首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The HIV protease plays a major role in the life cycle of the virus and has long been a target in antiviral therapy. Resistance of HIV protease to protease inhibitors (PIs) is problematic for the effective treatment of HIV infection. The South African HIV-1 subtype C protease (C-SA PR), which contains eight polymorphisms relative to the consensus HIV-1 subtype B protease, was expressed in Escherichia coli, purified, and crystallized. The crystal structure of the C-SA PR was resolved at 2.7?Å, which is the first crystal structure of a HIV-1 subtype C protease that predominates in Africa. Structural analyses of the C-SA PR in comparison to HIV-1 subtype B proteases indicated that polymorphisms at position 36 of the homodimeric HIV-1 protease may impact on the stability of the hinge region of the protease, and hence the dynamics of the flap region. Molecular dynamics simulations showed that the flap region of the C-SA PR displays a wider range of movements over time as compared to the subtype B proteases. Reduced stability in the hinge region resulting from the absent E35-R57 salt bridge in the C-SA PR, most likely contributes to the increased flexibility of the flaps which may be associated with reduced susceptibility to PIs.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:36  相似文献   

3.
This report details the structure-activity relationships of the HIV gag substrate analog Val-Ser-Gln-Asn-Leu psi[CH(OH)CH2]Val-Ile-Val (U-85548E), an inhibitor exhibiting subnanomolar affinity towards HIV type-1 aspartic proteinase (HIV-1 PR). Our data show that the P1-P2' tripeptidyl sequence provides the minimal chemical determinant for HIV-1 PR binding. We describe the structure-activity properties of Leu psi[CH(OH)CH2]Val substitution in other peptidyl ligands of nonviral substrate origin (e.g., angiotensinogen, insulin and pepstatin). Furthermore, the aspartic proteinase selectivities of a few key compounds are summarized relative to evaluation against human renin, human pepsin, and the fungal enzyme, rhizopuspepsin. These studies have led to the rational design of nanomolar potent inhibitors of both HIV-1 and HIV-2 PR. Finally, a 2.5 A resolution X-ray crystallographic structure of U-85548E complexed to synthetic HIV-1 PR dimer (Jaskolski et al., Biochemistry 30, 1600 [1991]) provided a 3-D picture of the inhibitor bound to the enzyme active site, and we performed computer-assisted molecular modeling studies to explore the possible binding modes of the above series of Leu psi[CH(OH)CH2]Val substituted HIV-1 PR inhibitors.  相似文献   

4.
5.
Novel peptides incorporating the PCU derived hydroxy acid (5-hydroxy-4-oxahexacyclo[5.4.1.0(2,6).0(3,10).0(5,9).0(8,11)]dodecane) were synthesized and their activity against the resistance-prone wild type C-South African (C-SA) HIV-protease is reported. The attachment of peptides and peptoids to the PCU derived hydroxy acid resulted in a series of structurally diverse promising HIV-1 protease inhibitors. Amongst the nine novel compounds, 16, 17, 20 and 23 gave IC(50) values ranging from 0.6 to 5.0 μM against the wild type C-SA HIV-1 protease enzyme. Docking studies and molecular dynamic (MD) simulations have been carried out in order to understand the binding mode of the PCU moiety at the active site of the HIV protease enzyme. A conserved hydrogen bonding pattern between the PCU derived hydroxy ether and the active site residues, ASP25/ASP25', was observed in all active compounds.  相似文献   

6.
The escape mutant of HIV-1 protease (PR) containing 20 mutations (PR20) undergoes efficient polyprotein processing even in the presence of clinical protease inhibitors (PIs). PR20 shows >3 orders of magnitude decreased affinity for PIs darunavir (DRV) and saquinavir (SQV) relative to PR. Crystal structures of PR20 crystallized with yttrium, substrate analogue p2-NC, DRV, and SQV reveal three distinct conformations of the flexible flaps and diminished interactions with inhibitors through the combination of multiple mutations. PR20 with yttrium at the active site exhibits widely separated flaps lacking the usual intersubunit contacts seen in other inhibitor-free dimers. Mutations of residues 35-37 in the hinge loop eliminate interactions and perturb the flap conformation. Crystals of PR20/p2-NC contain one uninhibited dimer with one very open flap and one closed flap and a second inhibitor-bound dimer in the closed form showing six fewer hydrogen bonds with the substrate analogue relative to wild-type PR. PR20 complexes with PIs exhibit expanded S2/S2' pockets and fewer PI interactions arising from coordinated effects of mutations throughout the structure, in agreement with the strikingly reduced affinity. In particular, insertion of the large aromatic side chains of L10F and L33F alters intersubunit interactions and widens the PI binding site through a network of hydrophobic contacts. The two very open conformations of PR20 as well as the expanded binding site of the inhibitor-bound closed form suggest possible approaches for modifying inhibitors to target extreme drug-resistant HIV.  相似文献   

7.
Purification and in vitro protein‐folding schemes were developed to produce monodisperse samples of the mature wild‐type HIV‐2 protease (PR2), enabling a comprehensive set of biochemical and biophysical studies to assess the dissociation of the dimeric protease. An E37K substitution in PR2 significantly retards autoproteolytic cleavage during expression. Furthermore, it permits convenient measurement of the dimer dissociation of PR2E37K (elevated Kd ~20 nM) by enzyme kinetics. Differential scanning calorimetry reveals a Tm of 60.5 for PR2 as compared with 65.7°C for HIV‐1 protease (PR1). Consistent with weaker binding of the clinical inhibitor darunavir (DRV) to PR2, the Tm of PR2 increases by 14.8°C in the presence of DRV as compared with 22.4°C for PR1. Dimer interface mutations, such as a T26A substitution in the active site (PR2T26A) or a deletion of the C‐terminal residues 96–99 (PR21–95), drastically increase the Kd (>105‐fold). PR2T26A and PR21–95 consist predominantly of folded monomers, as determined by nuclear magnetic resonance (NMR) and size‐exclusion chromatography coupled with multiangle light scattering and refractive index measurements (SMR), whereas wild‐type PR2 and its active‐site mutant PR2D25N are folded dimers. Addition of twofold excess active‐site inhibitor promotes dimerization of PR2T26A but not of PR21–95, indicating that subunit interactions involving the C‐terminal residues are crucial for dimer formation. Use of SMR and NMR with PR2 facilitates probing for potential inhibitors that restrict protein folding and/or dimerization and, thus, may provide insights for the future design of inhibitors to circumvent drug resistance.  相似文献   

8.
HIV-1 protease (HIV-1 PR), which is encoded by retroviruses, is required for the processing of gag and pol polyprotein precursors, hence it is essential for the production of infectious viral particles. In vitro inhibition of the enzyme results in the production of progeny virions that are immature and noninfectious, suggesting its potential as a therapeutic target for AIDS. Although a number of potent protease inhibitor drugs are now available, the onset of resistance to these agents due to mutations in HIV-1 PR has created an urgent need for new means of HIV-1 PR inhibition. Whereas enzymes are usually inactivated by blocking of the active site, the structure of dimeric HIV-1 PR allows an alternative inhibitory mechanism. Since the active site is formed by two half-enzymes, which are connected by a four-stranded antiparallel beta-sheet involving the N- and C- termini of both monomers, enzyme activity can be abolished by reagents targeting the dimer interface in a region relatively free of mutations would interfere with formation or stability of the functional HIV-1 PR dimer. This strategy has been explored by several groups who targeted the four-stranded antiparallel beta-sheet that contributes close to 75% of the dimerization energy. Interface peptides corresponding to native monomer N- or C-termini of several of their mimetics demonstrated, mainly on the basis of kinetic analyses, to act as dimerization inhibitors. However, to the best of our knowledge, neither X-ray crystallography nor NMR structural studies of the enzyme-inhibitor complex have been performed to date. In this article we report a structural study of the dimerization inhibition of HIV-1 PR by NMR using selective Trp side chain labeling.  相似文献   

9.
TMC114 (darunavir) is a promising clinical inhibitor of HIV-1 protease (PR) for treatment of drug resistant HIV/AIDS. We report the ultra-high 0.84 A resolution crystal structure of the TMC114 complex with PR containing the drug-resistant mutation V32I (PR(V32I)), and the 1.22 A resolution structure of a complex with PR(M46L). These structures show TMC114 bound at two distinct sites, one in the active-site cavity and the second on the surface of one of the flexible flaps in the PR dimer. Remarkably, TMC114 binds at these two sites simultaneously in two diastereomers related by inversion of the sulfonamide nitrogen. Moreover, the flap site is shaped to accommodate the diastereomer with the S-enantiomeric nitrogen rather than the one with the R-enantiomeric nitrogen. The existence of the second binding site and two diastereomers suggest a mechanism for the high effectiveness of TMC114 on drug-resistant HIV and the potential design of new inhibitors.  相似文献   

10.
Three forms of feline immunodeficiency virus protease (FIV PR), the wild type (wt) and two single point mutants, V59I and Q99V, as well as human immunodeficiency virus type 1 protease (HIV-1 PR), were cocrystallized with the C2-symmetric inhibitor, TL-3. The mutants of FIV PR were designed to replace residues involved in enzyme-ligand interactions by the corresponding HIV-1 PR residues at the structurally equivalent position. TL-3 shows decreased (improved) inhibition constants with these FIV PR mutants relative to wt FIV PR. Despite similar modes of binding of the inhibitor to all PRs (from P3 to P3'), small differences are evident in the conformation of the Phe side chains of TL-3 at the P1 and P1' positions in the complexes with the mutated FIV PRs. The differences mimick the observed binding of TL-3 in HIV-1 PR and correlate with a significant improvement in the inhibition constants of TL-3 with the two mutant FIV PRs. Large differences between the HIV-1 and FIV PR complexes are evident in the binding modes of the carboxybenzyl groups of TL-3 at P4 and P4'. In HIV-1 PR:TL-3, these groups bind over the flap region, whereas in the FIV PR complexes, the rings are located along the major axis of the active site. A significant difference in the location of the flaps in this region of the HIV-1 and FIV PRs correlates with the observed conformational changes in the binding mode of the peptidomimetic inhibitor at the P4 and P4' positions. These findings provide a structural explanation of the observed Ki values for TL-3 with the different PRs and will further assist in the development of improved inhibitors.  相似文献   

11.
The crystal structures of the proteases (PRs) encoded by the Rous sarcoma virus (RSV) and the human immunodeficiency virus (HIV) have been compared. The crystallographic monomer of HIV PR superimposes on the two crystallographically independent subunits of the RSV PR dimer with root mean square deviations of 1.45 and 1.55 A for 86 and 88 common C alpha atoms, respectively. There is a conserved structural core consisting of seven beta-strands forming two perpendicular layers, a helix, and the amino- and carboxyl-terminal beta-strands. PRs from related retroviruses fold into similar structures with surface turns of variable length between the beta-strands. Both HIV and RSV PR dimers have significant subunit-subunit interactions in three regions: the "firemen's grip" at the active site; the salt bridges involving Arg8, Asp29, and Arg87 of HIV PR; and the termini of the two subunits, which form a four-stranded antiparallel beta-sheet. The specific interactions of the termini differ in the two PRs. The carboxyl termini, residues 96-99 of HIV PR and residues 119-124 of RSV PR, contribute approximately 50% of the intersubunit ionic and hydrogen bond interactions and approximately 45% of the buried surface area involved in dimer formation. This information may be useful in the design of site-directed mutations or inhibitors of dimer formation.  相似文献   

12.
Retroviral proteases are obligate homodimers and play an essential role in the viral life cycle. Dissociation of dimers or prevention of their assembly may inactivate these enzymes and prevent viral maturation. A salient structural feature of these enzymes is an extended interface composed of interdigitating N- and C-terminal residues of both monomers, which form a four-stranded beta-sheet. Peptides mimicking one beta-strand (residues 95-99), or two beta-strands (residues 1-5 plus 95-99 or 95-99 plus 95-99) from the human immunodeficiency virus 1 (HIV1) interface were shown to inhibit the HIV1 and 2 proteases (PRs) with IC50's in the low micromolar range. These interface peptides show cognate enzyme preference and do not inhibit pepsin, renin, or the Rous sarcoma virus PR, indicating a degree of specificity for the HIV PRs. A tethered HIV1 PR dimer was not inhibited to the same extent as the wild-type enzymes by any of the interface peptides, suggesting that these peptides can only interact effectively with the interface of the two-subunit HIV PR. Measurements of relative dissociation constants by limit dilution of the enzyme show that the one-strand peptide causes a shift in the observed Kd for the HIV1 PR. Both one- and two-strand peptides alter the monomer/dimer equilibrium of both HIV1 and HIV2 PRs. This was shown by the reduced cross-linking of the HIV2 PR by disuccinimidyl suberate in the presence of the interface peptides. Refolding of the HIV1 and HIV2 PRs with the interface peptides shows that only the two-strand peptides prevent the assembly of active PR dimers. Although both one- and two-strand peptides seem to affect dimer dissociation, only the two-strand peptides appear to block assembly. The latter may prove to be more effective backbones for the design of inhibitors directed toward retroviral PR dimerization in vivo.  相似文献   

13.
Specific HIV integrase strand transfer inhibitors are thought to bind to the integrase active site, positioned to coordinate with two catalytic magnesium atoms in a pocket flanked by the end of the viral LTR. A structural role for the 3' terminus of the viral LTR in the inhibitor-bound state has not previously been examined. This study describes the kinetics of binding of a specific strand transfer inhibitor to integrase variants assembled with systematic changes to the terminal 3' adenosine. Kinetic experiments are consistent with a two-step binding model in which there are different functions for the terminal adenine base and the terminal deoxyribose sugar. Adenine seems to act as a "shield" which retards the rate of inhibitor association with the integrase active site, possibly by acting as an internal competitive inhibitor. The terminal deoxyribose is responsible for retarding the rate of inhibitor dissociation, either by sterically blocking inhibitor egress or by a direct interaction with the bound inhibitor. These findings further our understanding of the details of the inhibitor binding site of specific strand transfer inhibitors.  相似文献   

14.
为探讨南宁市某县艾滋病病毒1型(HIV-1)感染人群中治疗前pol区遗传特性及蛋白结构变化情况,本研究通过RT-PCR扩增pol区部分序列并进行测序,将序列同源比对构建系统进化树;分型确定毒株亚型和斯坦福大学HIV耐药性数据库比对,分析耐药相关位点;SWISS-MODEL蛋白质同源数据库进行建模分析氨基酸的突变对蛋白质结构和功能的影响。本研究在90份HIV-1标本中获得46个pol区有效序列,共发现4种亚型,其中CRF01_AE占76.08%(35/46)、CRF08_BC占15.22%(7/46)、CRF07_BC占(3/46)6.52%、CRF59_01B1占2.17%(1/46);46个序列中有4例(8.69%)出现耐药突变位点,没有针对核苷酸反转录酶抑制剂(NRTI)的耐药突变;针对蛋白酶类抑制剂(PIs)1例,PR蛋白酶的柔性部位I47V位点发生突变,β折叠结构的I84V位点发生突变,都是异亮氨酸突变为缬氨酸;针对非核苷酸反转录酶抑制剂(NNRTI)有3例,2例位于活性中心的Y181C位点由酪氨酸突变为半胱氨酸,1例位于转角处的E138G位点由谷氨酸突变为甘氨酸。研究表明,南宁市某县HIV-1病毒CRF01_AE重组亚型比例最大,未经抗病毒治疗HIV1感染者中已经出现pol区耐药突变株,突变位点主要位于活性中心及柔性部位,传播水平已经处于中等流行状态。深入分析蛋白质与抑制剂相互作用机制,有助于为艾滋病抗病毒及耐药性监测方案提供科学依据。  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) protease has been continuously evolving and developing resistance to all of the protease inhibitors. This requires the development of new inhibitors that bind to the protease in a novel fashion. Most of the inhibitors that are on the market are peptidomimetics, where a conserved water molecule mediates hydrogen bonding interactions between the inhibitors and the flaps of the protease. Recently a new class of inhibitors, lysine sulfonamides, was developed to combat the resistant variants of HIV protease. Here we report the crystal structure of a lysine sulfonamide. This inhibitor binds to the active site of HIV-1 protease in a novel manner, displacing the conserved water and making extensive hydrogen bonds with every region of the active site.  相似文献   

16.
The structural and functional role of conserved residue G86 in HIV‐1 protease (PR) was investigated by NMR and crystallographic analyses of substitution mutations of glycine to alanine and serine (PRG86A and PRG86S). While PRG86S had undetectable catalytic activity, PRG86A exhibited ~6000‐fold lower catalytic activity than PR. 1H‐15N NMR correlation spectra revealed that PRG86A and PRG86S are dimeric, exhibiting dimer dissociation constants (Kd) of ~0.5 and ~3.2 μM, respectively, which are significantly lower than that seen for PR with R87K mutation (Kd > 1 mM). Thus, the G86 mutants, despite being partially dimeric under the assay conditions, are defective in catalyzing substrate hydrolysis. NMR spectra revealed no changes in the chemical shifts even in the presence of excess substrate, indicating very poor binding of the substrate. Both NMR chemical shift data and crystal structures of PRG86A and PRG86S in the presence of active‐site inhibitors indicated high structural similarity to previously described PR/inhibitor complexes, except for specific perturbations within the active site loop and around the mutation site. The crystal structures in the presence of the inhibitor showed that the region around residue 86 was connected to the active site by a conserved network of hydrogen bonds, and the two regions moved further apart in the mutants. Overall, in contrast to the role of R87 in contributing significantly to the dimer stability of PR, G86 is likely to play an important role in maintaining the correct geometry of the active site loop in the PR dimer for substrate binding and hydrolysis. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Novel HIV PR inhibitors, which contain a diaminopyranoside moiety as an inhibitor core unit, were designed based on the 3D structures of complexes of HIV-1 PR with transition-state mimics. These compounds were examined for their ability to inhibit the hydrolytic activity of a recombinant HIV-1 PR.  相似文献   

18.
The human immunodeficiency virus 1 (HIV-1) protease (PR) is an aspartyl protease essential for HIV-1 viral infectivity. HIV-1 PR has one catalytic site formed by the homodimeric enzyme. We chemically synthesized fully active HIV-1 PR using modern ligation methods. When complexed with the classic substrate-derived inhibitors JG-365 and MVT-101, the synthetic HIV-1 PR formed crystals that diffracted to 1.04- and 1.2-A resolution, respectively. These atomic-resolution structures revealed additional structural details of the HIV-1 PR's interactions with its active site ligands. Heptapeptide inhibitor JG-365, which has a hydroxyethylamine moiety in place of the scissile bond, binds in two equivalent antiparallel orientations within the catalytic groove, whereas the reduced isostere hexapeptide MVT-101 binds in a single orientation. When JG-365 was converted into the natural peptide substrate for molecular dynamic simulations, we found putative catalytically competent reactant states for both lytic water and direct nucleophilic attack mechanisms. Moreover, free energy perturbation calculations indicated that the insertion of catalytic water into the catalytic site is an energetically favorable process.  相似文献   

19.
HIV-1 protease (PR) is a major drug target in combating AIDS, as it plays a key role in maturation and replication of the virus. Six FDA-approved drugs are currently in clinical use, all designed to inhibit enzyme activity by blocking the active site, which exists only in the dimer. An alternative inhibition mode would be required to overcome the emergence of drug-resistance through the accumulation of mutations. This might involve inhibiting the formation of the dimer itself. Here, the folding of HIV-1 PR dimer is studied with several simulation models appropriate for folding mechanism studies. Simulations with an off-lattice Gō-model, which corresponds to a perfectly funneled energy landscape, indicate that the enzyme is formed by association of structured monomers. All-atom molecular dynamics simulations strongly support the stability of an isolated monomer. The conjunction of results from a model that focuses on the protein topology and a detailed all-atom force-field model suggests, in contradiction to some reported equilibrium denaturation experiments, that monomer folding and dimerization are decoupled. The simulation result is, however, in agreement with the recent NMR detection of folded monomers of HIV-1 PR mutants with a destabilized interface. Accordingly, the design of dimerization inhibitors should not focus only on the flexible N and C termini that constitute most of the dimer interface, but also on other structured regions of the monomer. In particular, the relatively high phi values for residues 23-35 and 79-87 in both the folding and binding transition states, together with their proximity to the interface, highlight them as good targets for inhibitor design.  相似文献   

20.
Resistance to human immunodeficiency virus type 1 protease (HIV PR) inhibitors results primarily from the selection of multiple mutations in the protease region. Because many of these mutations are selected for the ability to decrease inhibitor binding in the active site, they also affect substrate binding and potentially substrate specificity. This work investigates the substrate specificity of a panel of clinically derived protease inhibitor-resistant HIV PR variants. To compare protease specificity, we have used positional-scanning, synthetic combinatorial peptide libraries as well as a select number of individual substrates. The subsite preferences of wild-type HIV PR determined by using the substrate libraries are consistent with prior reports, validating the use of these libraries to compare specificity among a panel of HIV PR variants. Five out of seven protease variants demonstrated subtle differences in specificity that may have significant impacts on their abilities to function in viral maturation. Of these, four variants demonstrated up to fourfold changes in the preference for valine relative to alanine at position P2 when tested on individual peptide substrates. This change correlated with a common mutation in the viral NC/p1 cleavage site. These mutations may represent a mechanism by which severely compromised, drug-resistant viral strains can increase fitness levels. Understanding the altered substrate specificity of drug-resistant HIV PR should be valuable in the design of future generations of protease inhibitors as well as in elucidating the molecular basis of regulation of proteolysis in HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号