首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytochrome P450 BM-3, a self-sufficient P450 enzyme from Bacillus megaterium that catalyzes the subterminal hydroxylation of long-chain fatty acids, has been engineered into a catalyst for the oxidation of polycyclic aromatic hydrocarbons. The activities of a triplet mutant (A74G/F87V/L188Q) towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 160, 53, 109, 287, and 22/min, respectively. Compared with the activities of the wild type towards these polycyclic aromatic hydrocarbons, those of the mutant were improved by up to 4 orders of magnitude. The coupling efficiencies of the mutant towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 11, 26, 5.4, 15, and 3.2%, respectively, which were also improved several to hundreds fold. The high activities of the mutant towards polycyclic aromatic hydrocarbons indicate the potential of engineering P450 BM-3 for the biodegradation of these compounds in the environment.  相似文献   

2.
The oxidation of 10 polycyclic aromatic hydrocarbons (PAH) by cytochrome P450(BSbeta) using three different electron acceptors is reported. Three PAH were found to be substrates for the oxidation by P450(BSbeta), namely anthracene, 9-methyl-anthracene and azulene. The respective oxidation products were identified by reversed-phase high-performance liquid chromatography coupled to electrospray ionization-mass spectrometry. In addition, 10 drug-like compounds were investigated for their effects on the catalytic activity of P450(BSbeta) by carrying out inhibition studies. The stability of P450(BSbeta) against hydrogen peroxide, cumene, and ter-butyl hydroperoxide was determined. Overall, the results of this study suggested that the P450(BSbeta) enzyme represents a powerful catalyst in terms of the catalytic activity and operational stability.  相似文献   

3.
Increasing evidence suggests that polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (BaP) are localized to the mitochondria. Because the toxic effects of many PAHs are the result of metabolism by cytochrome P4501A (CYP1A), it is important to investigate whether active forms of these enzymes can be identified in the mitochondria. In this study, we identified mitochondrial P450s with a monoclonal antibody against scup (Stenotomus chrysops) CYP1A in the isolated mitochondrial fraction of the liver from adult male mummichog (Fundulus heteroclitus) livers. The size of the protein in the mitochondria was similar to that of microsomal CYP1A. Fish dosed with 10 mg/kg BaP had increased EROD activity in the mitochondrial fraction compared to controls. In mummichog larvae dosed with 100 µg/L BaP and 100 µg/L benzo[k]fluoranthene, CYP1A protein levels as well as enzyme activity were elevated. However, fish from a PAH-polluted Superfund site (Elizabeth River, Portsmouth VA) showed recalcitrant mitochondrial CYP1A protein levels and enzyme activity in a similar manner to microsomal CYP1A.  相似文献   

4.
The actions of polycyclic aromatic hydrocarbons and glucocorticoids to regulate the synthesis of cytochrome P-450c (the major isozyme induced by polycyclic aromatic hydrocarbons) were investigated in fetal rat hepatocytes maintained in primary monolayer culture. Treatment of hepatocytes in culture with 1,2-benzanthracene resulted in a 50-fold increase in 7-ethoxycoumarin O-deethylase activity. The level of P-450c increased in the cells in a time-dependent fashion as determined by immunoelectrophoretic analysis. The inductive effect of BA was potentiated approximately 1.6- to 2.3-fold when 1 microM dexamethasone was included in the culture medium. However, dexamethasone alone had little or no effect on the induction of P-450c. The rate of synthesis of P-450c was examined by immunoisolation of the specific isozyme from total cellular proteins radiolabeled with [35S]methionine and from the protein products formed during in vitro translation of the isolated mRNA. In addition, the amount of mRNA specific for cytochrome P-450c was determined by Northern blot analysis of RNA extracted from cultured cells. The changes in the rates of synthesis and mRNA levels were found to parallel the changes in enzyme activity. The concentration of dexamethasone required to cause a half-maximal increase in P-450c content in the presence of 1,2-benzanthracene was between 10(-8) and 10(-7) M. It is concluded that glucocorticoids act synergistically with polycyclic aromatic hydrocarbons to increase the levels of P-450c expressed in the fetal rat liver, and that this action is likely mediated by the classical type II glucocorticoid receptor.  相似文献   

5.
Mycobacterium vanbaalenii PYR-1 has the ability to degrade low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs). In addition to dioxygenases, cytochrome P450 monooxygenases have been implicated in PAH degradation. Three cytochrome P450 genes, cyp151 (pipA), cyp150, and cyp51, were detected and amplified by polymerase chain reaction from M. vanbaalenii PYR-1. The complete sequence of these genes was determined. The translated putative proteins were ≥80% identical to other GenBank-listed mycobacterial CYP151, CYP150, and CYP51. Genes pipA and cyp150 were cloned, and the proteins partially expressed in Escherchia coli as soluble heme-containing cytochrome P450s that exhibited a characteristic peak at 450 nm in reduced carbon monoxide difference spectra. Monooxygenation metabolites of pyrene, dibenzothiophene, and 7-methylbenz[α]anthracene were detected in whole cell biotransformations, with E. coli expressing pipA or cyp150 when analyzed by gas chromatography/mass spectrometry. The cytochrome P450 inhibitor metyrapone strongly inhibited the S-oxidation of dibenzothiophene. Thirteen other Mycobacterium strains were screened for the presence of pipA, cyp150, and cyp51 genes, as well as the initial PAH dioxygenase (nidA and nidB). The results indicated that many of the Mycobacterium spp. surveyed contain both monooxygenases and dioxygenases to degrade PAHs. Our results provide further evidence for the diverse enzymatic capability of Mycobacterium spp. to metabolize polycylic aromatic hydrocarbons.An erratum to this article can be found at  相似文献   

6.
7.
Mutations of the active site residues F87 and Y96 greatly enhanced the activity of cytochrome P450(cam) (CYP101) from Pseudomonas putida for the oxidation of the polycyclic aromatic hydrocarbons phenanthrene, fluoranthene, pyrene and benzo[a]pyrene. Wild-type P450(cam) had low (<0.01 min(-1)) activity with these substrates. Phenanthrene was oxidized to 1-, 2-, 3- and 4-phenanthrol, while fluoranthene gave mainly 3-fluoranthol. Pyrene was oxidized to 1-pyrenol and then to 1,6- and 1,8-pyrenequinone, with small amounts of 2-pyrenol also formed with the Y96A mutant. Benzo[a]pyrene gave 3-hydroxybenzo[a]pyrene as the major product. The NADH oxidation rate of the mutants with phenanthrene was as high as 374 min(-1), which was 31% of the camphor oxidation rate by wild-type P450(cam), and with fluoranthene the fastest rate was 144 min(-1). The oxidation of phenanthrene and fluoranthene were highly uncoupled, with highest couplings of 1.3 and 3.1%, respectively. The highest coupling efficiency for pyrene oxidation was a reasonable 23%, but the NADH turnover rate was slow. The product distributions varied significantly between mutants, suggesting that substrate binding orientations can be manipulated by protein engineering, and that genetic variants of P450(cam) may be useful for studying the oxidation of polycyclic aromatic hydrocarbons by P450 enzymes.  相似文献   

8.
Microsomal cytochrome P450 family 1 enzymes play prominent roles in xenobiotic detoxication and procarcinogen activation. P450 1A2 is the principal cytochrome P450 family 1 enzyme expressed in human liver and participates extensively in drug oxidations. This enzyme is also of great importance in the bioactivation of mutagens, including the N-hydroxylation of arylamines. P450-catalyzed reactions involve a wide range of substrates, and this versatility is reflected in a structural diversity evident in the active sites of available P450 structures. Here, we present the structure of human P450 1A2 in complex with the inhibitor alpha-naphthoflavone, determined to a resolution of 1.95 A. alpha-Naphthoflavone is bound in the active site above the distal surface of the heme prosthetic group. The structure reveals a compact, closed active site cavity that is highly adapted for the positioning and oxidation of relatively large, planar substrates. This unique topology is clearly distinct from known active site architectures of P450 family 2 and 3 enzymes and demonstrates how P450 family 1 enzymes have evolved to catalyze efficiently polycyclic aromatic hydrocarbon oxidation. This report provides the first structure of a microsomal P450 from family 1 and offers a template to study further structure-function relationships of alternative substrates and other cytochrome P450 family 1 members.  相似文献   

9.
The reaction mechanism for the primary reaction step of the hydroxylation of 3-fluoro-6-methylaniline, attacked at different positions (oxygen attack across a C-C bond and direct attack at positions para and ortho with respect to the NH(2)-group) catalysed by a high-valent ferryl-oxo porphyrin a(2u)-cation complex with H(3)CS(-) as an axial ligand, has been investigated on the basis of electronic structure calculations in local spin-density approximation. Non-repulsive potential curves are obtained only in cases of direct attack at the para- and ortho-positions with respect to NH(2), but not for epoxide formation. Comparing the potential curves for the hydroxylation at the positions para and ortho to the NH(2)-group, an attack at the para-position is more likely. The relative orientation of the substrate towards the porphyrin is essentially determined by the interaction between the substituents of the substrate and the porphyrin. Consequently, different geometrical orientations of the substrate are obtained for hydroxylation at the para- and ortho-positions. In both cases of direct attack the substrate plane is not parallel to the porphyrin plane. The decisive role of sulphur in the hydroxylation is demonstrated by the participation of the S(3p)-orbitals in all molecular orbitals involved in the reaction.  相似文献   

10.
CYP1A1, a cytochrome P450 enzyme, metabolizes polycyclic aromatic hydrocarbons to genotoxic metabolite(s) that bind to DNA and initiate carcinogenesis. RT-PCR amplification of the complete open reading frame of CYP1A1 generated an amplicon of 1593 bp having deletion of 87 bp of exon-6 that translated into functional P450 enzyme. Unlike wild type CYP1A1, exon 6 del CYP1A1 did not metabolize polycyclic aromatic hydrocarbons such as, benzo(a)pyrene to genotoxic, ultimate carcinogens that form DNA adducts. Exon 6 del CYP1A1 metabolized ethoxyresorufin (the classical substrate for CYP1A1) less efficiently compared with wild type CYP1A1 while pentoxy and benzyloxyresorufin (classical substrates for CYP2B) were dealkylated more efficiently. In silico docking showed alteration of the substrate access channel in exon 6 del CYP1A1 such that benzo(a)pyrene does not bind in any orientation that would permit the formation of carcinogenic metabolites. Genotyping revealed that the splice variant was not generated due to differences in genomic DNA sequence and the variant was present only in brain but not in liver, kidney, lung, or heart from the same individual. We provide evidence that unique P450 enzymes, generated by alternate splicing in a histiospecific manner can modify genotoxic potential of carcinogens such as benzo(a)pyrene by altering their biotransformation pathway.  相似文献   

11.
Three different in vitro mutation assays were used to investigate the involvement of cytochrome P450 enzymes in the activation of the nitro-polycyclic aromatic hydrocarbons (nitroPAHs) 1-nitropyrene and 2-nitrofluorene and their reduced metabolites amino-polycyclic aromatic hydrocarbons (aminoPAHs) 1-aminopyrene and 2-aminofluorene. Mutagenicity was investigated at the HPRT locus in Chinese hamster V79 cells with (V79-NH) or without (V79-MZ) endogenous acetyltransferase activity, stably expressing human cytochrome P450 cDNAs; in NIH/3T3 control or stably expressing human CYP1A2 cells, in combination with a shuttle vector containing a reporter gene; and in Salmonella typhimurium TA98, by inhibition of cytochrome P450 enzymes in rat liver S9 mix.Both the HPRT assay and the Ames test did not show any involvement of CYP3A in the activation of 1-nitropyrene to a mutagenic metabolite. In addition, a clear involvement of CYP1A2 in the activation of the nitroPAH 1-nitropyrene was demonstrated in both mutation assays using eukaryotic cells. However, no activation of 1-nitropyrene was seen in the eukaryotic cell lines when expressing only CYP1A2 (V79-MZ1A2) or acetyltransferase (V79-NH, 3T3-LNCX). The reduced metabolite of 1-nitropyrene, 1-aminopyrene, was also shown to be activated to a mutagenic metabolite by CYP1A2, using 3T3-1A2 cells in combination with a shuttle vector, and the Amestest in combination with the specific CYP1A2 inhibitor furafylline. No clear involvement of cytochrome P450 could be demonstrated for activation of 2-nitrofluorene to a mutagenic metabolite, whereas a role for CYP1A2 in the bioactivation of 2-aminofluorene is suggested.In the present study, we have demonstrated the complementary value of the three in vitro mutation assays in the examination of promutagen activation pathways.  相似文献   

12.
Pretreatment of rats by ellipticines enhanced the microsomal concentration of cytochrome P-450, benzo[a]pyrene (BP) metabolism and activation and, to a smaller extent, ethoxycoumarin deethylation, but not acetanilide hydroxylation. This increased BP biotransformation was essentially due to the formation of bay-region metabolites, BP 9,10-diol, BP 7,8-diol and 9-hydroxy-BP, or to the formation of BP 7,8-diol-9,10-epoxide- and of 9-hydroxy-BP 4,5-oxide-DNA adducts. In the ellipticine series, 9-fluoroellipticine (9-FE) presents a slight inducing potency compared with the parent and 9-hydroxy molecules. Pretreatment of mice with 9-hydroxyellipticine (9-OHE) led also to an increased mutagenicity of BP and to an augmentation of skin carcinogenesis by 7,12-dimethylbenz[a]anthracene (DMBA). These results clearly show that 9-OHE induces the biosynthesis of cytochrome P-450 which markedly stimulates the mutagenic and carcinogenic potentialities of polycyclic aromatic hydrocarbons (PAH).  相似文献   

13.
Cytochrome P450 (CYP) enzymes are useful biocatalysts for the pharmaceutical and biotechnological industries. A high-throughput method for quantification of CYP expression in yeast is needed in order to fully exploit the yeast expression system. Carbon monoxide (CO) difference spectra of whole cells have been successfully used for the quantification of heterologous CYP expressed in Escherichia coli in the 96-well format; however, very few researchers have shown whole-cell CO difference spectra with yeast cells using 1-cm path length. Spectral interference from the native hemoproteins often obscures the P450 peak, challenging functional CYP quantification in whole yeast cells. For the first time, we describe the high-throughput determination of CO difference spectra using whole cells in the 96-well format for the quantification of CYP genes expressed in Pichia pastoris. Very little interference from the hemoproteins of P. pastoris enabled CYP quantification even at relatively low expression levels. P. pastoris strains carrying a single copy or three copies of both hCPR and CYP2D6 integrated into the chromosomal DNA were used to establish the method in 96-well format, allowing to detect quantities of CYP2D6 as low as 6 nmol gCDW–1 and 12 pmol per well. Finally, the established method was successfully demonstrated and used to screen P. pastoris clones expressing Candida CYP52A13.  相似文献   

14.
A cytochrome P450 2B4 (CYP2B4) model was used to select key residues supposed to serve in interactions with NADPH-cytochrome P450 reductase (P450R). Eight amino acid residues located on the surface of the hemoprotein were chosen for mutagenesis experiments with CYP2B4(Delta2-27) lacking the NH(2)-terminal signal anchor sequence. The mutated proteins were expressed in Escherichia coli, purified, and characterized by EPR- and CD-spectral analysis. Replacement of histidine 226 with alanine caused a 3.8-fold fall in the affinity for P450R with undisturbed reductive capacity of the system. Similarly, the K225A, R232A, and R253A variants exhibited P450R-directed activity that was depressed to about half that of the control enzyme, suggesting that the deletion of positive charges on the surface of CYP2B4(Delta2-27) resulted in impaired electrostatic contacts with complementary amino acids on the P450R protein. While the Y235A mutant did not show appreciably perturbed reduction activity, the conservative substitution with alanine of the phenylalanine residues at positions 223 and 227 gave a 2.1- to 6. 1-fold increase in the K(m) values with unchanged V(max); this was attributed to the disruption of hydrophobic forces rather than to global structural rearrangement(s) of the engineered pigments. Measurement of the stoichiometry of aerobic NADPH consumption and H(2)O(2) formation revealed the oxyferrous forms of the F223A, H226A, and F227A mutants to autoxidize more readily owing to less efficient coupling of the systems. Noteworthy, the F244A enzyme did not exhibit significant reduction activity, suggesting a pivotal role of Phe-244 in the functional coupling of P450R. The residue was predicted to constitute part of an obligatory electron transfer conduit through pi-stacking with Phe-296 located close to the heme unit. All of the residues examined reside in the putative G helix of CYP2B4, so that this domain obviously defines part of the binding site for P450R.  相似文献   

15.
A derivative of rhodamine 110 has been designed and assessed as a probe for cytochrome P450 activity. This probe is the first to utilize a 'trimethyl lock' that is triggered by cleavage of an ether bond. In vitro, fluorescence was manifested by the CYP1A1 isozyme with k(cat)/K(M)=8.8x10(3)M(-1)s(-1) and K(M)=0.09microM. In cellulo, the probe revealed the induction of cytochrome P450 activity by the carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin, and its repression by the chemoprotectant resveratrol.  相似文献   

16.
Many polycyclic aromatic hydrocarbons (PAHs) have been identified as cancer-inducing chemicals for animals and/or humans. Also, there is sufficient evidence that exposures in the occupational settings are carcinogenic or probably carcinogenic to human. Engine exhaust and used engine oils are major PAH sources in engine repair workshops and traffic. Analysis of micronucleus (MN) in exfoliated buccal cells is a sensitive method for monitoring genetic damage in human populations. In our study, we used three different occupational groups (Group 1; engine repair workers, Group 2; taxi drivers, Group 3; traffic police) and two controls (Control I for Group 1 and Control II for Group 2 and Group 3) for the exposed groups. We analysed MN frequencies in exfoliated buccal cells and compared the exposed groups (Group 1; n=34, Group 2; n=17, Group 3; n=15) and subjects not occupationally exposed to PAH (Control I; n=28, Control II; n=20). The mean (+/-S.D.) MN (%) frequencies in exfoliated buccal cells from Group 1 and Control I were 0.07+/-0.05 and 0. 05+/-0.04, respectively (p>0.05; Table 2). The mean (+/-S.D.) MN (%) frequencies in exfoliated buccal cells from Group 2, 3 and Control II were 0.12+/-0.05, 0.10+/-0.05 and 0.03+/-0.03, respectively (p<0. 0001, p<0.05; Table 2) Smokers and nonsmokers do not differ with respect to the incidence of MN in all groups.  相似文献   

17.
18.
Ordered water molecules are observed by crystallography and nuclear magnetic resonance to mediate protein-ligand interactions. Here, we examine the energetics of hydrating cavities formed at protein-ligand interfaces using molecular dynamics simulations. The free energies of hydrating two cavities in the active site of two liganded complexes of cytochrome P450cam were calculated by multiconfigurational thermodynamic integration. The complex of cytochrome P450cam with 2-phenyl-imidazole contains a crystallographically well defined water molecule mediating hydrogen bonds between the protein and the inhibitor. We calculate that this water molecule is stabilized by a binding free energy of -11.6 +/- kJ/mol. The complex of cytochrome P450cam with its natural substrate, camphor, contains a cavity that is empty in the crystal structure although a water molecule in it could make a hydrogen bond to camphor. Here, solvation of this cavity is calculated to be unfavorable by +15.8 +/- 5.0 kJ/mol. The molecular dynamics simulations can thus distinguish a hydrated interfacial cavity from an empty one. They also provide support for the notion that protein-ligand complexes can accommodate empty interfacial cavities and that such cavities are likely to be unhydrated unless more than one hydrogen bond can be made to a water molecule in the cavity.  相似文献   

19.
The kinetic parameters of CO binding to genetically engineered cytochrome P-450d (P-450d) and two putative distal mutants, Glu318Asp and Thr322Ala, have been evaluated in the presence and absence of polycyclic hydrocarbons. The dissociation constant (Kd) of CO from wild-type P-450d was decreased by half (from 1.8 microM to approximately 0.9 microM) in the presence of phenanthrene or anthracene but was increased to 11 microM in the presence of 1,2:3,4-dibenzanthracene or 7,8-benzoflavone. These changed Kd values were not altered markedly by mutations at the putative distal site. In contrast, the recombination rate constants (kon) of CO to the Glu318Asp mutant in the presence of phenanthrene (15.5 X 10(5) M-1 s-1) and 7,8-benzoflavone (0.75 X 10(5) M-1 s-1) were much larger than those for the wild type. Similar but smaller increases of the kon values were observed for the Thr322Ala mutant. It was suggested that phenanthrene and anthracene distort the Fe-C-O bond and/or affect the access of CO to wild-type P-450d in an opposite way from 1,2:3,4-dibenzanthracene and 7,8-benzoflavone. Glu318 and Thr322 may be located so close to a CO binding channel in ferrous P-450d that mutations of these residues can open the sterically hindered CO channel caused by the hydrocarbons.  相似文献   

20.
Chinese hamster V79 cells were treated with the anti- and syn-diastereomers of the bay- or fjord-region diol-epoxides of four polycyclic aromatic hydrocarbons, namely benzo[a]pyrene (BP), benzo[c]chrysene (BcC), benzo[g]chrysene (BgC) and benzo[c]phenanthrene (BcPh). The frequency of induction of 6-thioguanine-resistant mutations was determined, and the extent of formation of DNA adducts was measured by 32P-postlabelling. When expressed as mutation frequency per nanomoles compound per millilitre incubation medium, this group of chemicals expressed a 160-fold range in potency. In agreement with previous experimental studies, the anti-diol-epoxide of BcC was highly mutagenic, inducing in excess of 3 x 10(4) mutations/10(6) cells per nmol compound/ml. The mutagenic activities of the anti- and syn-diol-epoxides of BP were 10- and 100-fold lower, respectively. Both diol-epoxides of BgC, the syn-BcC and the anti-BcPh derivatives were also highly mutagenic, and only the syn-BcPh diol-epoxide was less mutagenic than the anti-diol-epoxide of BP. Determination of the levels of DNA adducts formed by the diol-epoxides indicated that the most mutagenic compounds were the most DNA reactive, although the fjord-region diol-epoxides gave rise to more complex patterns of adducts than those of the BP diol-epoxides. When the mutagenicity results were expressed as mutations per femtomoles total adducts formed, all compounds showed similar activities. Thus the potent mutagenicity of the fjord region diol-epoxides appears to be due to the high frequency with which they form DNA adducts in V79 cells, rather than to formation of adducts with greater mutagenic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号