首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
Protein synthesis is initiated universally with the amino acid methionine. In Escherichia coli, studies with anticodon sequence mutants of the initiator methionine tRNA have shown that protein synthesis can be initiated with several other amino acids. In eukaryotic systems, however, a yeast initiator tRNA aminoacylated with isoleucine was found to be inactive in initiation in mammalian cell extracts. This finding raised the question of whether methionine is the only amino acid capable of initiation of protein synthesis in eukaryotes. In this work, we studied the activities, in initiation, of four different anticodon sequence mutants of human initiator tRNA in mammalian COS1 cells, using reporter genes carrying mutations in the initiation codon that are complementary to the tRNA anticodons. The mutant tRNAs used are aminoacylated with glutamine, methionine, and valine. Our results show that in the presence of the corresponding mutant initiator tRNAs, AGG and GUC can initiate protein synthesis in COS1 cells with methionine and valine, respectively. CAG initiates protein synthesis with glutamine but extremely poorly, whereas UAG could not be used to initiate protein synthesis with glutamine. We discuss the potential applications of the mutant initiator tRNA-dependent initiation of protein synthesis with codons other than AUG for studying the many interesting aspects of protein synthesis initiation in mammalian cells.  相似文献   

2.
The kinetics of cell cycle initiation were measured at pH 2.7 for cells that had been arrested at the "start" step of cell division with the polypeptide pheromone alpha-factor. Cell cycle initiation was induced by the removal of alpha-factor. The rate at which cells completed start was identical to the rate of subsequent bud emergence. After short times of prearrest with alpha-factor (e.g. 5.2 h), the kinetics of bud emergence were biphasic, indicative of two subpopulations of cells that differed by greater than 10-fold in their rates of cell cycle initiation. The subpopulation that exhibited a slow rate of cell cycle initiation is comprised of cells that resided in G1 prior to start at the time of removal of alpha-factor, whereas the subpopulation that initiated the cell cycle rapidly is comprised of cells that had reached and become blocked at start. A critical concentration of cycloheximide was found to reintroduce slow budding cells into a population of 100% fast budding cells, suggesting that the two subpopulations differ with respect to attainment of a critical rate of protein synthesis that is necessary for the performance of start. Cycloheximide and an increase in the time of prearrest with alpha-factor had opposite effects on both the partitioning of cells between the two subpopulations and the net rate of protein synthesis per cell, consistent with this conclusion. Cell cycle initiation by the subpopulation of fast budding cells required protein synthesis even though the critical rate of protein synthesis had been achieved during arrest. It is concluded that alpha-factor inhibits the synthesis of and/or inactivates specific proteins that are required for the performance of start, but alpha-factor does not prevent attainment of the critical rate of protein synthesis.  相似文献   

3.
Inhibition of protein synthesis by cycloheximide blocks subsequent division of a mammalian cell, but only if the cell is exposed to the drug before the "restriction point" (i.e. within the first several hours after birth). If exposed to cycloheximide after the restriction point, a cell proceeds with DNA synthesis, mitosis and cell division and halts in the next cell cycle. If cycloheximide is later removed from the culture medium, treated cells will return to the division cycle, showing a complex pattern of division times post-treatment, as first measured by Zetterberg and colleagues. We simulate these physiological responses of mammalian cells to transient inhibition of growth, using a set of nonlinear differential equations based on a realistic model of the molecular events underlying progression through the cell cycle. The model relies on our earlier work on the regulation of cyclin-dependent protein kinases during the cell division cycle of yeast. The yeast model is supplemented with equations describing the effects of retinoblastoma protein on cell growth and the synthesis of cyclins A and E, and with a primitive representation of the signaling pathway that controls synthesis of cyclin D.  相似文献   

4.
The cell cycle kinetics of NHIK 3025 cells, synchronized by mitotic selection, was studied in the presence of cycloheximide at concentrations (0.125-1.25 μM) which inhibited protein synthesis partially and slowed down the rate of cell cycle traverse. The median cell cycle duration was equal to the protein doubling time in both the control cells and in the cycloheximide-treated cultures at all drug concentrations. This conclusion was valid whether protein synthesis was continuously depressed by cycloheximide throughout the entire cell cycle, or temporarily inhibited during shorter periods at various stages of the cell cycle. These results may indicate that cell division does not take place before the cell has reached a critical size, or has completed a protein accumulation-dependent sequence of events. When present throughout the cell cycle, cycloheximide increased the median G1 duration proportionally to the total cell cycle prolongation. However, the entry of cells into S, once initiated, proceeded at an almost unaffected rate even at cycloheximide concentrations which reduced the rate of protein synthesis 50%. The onset of DNA synthesis seemed to take place in the cycloheximide-treated cells at a time when the protein content was lower than in the control cells. This might suggest that DNA synthesis in NHIK 3025 cells is not initiated at a critical cell mass.  相似文献   

5.
1. Cycloheximide causes the release of the control amino acids have over RNA synthesis in Saccharomyces carlsbergensis N.C.T.C. 74. 2. The antibiotic causes a gradual deceleration of RNA formation. After incubation for 60min. at 30 degrees RNA synthesis usually proceeds at a rate only a few per cent of that of the untreated control. 3. In the presence of cycloheximide two types of RNA accumulate in the cell: soluble RNA and a high-molecular-weight RNA. The latter has a base composition intermediate between those of yeast DNA and yeast ribosomal RNA, and sediments in a sucrose gradient at a rate faster than that of the 23s ribosomal RNA component. 4. Yeast ribosomal RNA contains methylated bases. Judged from the incorporation of [Me-(14)C]methionine, the extent of methylation of ribosomal RNA is about 20% of that of the ;soluble' RNA fraction. The high-molecular-weight RNA formed in the presence of cycloheximide is less methylated than normal RNA. In this case the sucrose-density-gradient sedimentation patterns of newly methylated and newly synthesized RNA do not coincide. 5. In the presence of cycloheximide, polysomal material accumulates, indicating that messenger RNA is formed. 6. The effect of the antibiotic on protein and RNA synthesis can be abolished by washing of the cells. The RNA that has accumulated during incubation of the cells with the antibiotic is not stable on removal of cycloheximide. 7. The results presented in this study are discussed in relation to the regulation of RNA formation in yeast.  相似文献   

6.
The effects of cycloheximide and colchicine on cleavage and syntheses of DNA and proteins in cleaving embryos of the sea urchin, Hemicentrotus pulcherrimus , were examined. Cycloheximide caused delay of cell division with prolongation of the streak stage. Both inhibitors also caused delay in initiation of DNA synthesis. The decrease in the rate and prolongation of the period of DNA synthesis caused by these inhibitors varied with their concentrations and the time of administration. Initiation of DNA synthesis was delayed when cycloheximide was added to suspensions of embryos between the time after preceding DNA synthesis terminated and a definite time before the predicted time of initiation of the next synthesis of DNA, except at the stage of pronuclear fusion. However, when the inhibitor was added after initiation of the synthesis, the latter proceeded normally. Addition of 10 m m cycloheximide immediately after fertilization or 2 m m cycloheximide 60 min before fertilization also delayed DNA synthesis at the stage of pronuclear fusion, indicating that synthesis at this stage also required prior protein synthesis. Colchicine had less inhibitory effect on protein synthesis, but greatly delayed initiation of DNA synthesis and prolonged its duration. These facts suggest that a definite amount of a particular protein must be synthesized and accumulated in each synthetic cycle before initiation of DNA synthesis.  相似文献   

7.
Abstract. Folate deficiency will induce abnormal deoxynucleoside triphosphate (dNTP) metabolism because folate-derived one-carbon groups are essential for de novo synthesis of purines and the pyrimidine, thymidylate. Under conditions of methionine deprivation, a functional folate deficiency for deoxynucleoside triphosphate synthesis is induced as a result of the irreversible diversion of available folates toward endogenous methionine resynthesis from homocysteine. The purpose of the present study was to examine the effect of nutritional folate and/or methionine deprivation in vitro on intracellular dNTP pools as related to DNA synthesis activity and cell cycle progression. Primary cultures of mitogen-stimulated rat splenic T-cells were incubated in complete RPMI 1640 medium or in custom-prepared RPMI 1640 medium lacking in folic acid and/or methionine. Parallel cultures, initiated from the same cell suspension, were analysed for deoxyribonucleotide pool levels and for cell proliferation. The distribution of cells within the cell cycle was quantified by dual parameter flow cytometric bromodeoxyuridine/propidium iodide DNA analysis which allows more accurate definition of DNA synthesizing S-phase cells than the traditional DNA-specific staining with propidium iodide alone. Relative to cells cultured in complete RPMI 1640 media, the cells cultured in media deficient in folate, methionine or in both nutrients manifested increases in the deoxythymidylate pool and an apparent depletion of the deoxyguanosine triphosphate pool. Both adenosine triphosphate and nicotinamide adenine diphosphate levels were significantly reduced with single or combined deficiencies of folate and methionine. These nucleotide pool alterations were associated with a decrease in the proportion of cells actively synthesizing DNA and an increase in cells in G2+ M phase of the cell cycle. Folate deprivation in the presence of adequate methionine produced a moderate decrease in DNA synthesizing cells over the 68 h incubation. However, methionine deprivation, in the presence or absence of folate, severely compromised DNA synthesis activity. These results are consistent with the established ‘methyl trap’ diversion of available folates towards the resynthesis of methionine from homocysteine and away from nucleotide synthesis. The data confirm the metabolic interdependence of folic acid and methionine and emphasize the pivotal role of methionine on the availability of folate one-carbon groups for deoxynucleotide synthesis. The decrease in DNA synthesis activity under nutrient conditions that negatively affect nucleotide biosynthesis suggest a possible role for abnormal dNTP metabolism in the regulation of cell cycle progression and DNA synthesis.  相似文献   

8.
Translational control during cell division determines when cells start a new cell cycle, how fast they complete it, the number of successive divisions, and how cells coordinate proliferation with available nutrients. The translational efficiencies of mRNAs in cells progressing synchronously through the mitotic cell cycle, while preserving the coupling of cell division with cell growth, remain uninvestigated. We now report comprehensive ribosome profiling of a yeast cell size series from the time of cell birth, to identify mRNAs under periodic translational control. The data reveal coordinate translational activation of mRNAs encoding lipogenic enzymes late in the cell cycle including Acc1p, the rate‐limiting enzyme acetyl‐CoA carboxylase. An upstream open reading frame (uORF) confers the translational control of ACC1 and adjusts Acc1p protein levels in different nutrients. The ACC1 uORF is relevant for cell division because its ablation delays cell cycle progression, reduces cell size, and suppresses the replicative longevity of cells lacking the Sch9p protein kinase regulator of ribosome biogenesis. These findings establish an unexpected relationship between lipogenesis and protein synthesis in mitotic cell divisions.  相似文献   

9.
The inhibitors of protein synthesis, chloramphenicol and cycloheximide, were added to cultures of yeast undergoing glucose derepression at different times during the growth cycle. Both inhibitors blocked the increase in activity of coenzyme QH2-cytochrome c reductase, suggesting that the formation of complex III of the respiratory chain requires products of both mitochondrial and cytoplasmic protein synthesis.The possibility that precursor proteins synthesized by either cytoplasmic or mitochondrial ribosomes may accumulate was investigated by the sequential addition of cycloheximide and chloramphenicol (or the reverse order) to cultures of yeast undergoing glucose derepression. When yeast cells were grown for 3 hr in medium containing cycloheximide and then transferred to medium containing chloramphenicol, the activity of cytochrome oxidase increased at the same rate as the control during the first hour in chloramphenicol. These results suggest that some accumulation of precursor proteins synthesized in the mitochondria had occurred when cytoplasmic protein synthesis was blocked during the growth phase in cycloheximide. In contrast, essentially no products of mitochondrial protein synthesis accumulated as precursors for either oligomycin-sensitive ATPase or complex III of the respiratory chain during growth of the cells in cycloheximide.When yeast were grown for 3 hr in medium containing chloramphenicol followed by 1 hr in cycloheximide, the activities of cytochrome oxidase and succinate-cytochrome c reductase increased at the same rate as the control, while the activities of oligomycin-sensitive ATPase and NADH or coenzyme QH2-cytochrome c reductase were nearly double that of the control. These data suggest that a significant accumulation of mitochondrial proteins synthesized in the cytoplasm had occurred when the yeast cells were grown in medium containing sufficient chloramphenicol to block mitochondrial protein synthesis. The possibility that proteins synthesized in the cytoplasm may act to control the synthesis of mitochondrial proteins for both oligomycin-sensitive ATPase and complex III of the respiratory chain is discussed.  相似文献   

10.
An in vitro protein-synthesizing system from the yeast Saccharomyces cerevisiae has been made by a modification of the procedure for preparation of the Krebs ascites system. The protein synthetic activity is directed by endogenous messenger. Amino acid incorporation occurs over a broad range of magnesium and potassium concentration, being maximal at 6 and 85 mM, respcetively. The activity of this in vitro system is due to the elongation of polypeptides whose synthesis was initiated in vivo. The cell extract does not initiate synthesis with endogenous messenger ribonucleic acid (RNA), since 1 muM pactamycin, which blocks initiation on prokaryotic or eukaryotic ribosomes invitro, fails to decrease amino acid incorporation. Ten micromolar cycloheximide, however, inhibits incorporation by 87%. Moreover, this system is not stimulated by rabbit reticulocyte polysomal RNA, which directs the synthesis of hemoglobin in extracts of Krebs ascites cells. The translation of this messenger is not masked by high endogenous incorporation, because autoradiography of sodium dodecyl sulfate-polyacrylamide gels containing [35-S]methionine-labeled products shows that no hemoglobin is made. Preincubation of this system, which reduces the high endogenous incorporation by 80%, does not increase its capacity to be stimulated by either rabbit reticulocyte RNA or yeast polyriboadenylic acid-containing RNA. Polyuridylic acid, however, does stimulate polyphenylalanine incorporation. The failure of the yeast lysate to be stimulated by or to translate added natural messenger RNA, its insensitivity to low levels of pactamycin but inhibition by cycloheximide, and its relatively high magnesium optimum (the same as that for polyuridylic acid) suggest that it elongates but does not initiate polypeptide chains.  相似文献   

11.
12.
A brief exposure of quiescent (Go) Swiss 3T3 mouse fibroblasts to inhibitors of protein synthesis can replace platelet-derived growth factor in the stimulation of cellular DNA synthesis. When 3T3 cells, after a 6 hr exposure to either cycloheximide or puromycin, are incubated with platelet-poor plasma, a significant percentage of cells enters DNA synthesis. Either inhibition of protein synthesis, or platelet poor plasma by themselves are totally ineffective. A possible mechanism by which inhibitors of protein synthesis may initiate cell cycle progression is through the activation of the c-myc gene.  相似文献   

13.
Okabe Y  Sasai M 《Biophysical journal》2007,93(10):3451-3459
Chemical reactions in cells are subject to intense stochastic fluctuations. An important question is how the fundamental physiological behavior of the cell is kept stable against those noisy perturbations. In this study, a stochastic model of the cell cycle of budding yeast was constructed to analyze the effects of noise on the cell-cycle oscillation. The model predicts intense noise in levels of mRNAs and proteins, and the simulated protein levels explain the observed statistical tendency of noise in populations of synchronous and asynchronous cells. Despite intense noise in levels of proteins and mRNAs, the cell cycle is stable enough to bring the largely perturbed cells back to the physiological cyclic oscillation. The model shows that consecutively appearing fixed points are the origin of this stability of the cell cycle.  相似文献   

14.
Experiments were performed with cultured excised primary root tips of Vicia faba ‘Longpod’ to determine: (1) the proportion of meristematic cells arrested in Gl and in G2 during carbohydrate starvation, and to determine if the proportion is fixed or can be varied experimentally; (2) the effect of increased starvation on the ability of arrested cells in Gl and G2 to initiate DNA synthesis and mitosis, respectively, when exogenous sucrose was supplied; and (3) whether puromycin, cycloheximide, or actinomycin D prevented the initiation of DNA synthesis and the onset of mitosis. Microspectrophotometry of nuclear DNA and autoradiographic measurements of incorporated 3H-thymidine showed that 72 hr of starvation immediately after excision produced tissue with more than 70 % of the cells arrested in G2 and less than 30 % in Gl. If cultured for three days and then starved for 72 hr, the tissue had nearly equal numbers of cells arrested in Gl and G2. As the duration of starvation increased, the time required to initiate DNA synthesis and to divide when carbohydrate was replenished also increased. Inhibition of protein synthesis by puromycin and cycloheximide prevented the initiation of DNA synthesis and mitosis, but actinomycin D, an inhibitor of RNA synthesis, did not prevent division of cells from G2 nor DNA synthesis by cells from Gl. The experiments demonstrated that the mitotic cycle of Vicia has two major controls, one in Gl and another in G2, and that other factors determine how many cells are affected by either of these cycle controls.  相似文献   

15.
Cytoplasts were prepared from senescent human diploid fibroblasts. Brief treatments of the senescent cells with cycloheximide or puromycin prior to or after enucleation eliminated the ability of senescent cytoplasts to block initiation of DNA synthesis in senescent-young cybrids. Senescent cells treated with cycloheximide, enucleated and allowed to recover in complete medium without cycloheximide, regained the ability to block initiation of DNA synthesis in senescent-young cybrids. These results support the hypothesis that senescent cells synthesize an inhibitor of DNA synthesis which is either a protein(s) or its activity is mediated by a protein(s) found in the cytoplasm of the senescent cell.  相似文献   

16.
17.
Novel techniques were used to determine when in the cell cycle of proliferating NIH 3T3 cells cellular Ras and cyclin D1 are required. For comparison, in quiescent cells, all four of the inhibitors of cell cycle progression tested (anti-Ras, anti-cyclin D1, serum removal, and cycloheximide) became ineffective at essentially the same point in G1 phase, approximately 4 h prior to the beginning of DNA synthesis. To extend these studies to cycling cells, a time-lapse approach was used to determine the approximate cell cycle position of individual cells in an asynchronous culture at the time of inhibitor treatment and then to determine the effects of the inhibitor upon recipient cells. With this approach, anti-Ras antibody efficiently inhibited entry into S phase only when introduced into cells prior to the preceding mitosis, several hours before the beginning of S phase. Anti-cyclin D1, on the other hand, was an efficient inhibitor when introduced up until just before the initiation of DNA synthesis. Cycloheximide treatment, like anti-cyclin D1 microinjection, was inhibitory throughout G1 phase (which lasts a total of 4 to 5 h in these cells). Finally, serum removal blocked entry into S phase only during the first hour following mitosis. Kinetic analysis and a novel dual-labeling technique were used to confirm the differences in cell cycle requirements for Ras, cyclin D1, and cycloheximide. These studies demonstrate a fundamental difference in mitogenic signal transduction between quiescent and cycling NIH 3T3 cells and reveal a sequence of signaling events required for cell cycle progression in proliferating NIH 3T3 cells.  相似文献   

18.
Abstract The temperature-sensitive dna mutants of the budding yeast Saccharomyces cerevisiae (Dumas et al. (1982) Mol. Gen. Genet. 187, 42–46) are more inhibited in DNA synthesis than in protein synthesis. These properties are also characteristics of many yeast mutations that inhibit progress through the cell cycle. Therefore we surveyed the collection of dna mutants for cell-cycle mutations. By genetic complementation we found that dna 1 = cdc 22, dna 6 = cdc 34, dna 19 = cdc 36, and dna 39 = dbf 3. Furthermore, by direct gene cloning we found that the dna26 mutation is allelic to prt1 mutations, which are known to exert primary inhibition on protein synthesis. This protein-synthesis mutation exerts a dna phenotype due to cell-cycle inhibition: prt1 mutations can block the regulatory step of the cell cycle while allowing significant amounts of protein synthesis to continue. Our non-exhausive screening suggests that the dna mutants may house other mutations that affect the yeast cell cycle.  相似文献   

19.
A population-balance mathematical model of microbial growth in a flow reactor is formulated which incorporates an asymmetric-division, budding-cycle model of coordinated cell and nuclear division cycles for the budding yeast Saccharomyces cerevisiae. Analytical solutions are obtained for limiting nutrient and cell-number concentrations in the reactor as functions of basic cell cycle parameters. Frequency functions for cell mass and DNA content in the resident yeast population are also derived under different assumptions concerning cell mass and DNA synthesis and bud scar accumulation. These results, which correspond to experimentally observable medium and population variables, provide new bases for evaluating budding-yeast-cell cycle models and for deducing kinetics of mass and DNA synthesis in single cells growing in steady-state, asynchronous populations.  相似文献   

20.
Polysomes consisting of two to eight monosomes were isolated from yeast mitochondria by lysing the mitochondria with Triton X-100 and centrifugation in a 20 to 40% linear sucrose gradient. When yeast spheroplasts were pulse-labeled with [3H]-Leucine in the presence of cycloheximide to block cytoplasmic protein synthesis, radioactivity which was trichloroacetic acid-precipitable was present mainly in the polysome region. Incorporation of leucine was blocked by erythromycin, a specific inhibitor of mitochondrial protein synthesis. Release of radioactivity to the top of the gradient resulted from treating labeled polysomes with either puromycin or ribonuclease (in the latter case with the breakdown of polysomes), indicating that the radioactivity was present in nascent polypeptide chains. Yeast cells were grown in chloramphenicol for 3 hours and in fresh medium for 1 hour and then pulse-labeled with either [3H]leucine or [14C]formate. Three parameters showed a 2-fold increase in cells grown in chloramphenicol prior to pulse labeling: the polysome to monosome ratio, the amount of labeled precursor incorporated into proteins, and the rate of polypeptide chain initiation as judged by the formation of fMet-puromycin. Conversely, these parameters were all decreased approximately 50% in cells treated with cycloheximide prior to pulse labeling. Mitochondria were also isolated from cells previously grown in chloramphenicol or cycloheximide and incubated in vitro with [3H]leucine under optimal conditions. Acid-precipitable radioactivity in the polysome region was increased 3-fold in mitochondria from cells grown previously in chloramphenicol and decreased 75% in those grown in cycloheximide. Furthermore, chain initiation was deomonstrated in the isolated mitochondria by formation of fMet-puromycin. The rate of chain initiation in vitro was increased 2-fold in mitochondria isolated from chloramphenicol-treated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号