.3% sequence identity with reported germ-line VH4 sequences and likely represent allelic counterparts of these genes. Six genes displayed less than 97.2% sequence identity with published VH4 genes and were identified as novel members of the human VH4 gene family or more distantly related alleles of known VH4 genes. Collectively, these data suggest that, overall, the human VH4 gene family may be more diverse than hitherto assumed, whereas a number of individual members are nonpolymorphic and extremely well conserved.  相似文献   

18.
J B Cohen  D Givol 《The EMBO journal》1983,2(11):2013-2018
The nucleotide sequence of two germline immunoglobulin heavy chain variable region (VH) genes of mouse BALB/c origin was determined. These two genes are highly homologous to each other. They both have the unusual codon CCT for proline at position 7, which so far has been found only in a specific set of VH genes, called the NPb family. We show that the two VH genes belong to this set. One of our BALB/c genes, VH124, is more homologous to a C57BL/6 NPb VH gene than to any BALB/c VH gene, and we propose that these two genes are alleles. A comparison of the substitutions between these two genes with published sequences of all other BALB/c and C57BL/6 NPb VH genes reveals evidence for past homologous recombination events between related germline VH genes Homologous recombination may play an important role in the diversification of germline immunoglobulin VH genes.  相似文献   

19.
To evaluate the importance of the surrounding nucleotide sequence in the selection of a splice site for mRNA, we have carried out computer studies of eukaryotic protein genes whose entire nucleotide sequences were available. A splice site-like sequence that has a significant homology to the consensus splice junction sequences is frequently found within an intron and exon. It is found that the higher the homology of a candidate donor site sequence to the nine-nucleotide consensus sequence, the higher is its probability of being a donor site. For most of the donors, the stability of presumed base-pairing with U1-RNA is higher than that of donor-like sequences, if any, in the adjacent exon and intron. However, homology of a candidate acceptor sequence to the 15-nucleotide consensus is a poor criterion of an acceptor site. The presence of a sequence that could serve as a branch-point 18 to 37 nucleotides before an acceptor does not seem to be critical in distinguishing it from an acceptor-like sequence. For genes of human, rat, mouse and chicken, respectively, nucleotide frequencies around splice junctions of many genes have been calculated. They seem to be different at some positions around a donor site from species to species. The acceptors for these vertebrates have longer pyrimidine-rich regions than the previous consensus sequence. The newly derived nucleotide frequencies were used as the standard to calculate the weighted homology score of a candidate splice site sequence in a gene of the four species. This weighted homology score of the 40 to 60-nucleotide intron-exon sequence is a much better criterion of an acceptor. These results suggest that the most important signal in the selection of a splice resides in the surrounding nucleotide sequence. It is also suggested that the surrounding nucleotide sequence alone is not generally sufficient for the selection.  相似文献   

20.
The variable region of the heavy chain of a prototypic anti-DNA autoantibody from the lupus-prone mouse, MRL-lpr/lpr, was cloned and sequenced. The VH and JH genes expressed by this antoantibody were found to be identical to germ line genes from the nonautoimmune mouse strain, BALB/c. The D gene of this autoantibody differed by one nucleotide from several members of the germ line SP2 family, but has been found in expressed D genes from several strains of mice. These results show that a normal mouse strain contains all of the structural information necessary for the expression of the heavy chain variable region of a lupus autoantibody. A fragment that is present in both BALB/c and MRL mice is highly homologous in both coding and flanking sequences to the autoantibody VH gene (VH130) and is the same size as the BALB/c germ line gene. This suggests that these two strains may share the same allele of this VH gene, despite the fact that they are polymorphic for this VH gene family. Other mouse strains that are polymorphic for this locus contained one to three VH genes that were highly related to VH130 in both coding and flanking regions. Thus, VH genes that may be allelic to the antibody VH gene or that may have arisen by gene conversion, unequal crossing over or gene duplication, are conserved in many mouse strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号