首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two isozymes of NADP+-specific isocitrate dehydrogenase [ICDH; EC 1.1.1.42] were confirmed to be present in an obligately psychrophilic marine bacterium, Vibrio sp., strain ABE-1, on the basis of the temperature-activity curve and electrophoretic mobilities. These isozymes were separated and purified about 170-fold for isozyme I (specific activity at 40 degrees C, 24.3 units/mg protein) and about 180-fold for isozyme II (specific activity at 20 degrees C, 59.2 units/mg protein), though the isozymes were still not homogeneous. The molecular weights of these isozymes determined by gel filtration were both about 85,000, but the properties of the isozymes were considerably different from each other. The thermostability of isozyme I resembled those of mesophiles, but isozyme II was extremely labile above 20 degrees C. NaCl affected the ICDH isozymes in different ways; the salt protected isozyme I from heat inactivation, but not isozyme II. Nevertheless it enormously enhanced the activity of isozyme II at low concentrations. Moreover, these ICDH isozymes showed different pH optima, Km values for isocitrate, susceptibilities to concerted inhibition by glyoxylate plus oxalacetate, and effects of 2-mercaptoethanol on their stabilities.  相似文献   

3.
A high level of a trans-unsaturated fatty acid was found in the phospholipids of a psychrophilic bacterium, Vibrio sp. strain ABE-1. This fatty acid was identified as 9-trans-hexadecenoic acid (C16:19t) by gas-liquid chromatography and infrared absorption spectrometry. C16:1(9)t accounted for less than 1% of the total fatty acids in cells grown at 5 degrees C and reached 12% of the total at 20 degrees C. We suggest that the increase in the level of the trans-unsaturated fatty acid is related to the high growth rate of this bacterium at elevated temperatures. Possible biological roles of the trans-unsaturated fatty acid in the adaptation of the microorganism to the ambient temperature are discussed.  相似文献   

4.
5.
NH4 + transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3 +) into the intact cells. 14CH3NH3 + uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3 + as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3 + completely inhibited 14CH3NH3 + uptake. These results indicate that 14CH3NH3 + uptake in this bacterium is mediated via an NH4 + transport system and not by a specific carrier for CH3NH3 +. The respiratory substrate succinate was required to drive 14CH3NH3 + uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3 + uptake. The 14CH3NH3 + uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0° and 15°C, and the apparent K m value for CH3NH3 + of the uptake did not change significantly over the temperature range from 0° to 25°C. Thus, the NH4 + transport system of this bacterium was highly active at low temperatures. Received: August 1, 1998 / Accepted: October 8, 1998  相似文献   

6.
The growth characteristics of an obligately psychrophilic Vibrio sp. have been studied in a chemostat with glucose or lactose as the limiting substrate over a temperature range 0–23°C. Vibrio AF-1 has an optimum growth temperature of 15°C and maximum growth temperature which is dependent upon the carbon source. On glucose growth ceases at 20°C whereas on lactose growth continues to 23°C. Growth rate is also a function of the carbon source provided. When grown on glucose, fructose, sucrose, maltose and galactose max values of 0.046 h-1 at 15°C were recorded whereas on lactose, mannose, ribose and xylose max values of 0.020 h-1 were obtained. Substrate affinities (K s ) for the 9 sugars also fall into 2 divisions as for max and are temperature dependent. Those sugars which support a high growth rate have highest K s values at 0°C whereas these which give a low growth rate show maximum affinities at 15°C. Vibrio AF-1 produces the maximum cell yield (0.6 g/g sugar consumed) at temperature <8°C irrespective of the carbon source utilised and correlated with maximum rates of sugar uptake and minimum O2 consumption. Maintenance energy determination on glucose grown cells show that at 2° C 2% of the carbon input is used for maintenance whereas at 20°C the requirement increases to 10% of the carbon input.  相似文献   

7.
Abstract: In vivo ATP synthesis of a psychrophilic marine bacterium, Vibrio sp. strain ABE-1, derived from endogenous respiration, was examined. ATP was synthesized at both pH 6.5 and 8.5 after the start of the endogenous respiration by supplying O2 to the anaerobic cell suspension. The ATP synthesis at pH 6.5, but not at pH 8.5, was completely inhibited by a H+ conductor, carbonylcyanide m -chlorophenylhydrazone (CCCP). The CCCP-resistant ATP synthesis at pH 8.5 was strongly inhibited by an inhibitor of the respiration-dependent primary Na+ pump, 2- n -heptyl-4-hydroxyquinoline N -oxide, and essentially required Na+. These results show that this bacterium synthesizes ATP at pH 6.5 by electrochemical potentials across the membrane Δ ∼ μ H+, whereas at pH 8.5 by Δ ∼ μ Na+ but not Δ ∼ μ H+.  相似文献   

8.
Haight, Rodger D. (Oregon State University, Corvallis), and Richard Y. Morita. Thermally induced leakage from Vibrio marinus, an obligately psychrophilic bacterium. J. Bacteriol. 92:1388-1393. 1966.-Leakage of various cellular components into the surrounding menstruum occurred when Vibrio marinus was subjected to temperatures above 20 C (organism's maximal growth temperature). These materials, listed in decreasing rates of leakage, were identified as protein, deoxyribonucleic acid, ribonucleic acid, and amino acids. The amount of polar amino acids increased as the time and temperature of heat treatment were increased, whereas the nonpolar amino acids decreased. The ribonucleic acid in the supernatant fluid resulting from heat treatment was both polymeric and nonpolymeric. Leakage of cellular components may be one of the reasons that V. marinus MP-1 loses viability when exposed to temperatures above its maximal temperature for growth.  相似文献   

9.
Vibrio sp. strain ABE-1 was grown in a medium that contained as its stable isotope tracer either [2,2-2H2]cis-9-hexadecenoic or [2,2-2H2]trans-9-hexadecenoic acid. Gas chromatographic-mass spectrometric analysis of the cis-9-hexadecenoic and trans-9-hexadecenoic acid fractions from the cells revealed the formation of an intracellularly isomerized 2,2-2H2-fatty acid which differed from the tracer only in the geometrical configuration of the double bond. This observation shows that cis-trans isomerization without a shift in double-bond position between these two geometric hexadecenoic acid isomers can occur in the cells.  相似文献   

10.
11.
The gene encoding malate dehydrogenase (MDH) of the obligately piezophilic deep-sea bacterium Moritella sp. strain 2D2 was cloned and sequenced. There were two positions [close to the active site (Ala-180) and in the subunit interaction site (His-229)] with 2D2-specific substitutions. The MDH genes of strain 2D2 and a psychrophilic bacterium Moritella sp. strain 5710 exhibiting the highest sequence similarity were overexpressed in Escherichia coli. The 2D2 MDH was more heat-stable than the 5710 MDH. The apparent Km value at 62.1 MPa for NADH of the 2D2 MDH was higher than that of the 5710 MDH. The 2D2 MDH in which a His-Gln substitution was introduced at position 229 decreased the thermal stability and Km value at 62.1 MPa. The 5710 MDH that was substituted Gln-229 with His increased the thermal stability and Km value at 62.1 MPa. These results indicate that the His residue at position 229 of the 2D2 MDH may play a role in the thermal stability and the MDH function at high pressure.  相似文献   

12.
A psychrophilic bacterium, Cytophaga sp. strain KUC-1, that abundantly produces a NAD(+)-dependent L-threonine dehydrogenase was isolated from Antarctic seawater, and the enzyme was purified. The molecular weight of the enzyme was estimated to be 139,000, and that of the subunit was determined to be 35,000. The enzyme is a homotetramer. Atomic absorption analysis showed that the enzyme contains no metals. In these respects, the Cytophaga enzyme is distinct from other L-threonine dehydrogenases that have thus far been studied. L-Threonine and DL-threo-3-hydroxynorvaline were the substrates, and NAD(+) and some of its analogs served as coenzymes. The enzyme showed maximum activity at pH 9.5 and at 45 degrees C. The kinetic parameters of the enzyme are highly influenced by temperatures. The K(m) for L-threonine was lowest at 20 degrees C. Dead-end inhibition studies with pyruvate and adenosine-5'-diphosphoribose showed that the enzyme reaction proceeds via the ordered Bi Bi mechanism in which NAD(+) binds to an enzyme prior to L-threonine and 2-amino-3-oxobutyrate is released from the enzyme prior to NADH. The enzyme gene was cloned into Escherichia coli, and its nucleotides were sequenced. The enzyme gene contains an open reading frame of 939 bp encoding a protein of 312 amino acid residues. The amino acid sequence of the enzyme showed a significant similarity to that of UDP-glucose 4-epimerase from Staphylococcus aureus and belongs to the short-chain dehydrogenase-reductase superfamily. In contrast, L-threonine dehydrogenase from E. coli belongs to the medium-chain alcohol dehydrogenase family, and its amino acid sequence is not at all similar to that of the Cytophaga enzyme. L-Threonine dehydrogenase is significantly similar to an epimerase, which was shown for the first time. The amino acid residues playing an important role in the catalysis of the E. coli and human UDP-glucose 4-epimerases are highly conserved in the Cytophaga enzyme, except for the residues participating in the substrate binding.  相似文献   

13.
NADP+-dependent isocitrate dehydrogenase (IDH) isozymes of a psychrophilic bacterium, Colwellia psychrerythraea strain 34H, were characterized. The coexistence of monomeric and homodimeric IDHs in this bacterium was confirmed by Western blot analysis, the genes encoding two monomeric (IDH-IIa and IDH-IIb) and one dimeric (IDH-I) IDHs were cloned and overexpressed in Escherichia coli, and the three IDH proteins were purified. Both of the purified IDH-IIa and IDH-IIb were found to be cold-adapted enzymes while the purified IDH-I showed mesophilic properties. However, the specific activities of IDH-IIa and IDH-IIb were lower even at low temperatures than that of IDH-I. Therefore, IDH-I was suggested to be important for the growth of this bacterium. The results of colony formation of E. coli transformants carrying the respective IDH genes and IDH activities in their crude extracts indicated that the expression of the IDH-IIa gene is cold-inducible in the E. coli cells.  相似文献   

14.
The heat inactivation of the obligately psychrophilic marine bacterium Ant-300 was investigated in terms of glucose uptake, the oxidation of glucose to CO2, and permeability control. At 13C, the maximum temperature for growth, and at slightly higher temperatures, CO2 evolution decreased with time during the oxidation of exogenously supplied glucose. The decrease in CO2 evolution appeared to be a result of heat-induced restrictions on glucose uptake. Leakage of intracellular metabolites apparently contributed to the cells decreased ability to take up glucose at elevated temperatures. A consequence of these heat-induced changes seemed to be the acceleration of cell starvation.  相似文献   

15.
16.
In the psychrophilic bacterium Vibrio sp. strain ANT-300, the temperature-related characteristics of protein synthesis in cells grown at 0 degrees C differed from those of cells grown at 13 degrees C. Cells grown at 0 degrees C and 13 degrees C transported amino acids at the same rates, dependent on the temperature at which rates were measured. The rates of protein synthesis in extracts of cells grown at 0 degrees C and at 13 degrees C differed, as a result of the changes in the properties of the soluble fraction involved in protein synthesis. Concurrently, levels of more than 24 polypeptides in the soluble fraction changed considerably. These results suggest that the difference in temperature dependence of protein synthesis in cells grown at various temperatures may be brought about by specific changes in the levels of a small number of polypeptides (less than 15% of the total number of proteins detected by silver-staining) in response to a change in temperature.  相似文献   

17.
18.
The activity of fatty acid synthetase (FAS) from Vibrio sp. strain ABE-1 required the presence of acyl carrier protein and was completely inhibited by thiolactomycin, an inhibitor specific for a type II FAS. These observations indicate that this enzyme is a type II FAS. Analysis by gas-liquid chromotography of the reaction products synthesized in vitro from [2-14C]malonyl-CoA by the partially purified FAS revealed, in addition to 16-and 18-carbon fatty acids which are normal constituents of this bacterium, the presence of fatty acids with very long chains. These fatty acids were identified as saturated and mono-unsaturated fatty acids with 20 up to as many as 30 carbon atoms. The longest fatty acids normally found in this bacterium contain 18-carbon atoms. These results suggest that the FAS from Vibrio sp. strain ABE-1 has potentially the ability to synthesize fatty acids with very long chains.Abbreviations ACP acyl carrier protein - FAME fatty acid methyl ester - FAS fatty acid synthetase - FID flame ionization detection - GLC gas-liquid chromatography - TLC thin-layer chromatography - In designations of fatty acids, such as 16:0, 16:1, etc the colon separates the number that denotes the number of carbon atoms and the number that denotes the number of double bonds, respectively, in the molecule - 16:0-CoA CoA ester of 16:0  相似文献   

19.
The gene encoding alanine dehydrogenase (AlaDH; EC 1.4.1.1) from the marine psychrophilic bacterium strain PA-43 was cloned, sequenced, and overexpressed in Escherichia coli. The primary structure was deduced on the basis of the nucleotide sequence. The enzyme subunit contains 371 amino acid residues, and the sequence is 90% and 77% identical, respectively, to AlaDHs from Shewanella Ac10 and Vibrio proteolyticus. The half-life of PA-43 AlaDH at 52 degrees C is 9 min, and it is thus more thermolabile than the AlaDH from Shewanella Ac10 or V. proteolyticus. The enzyme showed strong specificity for NAD(+) and l-alanine as substrates. The apparent K(m) for NAD(+) was temperature dependent (0.04 mM-0.23 mM from 15 degrees C to 55 degrees C). A comparison of the PA-43 deduced amino acid sequence to the solved three-dimensional structure of Phormidium lapideum AlaDH showed that there were likely to be fewer salt bridges in the PA-43 enzyme, which would increase enzyme flexibility and decrease thermostability. The hydrophobic surface character of the PA-43 enzyme was greater than that of P. lapideum AlaDH, by six residues. However, no particular modification or suite of modifications emerged as being clearly responsible for the psychrophilic character of PA-43 AlaDH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号