首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysophosphatidic acid (LPA)-mediated Ca(2+) mobilization in human SH-SY5Y neuroblastoma cells does not involve either inositol 1,4, 5-trisphosphate (Ins(1,4,5)P(3))- or ryanodine-receptor pathways, but is sensitive to inhibitors of sphingosine kinase. This present study identifies Edg-4 as the receptor subtype involved and investigates the presence of a Ca(2+) signaling cascade based upon the lipid second messenger molecule, sphingosine 1-phosphate. Both LPA and direct G-protein activation increase [(3)H]sphingosine 1-phosphate levels in SH-SY5Y cells. Measurements of (45)Ca(2+) release in premeabilized SH-SY5Y cells indicates that sphingosine 1-phosphate, sphingosine, and sphingosylphosphorylcholine, but not N-acetylsphingosine are capable of mobilizing intracellular Ca(2+). Furthermore, the effect of sphingosine was attenuated by the sphingosine kinase inhibitor dimethylsphingosine, or removal of ATP. Confocal microscopy demonstrated that LPA stimulated intracellular Ca(2+) "puffs," which resulted from an interaction between the sphingolipid Ca(2+) release pathway and Ins(1,4,5)P(3) receptors. Down-regulation of Ins(1,4,5)P(3) receptors uncovered a Ca(2+) response to LPA, which was manifest as a progressive increase in global cellular Ca(2+) with no discernible foci. We suggest that activation of an LPA-sensitive Edg-4 receptor solely utilizes the production of intracellular sphingosine 1-phosphate to stimulate Ca(2+) mobilization in SH-SY5Y cells. Unlike traditional Ca(2+) release processes, this novel pathway does not require the progressive recruitment of elementary Ca(2+) events.  相似文献   

2.
Bradykinin (BK) or kallikreins activate B2 receptors (R) that couple Galpha(i) and Galpha(q) proteins to release arachidonic acid (AA) and elevate intracellular Ca2+ concentration ([Ca2+]i). Thrombin cleaves the protease-activated-receptor-1 (PAR1) that couples Galpha(i), Galpha(q), and Galpha(12/13) proteins. In Chinese hamster ovary cells stably transfected with human B2R, thrombin liberated little AA, but it significantly potentiated AA release by B2R agonists. We explored mechanisms of cooperativity between constitutively expressed PAR1 and B2R. We also examined human endothelial cells expressing both Rs constitutively. The PAR1 agonist hexapeptide (TRAP) was as effective as thrombin. Inhibitors of components of Galpha(i), Galpha(q), and Galpha(12/13) signaling pathways, and a protein kinase C (PKC)-alpha inhibitor, G?-6976, blocked potentiation, while phorbol, an activator, enhanced it. Several inhibitors, including a RhoA kinase inhibitor, a [Ca2+]i antagonist, and an inositol-(1,3,4)-trisphosphate R antagonist, reduced mobilization of [Ca2+]i by thrombin and blocked potentiation of AA release by B2R agonists. Because either a nonselective inhibitor (isotetrandrine) of phospholipase A2 (PLA2) or a Ca2+-dependent PLA2 inhibitor abolished potentiation of AA release by thrombin, while a Ca2+-independent PLA2 inhibitor did not, we concluded that the mechanism involves Ca2+-dependent PLA2 activation. Both thrombin and TRAP modified activation and phosphorylation of the B2R induced by BK. In lower concentrations they enhanced it, while higher concentrations inhibited phosphorylation and diminished B2R activation. Protection of the NH2-terminal Ser1-Phe2 bond of TRAP by an aminopeptidase inhibitor made this peptide much more active than the unprotected agonist. Thus PAR1 activation enhances AA release by B2R agonists through signal transduction pathway.  相似文献   

3.
Thrombin, the ultimate protease in the blood coagulation cascade, mediates its known cellular effects by unique proteolytic activation of G-protein-coupled protease-activated receptors (PARs), such as PAR1, PAR3, and PAR4, and a "tethered ligand" mechanism. PAR1 is variably expressed in subpopulations of neurons and largely determines thrombin's effects on morphology, calcium mobilization, and caspase-mediated apoptosis. In spinal cord motoneurons, PAR1 expression correlates with transient thrombin-mediated [Ca(2+)](i) flux, receptor cleavage, and elevation of rest [Ca(2+)](i) activating intracellular proteases. At nanomolar concentrations, thrombin retracts neurites via PAR1 activation of the monomeric, 21 kDa Ras G-protein RhoA, which is also involved in neuroprotection at lower thrombin concentrations. Such results suggest potential downstream targets for thrombin's injurious effects. Consequently, we employed several G-protein-specific modulators prior to thrombin exposure in an attempt to uncouple both heterotrimeric and monomeric G-proteins from motoneuronal PAR1. Cholera toxin, stimulating Gs, and lovastatin, which blocks isoprenylation of Rho, reduced thrombin-induced calcium mobilization. In contrast, pertussis toxin and mastoparan, inhibiting or stimulating G(o)/G(i), were found to exacerbate thrombin action. Effects on neuronal rounding and apoptosis were also detected, suggesting therapeutic utility may result from interference with downstream components of thrombin signaling pathways in human motor neuron disorders, and possibly other neurodegenerative diseases. Published 2001 John Wiley & Sons, Inc.  相似文献   

4.
Although the involvement of protease-activating receptor PAR1 and PAR4 is well established in platelet aggregation, their role in platelet adhesion and spreading has yet to be characterized. We investigated platelet adhesion and spreading on a fibrinogen matrix after PAR1 and PAR4 stimulation in correlation with the activation of two MAPKs, ERK2 and p38. Of the two PAR-activating peptides (PAR-APs), PAR1-AP and PAR4-AP, which both induce adhesion, only PAR4-AP induced full platelet spreading. Although both PAR1-AP and PAR4-AP induced ADP secretion, which is required for platelet spreading, only PAR4-AP induced sustained Ca(2+) mobilization. In these conditions of PAR4 induction, ERK2 and p38 activation were involved in platelet spreading but not in platelet adhesion. p38 phosphorylation was dependent on ADP signaling through P2Y12, its receptor. ERK2 phosphorylation was triggered through integrin alphaIIbbeta3 outside-in signaling and was dependent on the Rho pathway. ERK2 and p38 activation induced phosphorylation of the myosin light chain and actin polymerization, respectively, necessary for cytoskeleton reorganization. These findings provide the first evidence that thrombin requires PAR4 for the full spreading response. ERK2 and p38 and sustained Ca(2+) mobilization, involved in PAR4-induced platelet spreading, contribute to the stabilization of platelet thrombi at sites of high thrombin production.  相似文献   

5.
Retzer M  Essler M 《Cellular signalling》2000,12(9-10):645-648
Platelet activation plays an important role in arterial thrombotic disorders. Here we show that the serum-borne phospholipid lysophosphatidic acid (LPA) activates the GTPase Rho and its target Rho-kinase to induce myosin light-chain (MLC) and moesin phosphorylation, leading to platelet shape change. MLC phosphorylation, moesin phosphorylation, and shape change were blocked by preincubating platelets with C3 transferase from Clostridium botulinum and Y-27632-specific inhibitors of Rho and Rho kinase, respectively. LPA did not increase the cytosolic Ca(2+) concentration during shape change. Our results suggest that LPA via Rho-Rho kinase induces MLC and moesin phosphorylation leading to shape change in the absence of an increase in the cytosolic Ca(2+) concentration. Rho/Rho kinase inhibition could be a therapeutic strategy to prevent pathologic platelet activation during arterial thrombotic disorders.  相似文献   

6.
Lysophosphatidic acid (LPA) plays various roles in the regulation of cell growth as a lipid mediator. We studied the effect of LPA on intracellular Ca(2+) concentration ([Ca2+]i) with Fura-2 in the neural retina of chick embryo during neurogenesis. Bath application of LPA (1-100 microM) to the embryonic day 3 (E3) chick retina caused an increase in [Ca2+](i) in a dose-dependent manner, with an EC(50) value of 9.2 microM. The Ca(2+) rise was also evoked in a Ca(2+)-free medium, suggesting that release of Ca(2+) from intracellular Ca(2+) stores (Ca(2+) mobilization) was induced by LPA. U-73122, a blocker of phospholipase C (PLC), inhibited the Ca(2+) rise to LPA. Pertussis toxin partially inhibited the Ca(2+) rise to LPA, indicating that G(i)/G(o) protein was at least partially involved in the LPA response. The developmental profile of the LPA response was studied from E3 to E13. The Ca(2+) rise to LPA declined drastically from E3 to E7, in parallel with decrease in mitotic activity of retinal progenitor cells. The signal transduction pathway and developmental profile of the Ca(2+) response to LPA were the same as those of the Ca(2+) response to adenosine triphosphate (ATP), which enhances the proliferation of retinal progenitor cells. The coapplication of LPA with ATP resulted in enhancement of Ca(2+) rise in the E3 chick retina. Our results show that LPA induces Ca(2+) mobilization in the embryonic chick retina during neurogenesis.  相似文献   

7.
This article reviews the types and roles of voltage-independent Ca(2+) channels involved in the endothelin-1 (ET-1)-induced functional responses such as vascular contraction, cell proliferation, and intracellular Ca(2+)-dependent signaling pathways and discusses the molecular mechanisms for the activation of voltage-independent Ca(2+) channels by ET-1. ET-1 activates some types of voltage-independent Ca(2+) channels, such as Ca(2+)-permeable nonselective cation channels (NSCCs) and store-operated Ca(2+) channels (SOCC). Extracellular Ca(2+) influx through these voltage-independent Ca(2+) channels plays essential roles in ET-1-induced vascular contraction, cell proliferation, activation of epidermal growth factor receptor tyrosine kinase, regulation of proline-rich tyrosine kinase, and release of arachidonic acid. The experiments using various constructs of endothelin receptors reveal the importance of G(q) and G(12) families in activation of these Ca(2+) channels by ET-1. These findings provide a potential therapeutic mechanism of a functional interrelationship between G(q)/G(12) proteins and voltage-independent Ca(2+) channels in the pathophysiology of ET-1, such as in chronic heart failure, hypertension, and cerebral vasospasm.  相似文献   

8.
9.
We examined the regulation and functional role of p38 kinase in gastric acid secretion. p38 kinase was immunoprecipitated from cell lysates of highly purified gastric parietal cells in primary culture, and its activity was quantitated by in vitro kinase assay. Carbachol effects were dose- and time-dependent, with a maximal 10-fold stimulatory effect detected after 30 min of incubation. SB-203580, a highly selective inhibitor of p38 kinase, blocked carbachol induction of p38 kinase activity, with maximal inhibition at 10 microM. Stimulation by carbachol was unaffected by preincubation of parietal cells with the intracellular Ca(2+) chelator BAPTA-AM, but incubation of cells in Ca(2+)-free medium led to a 50% inhibition of carbachol induction of p38 kinase activity. Because some of the effects of carbachol are mediated by the small GTP-binding protein Rho, we examined the role of Rho in carbachol induction of p38 kinase activity. We tested the effect of exoenzyme C3 from Clostridium botulinum (C3), a toxin known to ADP-ribosylate and specifically inactivate Rho. C3 led to complete ADP-ribosylation of Rho, and it inhibited carbachol induction of p38 kinase by 50%. We then tested the effect of SB-203580 and C3 on carbachol-stimulated uptake of [(14)C]aminopyrine (AP). Inhibition of p38 kinase by SB-203580 led to a dose-dependent increase in AP uptake induced by carbachol, with maximal (threefold) effect at 10 microM SB-203580. Similarly, preincubation of parietal cells with C3 led to a twofold increase in AP uptake induced by carbachol. Thus carbachol induces a cascade of events in parietal cells that results in activation of p38 kinase through signaling pathways that are at least in part dependent on Rho activation and on the presence of extracellular Ca(2+). p38 kinase appears to inhibit gastric acid secretion.  相似文献   

10.
In 1321N1 astrocytoma cells, thrombin, but not carbachol, induces AP-1-mediated gene expression and DNA synthesis. To understand the divergent effects of these G protein-coupled receptor agonists on cellular responses, we examined Gq-dependent signaling events induced by thrombin receptor and muscarinic acetylcholine receptor stimulation. Thrombin and carbachol induce comparable changes in phosphoinositide and phosphatidylcholine hydrolysis, mobilization of intracellular Ca2+, diglyceride generation, and redistribution of protein kinase C; thus, activation of these Gq-signaling pathways appears to be insufficient for gene expression and mitogenesis. Thrombin increases Ras and mitogen-activated protein kinase activation to a greater extent than carbachol in 1321N1 cells. The effects of thrombin are not mediated through Gi, since ribosylation of Gi/Go proteins by pertussis toxin does not prevent thrombin-induced gene expression or thrombin-stimulated DNA synthesis. We recently reported that the pertussis toxin-insensitive G12 protein is required for thrombin-induced DNA synthesis. We demonstrate here, using transfection of receptors and G proteins in COS-7 cells, that G alpha 12 selectively couples the thrombin receptor to AP-1-mediated gene expression. This does not appear to result from increased mitogen-activated protein kinase activity but may reflect activation of a tyrosine kinase pathway. We suggest that preferential coupling of the thrombin receptor to G12 accounts for the selective ability of thrombin to stimulate Ras, mitogen-activated protein kinase, gene expression, and mitogenesis in 1321N1 cells.  相似文献   

11.
Glycogen synthase kinase-3 (GSK-3) is a multifunctional serine/threonine kinase that is usually inactivated by serine phosphorylation in response to extracellular cues. However, GSK-3 can also be activated by tyrosine phosphorylation, but little is known about the upstream signaling events and tyrosine kinase(s) involved. Here we describe a G protein signaling pathway leading to GSK-3 activation during lysophosphatidic acid (LPA)-induced neurite retraction. Using neuronal cells expressing the LPA(1) receptor, we show that LPA(1) mediates tyrosine phosphorylation and activation of GSK-3 with subsequent phosphorylation of the microtubule-associated protein tau via the G(i)-linked PIP(2) hydrolysis-Ca(2+) mobilization pathway. LPA concomitantly activates the Ca(2+)-dependent tyrosine kinase Pyk2, which is detected in a complex with GSK-3beta. Inactivation or knockdown of Pyk2 inhibits LPA-induced (but not basal) tyrosine phosphorylation of GSK-3 and partially inhibits LPA-induced neurite retraction, similar to what is observed following GSK-3 inhibition. Thus, Pyk2 mediates LPA(1)-induced activation of GSK-3 and subsequent phosphorylation of microtubule-associated proteins. Pyk2-mediated GSK-3 activation is initiated by PIP(2) hydrolysis and may serve to destabilize microtubules during actomyosin-driven neurite retraction.  相似文献   

12.
Using large clostridial cytotoxins as tools, the role of Rho GTPases in activation of RBL 2H3 hm1 cells was studied. Clostridium difficile toxin B, which glucosylates Rho, Rac, and Cdc42 and Clostridium sordellii lethal toxin, which glucosylates Rac and Cdc42 but not Rho, inhibited the release of hexosaminidase from RBL cells mediated by the high affinity antigen receptor (FcepsilonRI). Additionally, toxin B and lethal toxin inhibited the intracellular Ca(2+) mobilization induced by FcepsilonRI-stimulation and thapsigargin, mainly by reducing the influx of extracellular Ca(2+). In patch clamp recordings, toxin B and lethal toxin inhibited the calcium release-activated calcium current by about 45%. Calcium release-activated calcium current, the receptor-stimulated Ca(2+) influx, and secretion were inhibited neither by the Rho-ADP-ribosylating C3-fusion toxin C2IN-C3 nor by the actin-ADP-ribosylating Clostridium botulinum C2 toxin. The data indicate that Rac and Cdc42 but not Rho are not only involved in late exocytosis events but are also involved in Ca(2+) mobilization most likely by regulating the Ca(2+) influx through calcium release-activated calcium channels activated via FcepsilonRI receptor in RBL cells.  相似文献   

13.
The signaling cascades initiated by motilin receptors in gastric and intestinal smooth muscle cells were characterized. Motilin bound with high affinity (IC(50) 0.7 +/- 0.2 nM) to receptors on smooth muscle cells; the receptors were rapidly internalized via G protein-coupled receptor kinase 2 (GRK2). Motilin selectively activated G(q) and G(13), stimulated G alpha(q)-dependent phosphoinositide (PI) hydrolysis and 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release, and increased cytosolic free Ca(2+). PI hydrolysis was blocked by expression of G alpha(q) minigene and augmented by overexpression of dominant negative RGS4(N88S) or GRK2(K220R). Motilin induced a biphasic, concentration-dependent contraction (EC(50) = 1.0 +/- 0.2 nM), consisting of an initial peak followed by a sustained contraction. The initial Ca(2+)-dependent contraction and myosin light-chain (MLC)(20) phosphorylation were inhibited by the PLC inhibitor U-73122 and the MLC kinase inhibitor ML-9 but were not affected by the Rho kinase inhibitor Y27632 or the PKC inhibitor bisindolylmaleimide. Sustained contraction and MLC(20) phosphorylation were RhoA dependent and mediated by two downstream messengers: PKC and Rho kinase. The latter was partly inhibited by expression of G alpha(q) or G alpha(13) minigene and abolished by coexpression of both minigenes. Sustained contraction and MLC(20) phosphorylation were partly inhibited by Y27632 and bisindolylmaleimide and abolished by a combination of both inhibitors. The inhibition reflected phosphorylation of two MLC phosphatase inhibitors: CPI-17 via PKC and MYPT1 via Rho kinase. We conclude that motilin initiates a G alpha(q)-mediated cascade involving Ca(2+)/calmodulin activation of MLC kinase and transient MLC(20) phosphorylation and contraction as well as a sustained G alpha(q)- and G alpha(13)-mediated, RhoA-dependent cascade involving phosphorylation of CPI-17 by PKC and MYPT1 by Rho kinase, leading to inhibition of MLC phosphatase and sustained MLC(20) phosphorylation and contraction.  相似文献   

14.
The conceptual segregation of G protein-stimulated cell signaling responses into those mediated by heterotrimeric G proteins versus those promoted by small GTPases of the Ras superfamily is no longer vogue. PLC-epsilon, an isozyme of the phospholipase C (PLC) family, has been identified recently and dramatically extends our understanding of the crosstalk that occurs between heterotrimeric and small monomeric GTPases. Like the widely studied PLC-beta isozymes, PLC-epsilon is activated by Gbetagamma released upon activation of heterotrimeric G proteins. However, PLC-epsilon markedly differs from the PLC-beta isozymes in its capacity for activation by Galpha(12/13) - but not Galpha(q) -coupled receptors. PLC-epsilon contains two Ras-associating domains located near the C terminus, and H-Ras regulates PLC-epsilon as a downstream effector. Rho also activates PLC-epsilon, but in a mechanism independent of the C-terminal Ras-associating domains. Therefore, Ca(2+) mobilization and activation of protein kinase C are signaling responses associated with activation of both H-Ras and Rho. A guanine nucleotide exchange domain conserved in the N terminus of PLC-epsilon potentially confers a capacity for activators of this isozyme to cast signals into additional signaling pathways mediated by GTPases of the Ras superfamily. Thus, PLC-epsilon is a multifunctional nexus protein that senses and mediates crosstalk between heterotrimeric and small GTPase signaling pathways.  相似文献   

15.
Protease-activated receptor 1 (PAR1) is an unusual GPCR that interacts with multiple G protein subfamilies (G(q/11), G(i/o), and G(12/13)) and their linked signaling pathways to regulate a broad range of pathophysiological processes. However, the molecular mechanisms whereby PAR1 interacts with multiple G proteins are not well understood. Whether PAR1 interacts with various G proteins at the same, different, or overlapping binding sites is not known. Here we investigated the functional and specific binding interactions between PAR1 and representative members of the G(q/11), G(i/o), and G(12/13) subfamilies. We report that G(q/11) physically and functionally interacts with specific amino acids within the second intracellular (i2) loop of PAR1. We identified five amino acids within the PAR1 i2 loop that, when mutated individually, each markedly reduced PAR1 activation of linked inositol phosphate formation in transfected COS-7 cells (functional PAR1-null cells). Among these mutations, only R205A completely abolished direct G(q/11) binding to PAR1 and also PAR1-directed inositol phosphate and calcium mobilization in COS-7 cells and PAR1-/- primary astrocytes. In stark contrast, none of the PAR1 i2 loop mutations disrupted direct PAR1 binding to either G(o) or G(12), or their functional coupling to linked pertussis toxin-sensitive ERK phosphorylation and C3 toxin-sensitive Rho activation, respectively. In astrocytes, our findings suggest that PAR1-directed calcium signaling involves a newly appreciated G(q/11)-PLCε pathway. In summary, we have identified key molecular determinants for PAR1 interactions with G(q/11), and our findings support a model where G(q/11), G(i/o) or G(12/13) each bind to distinct sites within the cytoplasmic regions of PAR1.  相似文献   

16.
ATP and its degradation products play an important role as signaling molecules in the vascular system, and endothelial cells are considered to be an important source of nucleotide release. To investigate the mechanism and physiological significance of endothelial ATP release, we compared different pharmacological stimuli for their ability to evoke ATP release from first passage cultivated human umbilical vein endothelial cells (HUVECs). Agonists known to increase intracellular Ca(2+) levels (A23187, histamine, thrombin) induced a stable, non-lytic ATP release. Since thrombin proved to be the most robust and reproducible stimulus, the molecular mechanism of thrombin-mediated ATP release from HUVECs was further investigated. ATP rapidly increased with thrombin (1 U/ml) and reached a steady-state level after 4 min. Loading the cells with BAPTA-AM to capture intracellular calcium suppressed ATP release. The thrombin-specific, protease-activated receptor 1 (PAR-1)-specific agonist peptide TFLLRN (10 μM) fully mimicked thrombin action on ATP release. To identify the nature of the ATP-permeable pathway, we tested various inhibitors of potential ATP channels for their ability to inhibit the thrombin response. Carbenoxolone, an inhibitor of connexin hemichannels and pannexin channels, as well as Gd(3+) were highly effective in blocking the thrombin-mediated ATP release. Specifically targeting connexin43 (Cx43) and pannexin1 (Panx1) revealed that reducing Panx1 expression significantly reduced ATP release, while downregulating Cx43 was ineffective. Our study demonstrates that thrombin at physiological concentrations is a potent stimulus of endothelial ATP release involving PAR-1 receptor activation and intracellular calcium mobilization. ATP is released by a carbenoxolone- and Gd(3+)- sensitive pathway, most likely involving Panx1 channels.  相似文献   

17.
Covic L  Gresser AL  Kuliopulos A 《Biochemistry》2000,39(18):5458-5467
Thrombin activates platelets in an ordered sequence of events that includes shape change, increase in cytoplasmic Ca(2+), activation of the alphaIIbbeta3 integrin, granule secretion, aggregation, and formation of a stable hemostatic plug. Activation of this process has also been implicated in the pathogenesis of atherosclerosis, stroke, and thrombosis. There are two identified thrombin-activated receptors on the surface of human platelets. PAR1 is a high-affinity thrombin receptor, and PAR4 is a low apparent affinity thrombin receptor of uncertain function. The goal of these studies is to determine the kinetics of thrombin activation of PAR1 and PAR4 and to relate the individual inputs from each receptor to platelet Ca(2+) signaling, secondary autocrine stimulation, and aggregation. Using a combination of PAR-specific peptide ligands and anti-PAR1 reagents, we separated the biphasic thrombin Ca(2+) response of platelets into two discrete components-a rapid spike response caused by PAR1, followed by a slower prolonged response from PAR4. Despite having a 20-70-fold slower rate of activation, PAR4 produces the majority of the integrated Ca(2+) signal that is sustained by the continuous presence of catalytically active thrombin. Surprisingly, PAR4 activation is much more effective than PAR1 activation in mounting secondary autocrine Ca(2+) signals from secreted ADP. The strong ADP response due to activated PAR4, however, requires prior activation of PAR1 as would normally occur during treatment of platelets with thrombin. Thus, the late signal generated by activated PAR4 is not redundant with the early signal from PAR1 and instead serves to greatly extend the high intracellular Ca(2+) levels that support the late phase of the platelet aggregation process.  相似文献   

18.
Agonist activation of a subset of G protein coupled receptors (GPCRs) stimulates cell proliferation, mimicking the better known effects of tyrosine kinase growth factors. Cell survival or apoptosis is also regulated via pathways initiated by stimulation of these same GPCRs. This review focuses on aspects of signaling by the lysophospholipid mediators, lysophosphatidic acid (LPA), and sphingosine 1 phosphate (S1P), which make these agonists uniquely capable of modulating cell growth and survival. The general features of GPCR coupling to specific G proteins, downstream effectors and signaling cascades are first reviewed. GPCR coupling to G(i) and Ras/MAPK or to G(q) and phospholipase generated second messengers are insufficient to regulate cell proliferation while G(12/13)/Rho engagement provides additional complementary signals required for cell proliferation. Survival is best predicted by coupling to G(i) pathways that regulate PI3K and Akt, but other signals generated through different G protein pathways are also implicated. The unique ability of LPA and S1P to concomitantly stimulate G(i), G(q), and G(12/13) pathways, given the proper complement of expressed LPA or S1P receptors, allows these receptors to support cell survival and proliferation. In pathophysiological situations, e.g., vascular disease, cancer, brain injury, and inflammation, components of the signaling cascade downstream of lysophospholipid receptors, in particular those involving Ras or Rho, may be altered. In addition, up or downregulation of LPA or S1P receptor subtypes, altering their ratio, and increased availability of the lysophospholipid ligands at sites of injury or inflammation, likely contribute to disease and may be important targets for therapeutic intervention.  相似文献   

19.
We investigated the mechanism of phospholipase A(2) (PLA(2)) activation in response to the P2 receptor agonist ATP in rat thyroid FRTL-5 cells. The PLA(2) activity was determined by measuring the release of [(3)H]-arachidonic acid (AA) from prelabeled cells. ATP evoked a dose- and time-dependent AA release. This release was totally inhibited by pertussis toxin (PTX) treatment, indicating the involvement of a G(i)/G(o) protein. The AA release was also diminished by chelating extracellular Ca(2+) with EGTA or by inhibiting influx of Ca(2+) using Ni(2+). Although the activation of protein kinase C (PKC) by 12-phorbol 13-myristate acetate (PMA) alone did not induce any AA release, the ATP-evoked AA release was significantly reduced when PKC was inhibited by GF109203X or by a long incubation with PMA to downregulate PKC. Both the ATP-evoked AA release and the mitogen-activated protein kinase (MAP kinase) phosphorylation were decreased by the MAP kinase kinase (MEK) inhibitor PD98059. Furthermore, the ATP-evoked MAP kinase phosphorylation was also inhibited by GF109203X and by downregulation of PKC, suggesting a PKC-mediated activation of MAP kinase. Inhibiting Src-like kinases by PP1 attenuated both the MAP kinase phosphorylation and the AA release. These results suggest that these kinases are involved in the regulation of MAP kinase and PLA(2) activation. Elevation of intracellular cAMP by TSH or by dBucAMP did not induce a phosphorylation of MAP kinase. Furthermore, neither the ATP-evoked AA release nor the MAP kinase phosphorylation were attenuated by TSH or dBucAMP. Taken together, our results suggest that ATP regulates the activation of PLA(2) by a G(i)/G(o) protein-dependent mechanism. Moreover, Ca(2+), PKC, MAP kinase, and Src-like kinases are also involved in this regulatory process.  相似文献   

20.
A J Ridley  A Hall 《The EMBO journal》1994,13(11):2600-2610
Lysophosphatidic acid (LPA) and bombesin rapidly stimulate the formation of focal adhesions and actin stress fibres in serum-starved Swiss 3T3 fibroblasts, a process regulated by the small GTP binding protein Rho. To investigate further the signalling pathways leading to these responses, we have tested the roles of three intracellular signals known to be induced by LPA: activation of protein kinase C (PK-C), Ca2+ mobilization and decreased cAMP levels. Neither PK-C activation nor increased [Ca2+]i, alone or in combination, induced stress fibre formation, and in fact activators of PK-C inhibited this response to LPA and bombesin. The G(i)-mediated decrease in cAMP was not required for the response to LPA, and increased cAMP levels did not prevent stress fibre formation. In contrast, the tyrosine kinase inhibitor genistein inhibited the formation of stress fibres induced by both extracellular factors and microinjected Rho protein. Genistein also inhibited the Rho-dependent clustering of phosphotyrosine-containing proteins at focal adhesions, and the increased tyrosine phosphorylation of several proteins including pp125FAK, induced by LPA and bombesin. This suggests a model where Rho-induced activation of a tyrosine kinase is required for the formation of stress fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号