首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The triple helix formation of poly(C) - guanosine - poly(C+) was investigated by the help of an LKB scanning micro-calorimeter. The existence of the triple helix could also be shown by recording the melting curves. The ultraviolet absorption at different wave lengths namely 275 nm, 260 nm, and 245 nm was plotted as a function of the temperature. Furthermore formation of the triple helix was shown by plotting the ultraviolet absorption at 245 nm during the increasing addition of guanosine solution to a fixed amount of poly(C) in the solution. Finally the formation of the triple helix was demonstrated by plotting the ultraviolet absorption at 245 nm of a certain mixture of the components while the pH value of the solution was continuously lowered. All these methods show that the monomer interacts with the polymer double helix to form a triple helix. The calorimetric measurements show that the reaction enthalpy is concentration dependent. Above a threshold concentration a rapid increase of the reaction enthalpy is observed. This increase occurs in a very narrow concentration interval. Above this interval a final value of the reaction enthalpy is reached. The amount of the reaction enthalpy for the interaction of guanosine with poly(C) - poly(C+) double helix is 5.5 Kcal (mol base triplet)-1.  相似文献   

2.
The formation of the triple helix of poly(A).poly(U).poly(U) was studied by using antibodies specific to poly(A).poly(U).poly(U). the 10-11 base chain length for oligo(A) and the 20-30 base chain length for oligo(U) may be the minimum sizes required to maintain a stable triple helix. Double-stranded poly(A).poly(U) which was the core of triple-stranded poly(A).poly(U).poly(U) could bind poly(U) and produce an analogue of poly(A).poly(U).poly(U) reactive with the antibodies even if the poly(A) or poly(U) was brominated or acetylated to the extent of 35-55%. However, brominated or acetylated poly(U) did not produce a stable triple helix with double-stranded poly(A).poly(U).  相似文献   

3.
Duplex DNA containing oligo(dG.dC)-rich clusters can be isolated by specific binding to poly(rC)-Sephadex. This binding, probably mediated by the formation of an oligo(dG.dC)rC+ triple helix, is optimal at pH 5 in 50% formamide, 2 M LiCl; the bound DNA is recovered by elution at pH 7.5. Using this method we find that the viral DNAs PM2, lambda and SV40 contain at least 1, 1 and 2 sites for binding to poly(rC)-Sephadex, respectively. These binding sites have been mapped in the case of SV40; the binding sites can in turn be used for physical mapping studies of DNAs containing (dG.dC) clusters. Inspection of the sequence of the bound fragments of SV40 DNA shows that a (dG.dC)6-7 tract is required for the binding of duplex DNA to poly(rC)-Sephadex. Although about 60% of rabbit DNA cleaved with restriction endonuclease KpnI binds to poly(rC)-Sephadex, no binding is observed for the 5.1 kb DNA fragment generated by KpnI digestion, which contains the rabbit beta-globin gene. This indicates that oligo(dG.dC) clusters are not found close to the rabbit beta-globin gene.  相似文献   

4.
Using Raman spectroscopy, we examined the ribose-phosphate backbone conformation, the hydrogen bonding interactions, and the stacking of the bases of the poly(U).poly(A).poly(U) triple helix. We compared the Raman spectra of poly(U).poly(A).poly(U) in H2O and D2O with those obtained for single-stranded poly(A) and poly(U) and for double-stranded poly(A).poly(U). The presence of a Raman band at 863 cm-1 indicated that the backbone conformations of the two poly(U) chains are different in the triple helix. The sugar conformation of the poly(U) chain held to the poly(A) by Watson-Crick base pairing is C3' endo; that of the second poly(U) chain may be C2' endo. Raman hypochromism of the bands associated with base vibrations demonstrated that uracil residues stack to the same extent in double helical poly(A).poly(U) and in the triple-stranded structure. An increase in the Raman hypochromism of the bands associated with adenine bases indicated that the stacking of adenine residues is greater in the triple helix than in the double helical form. Our data further suggest that the environment of the carbonyls of the uracil residues is different for the different strands.  相似文献   

5.
T R Fink  D M Crothers 《Biopolymers》1972,11(1):127-136
We prepared helices with noncomplementary bases by N1-oxidation of poly A, followed by reaction with poly U. Mixing curves indicate that doubly and triply helical structures form, with only the unmodified adenines involved in base pair formation. Circular dichroism spectra were examined particularly at the absorbance maximum of the adenine N1-oxide (A*). In the single strand poly (A,A*), there is a relatively strong pair of positive and negative CD bands from the A*. These are greatly reduced in the double helix, and abolished in the triple helix. We conclude that A* stacks in a conventional manner with A in the single strand, but is rotated out of the double and triple helix. In the double helix the A* probably maintains a preferred orientation with respect to the helix, but rotates randomly in the triple helix.  相似文献   

6.
Preparation and properties of poly 2''-O-ethylcytidylic acid.   总被引:1,自引:1,他引:0       下载免费PDF全文
Poly 2'0-ethylcytidylic acid (poly (Ce)) was prepared by polymerization of 2'-0-ethylcytidine-5'-pyrophosphate with Escherichia coli polynucleotide phosphorylase in the presence of Mn++, and its properties compared with those of poly (rC), poly (Cm) and poly (dC). The neutral form of pOLY (Ce) exhibits properties similar to those of poly (rC) and poly (Cm). It also forms an acid twin-stranded helix with a transition pH of 5.9 in 0.1 M NaCl. The neutral form readily forms a double-stranded helical complex with poly (rI). Relative to poly (Cm), replacement of the 2'-0-methyl by 2-0-ethyl leads to increased enhancement of the thermal stabilities of both the acid helical form of poly (Ce) and its complex with poly (rI).  相似文献   

7.
The helix-helix transitions which occur in poly(dG-dC) · poly(dG-dC) and in poly (dG-m5dC) · poly(dG-m5dC) are commonly assumed to be changes between the right-handed A- or B-DNA double helices and the left-handed Z-DNA structure. The mechanisms for such transconformations are highly improbable, especially when they are supposed to be active in long polynucleotide chains organised in semicrystalline fibres. The present alternative possibility assumes that rather than the Z-DNA it is a right-handed double helix (S-DNA) which actually takes part in these form transitions. Two molecular models of this S form, in good agreement with X-ray measurements, are proposed. They present alternating C(2′)-endo and C(3′)-endo sugar puckering like the “alternating B-DNA” put forward some years ago. Dihedral angles, sets of atomic coordinates and stereo views of the two S-DNA structures are given, together with curves of calculated diffracted intensities. Furthermore, we question the possibility of obtaining semicrystalline fibres with triple helices of poly(dA) · 2poly(dT) in a way which renders X-ray diffraction efficient. It is suggested that, up to now, only double helices of poly(dA) · poly(dT) can actually be observed by fibre X-ray diffraction measurements. Received: 30 March 1999 / Revised version: 30 June 1999 / Accepted: 30 June 1999  相似文献   

8.
The Zimm-Bragg theory is extended to treat the melting of the triple helix poly (A + 2U) for a solution with a 1 : 2 mole ratio of poly A to poly U. Only the case for long chains is considered. For a given set of parameters the theory predicts the fraction of segments in the triple helix, double helix, and random coil states as a function of temperature. Four nucleation parameters are introduced to describe the two order–disorder transitions (poly (A + 2U) ? poly A + 2 poly U and poly (A + U) ? poly A + poly U) and the single order–order transition (poly (A + 2U) ? poly (A + U) + poly U). A relation between the nucleation parameters is obtained which reduces the number of independent parameters to three. A method for determining these parameters from experiment is presented. From the previously published data of Blake, Massoulié and Fresco8 for [Na+] = 0.04, we find σT = 6.0 × 10?4, σD = 1.0 × 10?3, and σσ* = 1.5 × 10?3. σT and σD are the nucleation parameters for nucleating a triple helix and double helix, respectively, from a random coil region. σσ* is the nucleation parameter for nucleating a triple helix from a double helix and a single strand. Melting curves are generated from the theory and compared with the experimental melting curves.  相似文献   

9.
Human embryonic fibroblasts produce interferon when incubated at 37 degrees C after being treated at 4 degrees C with poly(rI) - poly(rC), either by addition of the double-stranded duplex or by sequential addition of the constitutent single-stranded polynucleotides. Cells which have been incubated with double-stranded poly(rI) - poly(rC) can be prevented from forming interferon by washing the cells with high concentrations of salt, immediately after adsorption of polynucleotides, or by incubation of the cells with single-stranded polynucleotides. The inhibition is probably due to displacement of the inducing molecule from the cell surface. Interferon production by cells treated sequentially with poly(rI) and poly(rC) is not inhibited by either of these treatments and the polynucleotides are not easily displaced from the cell surface.  相似文献   

10.
11.
Double-stranded RNA can stimulate interferon production and mediate an antiproliferative effect on certain cell types. We evaluated the possibility of specifically targeting to cells in vitro the RNA duplex poly(rI).poly(rC) in pharmacologically active form after its encapsulation in small, unilamellar liposomes, to which was covalently coupled protein A. These liposomes became bound to and were endocytosed by murine L929 cells in the presence of protein A-binding monoclonal antibodies specific for an expressed cell surface protein, the H-2K molecule. When L929 cells were preincubated in the presence of low doses of interferon alpha/beta or gamma, they could be activated to produce interferon following exposure to either free poly(rI).poly(rC), or specifically bound liposomes poly(rI).poly(rC), but not the same liposomes in the presence of non-cell binding control antibodies. Specifically bound liposome-encapsulated poly(rI).poly(rC) was toxic to L929 cells at dose levels at least three logs lower than free poly(rI).poly(rC). This toxicity was also dependent on pre-treatment with interferon. These results indicate that liposome-encapsulated poly(rI).poly(rC) can survive endocytosis and can be released in active form to specific cell populations, at concentrations much lower than that required for pharmacologic effects of the same molecule in free form. They suggest that introduction into cells of other nucleic acids might benefit from the antibody-targeted liposome technology described here.  相似文献   

12.
We have studied by X-ray diffraction fibers of complexes of poly(dG).poly(dC) with N-alpha-acetyl-L-arginine ethylamide. Although these polynucleotides favour the A form of DNA, in this complex it is never found, thus confirming that arginine prevents the appearance of this form of DNA. At high relative humidity the B form is present. Upon dehydration two new structures appear. One of them is a triple helix, most likely formed by poly(dC+).poly(dG).poly(dC). The other structure found also has features which indicate a multistranded conformation.  相似文献   

13.
Natural Curdlan adopts a right-handed 6(1) triple helix, in which the constituting glucan chains are underpinned with each other by the intermolecular hydrogen bonds. Curdlan can form a stoichiometric complex with polynucleotides [e.g., poly(cytidylic acid), poly(C)]. In this paper, we carried out the MOPAC (semiempirical molecular-orbital package) calculation to examine the molecular structure of the Curdlan/poly(C) complex. The calculation exhibited that two types of hydrogen bonds are formed between the Curdlan and the poly(C); the third nitrogen (N3) in cytosine forms a hydrogen bond with the second OH of one Curdlan chain, and the proton of N4 is interacting with the O2 of another Curdlan chain. In our model, the helix diameter of poly(C) is expanded from 11.0 to 15.3 A upon complexation. Despite such large conformational changes, the 6(1) helix structure of poly(C) was maintained even after the complexation. This fact is complementary to the experimental fact that the complexation does not change the band shape of the circular dichroism of poly(C). The chain length dependence of the reaction enthalpy indicated that the complexation becomes thermodynamically more favorable with the chain length increasing. This feature is also consistent with the experimental data.  相似文献   

14.
Absorbance melting curves of the double-stranded (rA) · (rU) helix, made with fractionated homopolynucleotides of matched length, have been obtained over a 15-fold range of [Na+] and 30° range of temperature. An excellent fit of the observed profiles was obtained with theoretical curves calculated on the basis of the simplest interpretation for the occurrence of particular equilibria [1–3]; the complete molecular partition function being evaluated by the power series method developed by Applequist [4–6]. The stability constant was evaluated from literature values for the calorimetric enthalpy. The loop closure exponent was best represented by 2.22 ± 0.04 for the mismatching loop mode of melting and 1.22 for the matching mode and was independent of [Na+] and temperature. Assuming the applicability of the nonintersecting random walk value of 1.9 ± 0.1, these results would suggest a slight bias toward matched loop formation during melting of homopolynucleotides that might be expected to form only mismatched loops. The value of the stacking parameter at 60°C was only ~6% higher than that at 30°C, 0.0221 (0.0184 for the matching case). Calculated melting curves indicate the occurrence of a fifth-order phase transition when the mean helix length is only ~13 base-pairs, or about one full turn of the helix.  相似文献   

15.
The interaction of actinocin derivative Act III with single- and double-stranded poly(rC) has been investigated by the methods of differential scanning microcalorimetry and UV-vis absorption spectroscopy. It was shown that, after the addition of the ligand, the temperature, enthalpy and entropy of poly (rC) melting decrease. The analysis of poly(rC)-ActIII absorption spectra indicated that the conformation of polynucleotide differs from that of free poly (rC) in the presence of ActHI at pH 4.46 and pH 6.0. Using the DALSMOD optimization program, the parameters of interaction of Act III with poly (rC) were calculated. It was found that the binding constant of ActHI with double-stranded poly (rC) is essentially higher than that with the single-stranded one upon monomeric binding. On the basis of these data, we conclude that the conformation changes of the matrix are the main cause of the decrease in melting temperature and enthalpy observed by calorimetry. Possible mechanisms of interaction of actinocin derivative with poly (rC) are discussed.  相似文献   

16.
Fourier transform infrared (FTIR), UV absorption and exchangeable proton NMR spectroscopies have been used to study the formation and stability of two intramolecular pH-dependent triple helices composed by a chimeric 29mer DNA-RNA (DNA double strand and RNA third strand) or by the analogous 29mer RNA. In both cases decrease of pH induces formation of a triple helical structure containing either rU*dA.dT and rC+*dG.dC or rU*rA.rU and rC+*rG.rC triplets. FTIR spectroscopy shows that exclusively N-type sugars are present in the triple helix formed by the 29mer RNA while both N- and S-type sugars are detected in the case of the chimeric 29mer DNA-RNA triple helix. Triple helix formation with the third strand RNA and the duplex as DNA appears to be associated with the conversion of the duplex part from a B-form secondary structure to one which contains partly A-form sugars. Thermal denaturation experiments followed by UV spectroscopy show that a major stabilization occurs upon formation of the triple helices. Monophasic melting curves indicate a simultaneous disruption of the Hoogsteen and Watson-Crick hydrogen bonds in the intramolecular triplexes when the temperature is increased. This is in agreement with imino proton NMR spectra recorded as a function of temperature. Comparison with experiments concerning intermolecular triplexes of identical base and sugar composition shows the important role played by the two tetrameric loops in the stabilization of the intramolecular triple helices studied.  相似文献   

17.
A study of the interaction between poly(dG)-poly(dC) and poly(rC) demonstrates that, at neutral pH and high ionic strength, there is replacement of the dC strand by poly(rC). At acid pH, formation of a triple-stranded complex which equally may involve the replacement phenomenon is observed. There is no evidence for interaction at neutral pH between poly(dG)-poly(dC) and oligo(rC), while a three-stranded complex is formed at acid pH. These data are consistent with the studies of comparative stabilities of double stranded deoxy or ribo polymers and deoxy-ribo hybrids.  相似文献   

18.
The inclination angle between the base normal and the helix axis, and the axes around which the bases incline, are measured for ribo-GC polymers in buffer by using flow linear dichroism (LD), and compared to measurements for deoxyribo-GC polymers in buffer and under dehydrating conditions. A new method is designed to synthesize poly(rGrC) -poly(rGrC), which is not available commercially, in large quantities. The LD of this RNA reveals inclination angles that are similar to the B-form DNA in buffer, although the axes are different. The CD of poly(dGdC)-poly(dGdC) under the dehydrating conditions is similar to poly(rGrC)-poly(rGrC), indicating it is in the A form, and the LD gives larger inclination angles than either the B form or the corresponding RNA. Poly(dG)-poly(dC) is in the A form in buffer. Comparison among poly(rG)-poly(rC) in buffer, and poly (dG)-poly(dC) in buffer and under dehydrating conditions, reveals similar inclination angles and axes, although the LD shows that the DNA has the largest inclination angles. Except for poly(rGrC)-poly(rGrC), which has a unique reduced dichroism, all the axes for G are similar, as are the axes for C. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Structural transitions of poly(rC)-Ka+ in humid films with different water content were studied by infrared spectroscopy and piezogravimetry. From analysis of the hydration isotherms and the dependence of spectral parameters (frequencies and intensities of the main bands) on n the hydration sites of the polynucleotide were determined (C2O, O4', N4H2, N1, PO2-, C2'OH). It was found that the transition of the polynucleotide from the unordered state to a double-stranded complex poly(rC+).poly(rC) occurs in the interval of n from 2 to 8. The value n = 8 corresponds to the total hydration of poly(rC). A model of hydration of poly(rC+).poly(rC) based on the experimental results and known X-ray parameters of this double helix complex is proposed. The most important feature of the model is the presence of single water bridges between PO2(-)-groups in the first hydration shell of each chain and triple water bridges between O4', N4H2 and C2'OH- atomic groups of opposite chains. The experimental results obtained and the proposed structure of hydration environment of poly(rC+).poly(rC) suggest that the stabilization of this complex is stabilized by the intra- and inter-chain water bridges and hydrogen bonds between pairs of cytosine bases.  相似文献   

20.
Triple helixes containing one homopurine poly dG or poly rG strand and two homopyrimidine poly dC or poly rC strands have been prepared and studied by FTIR spectroscopy in H2O and D2O solutions. The spectra are discussed by comparison with those of the corresponding third strands (auto associated or not) and of double stranded poly dG.poly dC and poly rG.poly rC in the same concentration range and salt conditions. The triplex formation is characterized by the study of the base-base interactions reflected by changes in the spectral domain involving the in-plane double bond vibrations of the bases. Modifications of the initial duplex conformation (A family form for poly rG.poly rC, B family form for poly dG.poly dC) when the triplex is formed have been investigated. Two spectral domains (950-800 and 1450-1350 cm-1) containing absorption bands markers of the N and S type sugar geometries have been extensively studied. The spectra of the triplexes prepared starting with a double helix containing only riboses (poly rC+.poly rG.poly rC and poly dC+.poly rG.poly rC) as well as that of poly rC+.poly dG.poly dC present exclusively markers of the North type geometry of the sugars. On the contrary in the case of the poly dC+.poly dG.poly dC triplex both N and S type sugars are shown to coexist. The FTIR spectra allow us to propose that in this case the sugars of the purine (poly dG) strand adopt the S type geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号