首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report the cloning and characterisation of a cDNA that encodes a novel member of the Xenopus laevis 14-3-3 protein family. Sequence analysis reveals that the cDNA-encoded protein shares 84% identity with the rat, human or sheep 14-3-3ζ isoform, and between 66% and 77% identity with bovine, human or rat β, bovine γ, human τ, Drosophila 14-3-3 and a previously isolated Xenopus member. The corresponding mRNA is present in all adult tissues examined with the highest levels in the brain. Although the gene is expressed throughout embryogenesis, higher levels of mRNA accumulate after gastrulation. Whole-mount in situ hybridisation on tailbud stage embryo reveals strong expression of the gene in the head, optic vesicles, spinal cord and branchial arches with weaker expression in the somites. In addition, expression along the notochord is observed at stage 45 (tadpole). This spatial and temporal expression profile along with recent studies implicating the importance of 14-3-3 proteins in the regulation of signal transduction pathways argues for a key role of this isoform in embryonic development.  相似文献   

2.
目的:对与小鼠胚胎发育相关的印记基因Mcts2表达模式及生物学功能做初步的分析。方法:采用切片原位杂交,全胚胎原位杂交,Northern blot和real-time PCR对该基因进行了表达谱的分析。结果:切片原位杂交结果显示Mcts2基因在E13.5和E15.5胚胎中的脑、舌、心脏、肺脏、肝脏、肾脏等重要脏器中都有普遍表达。全胚胎原位杂交结果显示Mcts2基因在E10.5胚胎中的前脑、前肢、尾芽中出现较强的信号,其他部位信号较弱。Northern和Real-time PCR实验分析了Mcts2基因在E12.5,E15.5,E18.5胚胎和新生小鼠的脑、心脏、肺脏、肝脏和肾脏中的表达谱,发现Mcts2基因在这几个主要发育时期都有普遍表达,在E15.5胚胎中表达信号最为强烈。结论:Mcts2基因在小鼠胚胎的发育的各主要时期的重要脏器中都有普遍的表达,提示该基因在小鼠胚胎发育过程中起到了重要的作用。  相似文献   

3.
Spermatogenesis is a complex process. Duringspermatogenesis, the production of sperm occurs withinthe testicular seminiferous tubules through three separatedphases. First of all, diploid germ cells, primitivespermatogonia, will self renew to amplify and producetypes A and B spermatogonia. Type B spermatogonia willdifferentiate into primary spermatocytes. Then, meioticdivisions of spermatocytes will produce round spermatids.Finally, after a series of biochemical and morphologicalchanges, sper…  相似文献   

4.
5.
6.
7.
 We have studied gene expression during ascidian embryonic development using the technique of differential display and isolated partial cDNA sequences of 12 genes. Developmental regulation of these genes has been confirmed by northern hybridization analysis. Further cDNA cloning and sequence analysis of an mRNA that is present during gastrulation, neurulation and tailbud formation reveals that it encodes a novel serine protease containing a single kringle motif and catalytic domain. The spatial expression of this gene, designated Hmserp1, is restricted to precursor cells of the epidermis. The structure and expression of Hmserp1 is discussed in relation to possible functions during development. Received: 8 October 1996 / Accepted: 17 December 1996  相似文献   

8.
Development of the vertebrate embryo requires strict coordination of a highly complex series of signaling cascades, that drive cell proliferation, differentiation, migration, and the general morphogenetic program. Members of the Map kinase signaling pathway are repeatedly required throughout development to activate the downstream effectors, ERK, p38, and JNK. Regulation of these pathways occurs at many levels in the signaling cascade, with the Map3Ks playing an essential role in target selection. The thousand and one amino acid kinases (Taoks) are Map3Ks that have been shown to activate both p38 and JNK and are linked to neurodevelopment in both invertebrate and vertebrate organisms. In vertebrates, there are three Taok paralogs (Taok1, Taok2, and Taok3) which have not yet been ascribed a role in early development. Here we describe the spatiotemporal expression of Taok1, Taok2, and Taok3 in the model organism Xenopus laevis. The X. laevis Tao kinases share roughly 80% identity to each other, with the bulk of the conservation in the kinase domain. Taok1 and Taok3 are highly expressed in pre-gastrula and gastrula stage embryos, with initial expression localized to the animal pole and later expression in the ectoderm and mesoderm. All three Taoks are expressed in the neural and tailbud stages, with overlapping expression in the neural tube, notochord, and many anterior structures (including branchial arches, brain, otic vesicles, and eye). The expression patterns described here provide evidence that the Tao kinases may play a central role in early development, in addition to their function during neural development, and establish a framework to better understand the developmental roles of Tao kinase signaling.  相似文献   

9.
The expression of the gene for the iron transport protein transferrin was found to be altered in preneoplastic and neoplastic lesions induced in the rat liver by N-nitrosomorpholine. The total RNA of ten hepatocellular carcinomas (HCC) was investigated by Northern blot analysis using a cDNA-probe comprising 150 bp of the 3′ region and compared with the total hepatic RNA in untreated rats. Seven hepatocellular carcinomas showed slight or pronounced reduction in transferrin expression. In situ hybridization of two additional hepatocellular carcinomas revealed marked reduction in the mRNA level for the transferrin gene compared with the surrounding tissue. In contrast, the majority of early preneoplastic lesions storing excess glycogen and tigroid cell foci expressed increased levels of transferrin mRNA. The loss of glycogen in mixed cell foci, which represent a later stage of hepatocarcinogenesis, was usually accompanied by a decrease in transferrin mRNA suggesting a close relationship between this change in gene expression and cellular dedifferentiation emerging during hepatocarcinogenesis.  相似文献   

10.
11.
Expression of atrial natriuretic factor gene in heart ventricular tissue   总被引:14,自引:0,他引:14  
A novel peptide hormone, atrial natriuretic factor (ANF), was recently isolated and characterized in mammalian atria. This hormone has potent natriuretic, diuretic and vasorelaxant activities. Since ANF bioactivity was initially found in atria but not in ventricles, it was assumed that the ANF gene is specifically expressed in atria. We now report that ANF mRNA is present in ventricular tissue as well as in atria. This is clearly demonstrated by in situ hybridization and by Northern blot analysis. Rat ventricular ANF mRNA concentration is a hundred-fold lower than in atria. As in atria, the 126 amino acids precursor form of ANF is predominant in ventricles and it is present at a thousand-fold lower concentration. The ten-fold discrepancy in the ratio of ANF mRNA to immunoreactivity between atria and ventricles could reflect a higher rate of peptide release in the latter. Thus, ventricular ANF production may be physiologically significant in view of the much larger ventricular mass.  相似文献   

12.
Huang Y  Tang R  Dai J  Gu S  Zhao W  Cheng C  Xu M  Zhou Z  Ying K  Xi Y  Mao Y 《Molecular biology reports》2001,28(4):185-191
We report the cloning and characterization of a novel human hydroxysteroid dehydrogenase like gene (HSDL1) located on human chromosome 16q24.2. The HSDL1 cDNA is 3407 base pair in length, encoding a 309 amino acid polypeptide related to human 17-HSD3. Northern blot reveals that the HSDL1 is highly expressed in testis and ovary. In situ hybridization indicates that the expression of HSDL1 is predominantly increased in the prostate cancer tissue compared with the normal prostate tissue, which suggests that the gene expression is important to the arising of prostate cancer.  相似文献   

13.
Summary An in situ hybridization method was developed for detecting single or low copy number genes in metaphase chromosomes of plants. Using as a probe 3H-labelled plasmid pABDI, which confers kanamycin resistance (Kmr) to transformed cells. DNA introduced into the plant genome by direct gene transfer was detected with a high efficiency: about 60% to 80% of interphase and metaphase plates showed a strong signal. The insertion site of the Kmr gene in two independent transformants was localised on different homologous chromosome pairs. This result independently confirmed previous genetic data which had indicated that transformed DNA was integrated into plant chromosomes in single blocks.  相似文献   

14.
The visceral yolk sac (VYS), composed of extraembryonic mesoderm and visceral endoderm, is the initial site of blood cell development and serves important nutritive and absorptive functions. In the mouse, the visceral endoderm becomes a morphologically distinct tissue at the time of implantation (E4.5), while the extraembryonic mesoderm arises during gastrulation (E6.5–8.5). To isolate genes differentially expressed in the developing yolk sac, polymerase chain reaction (PCR) methods were used to construct cDNA from late primitive streak to neural plate stage (E7.5) murine VYS mesoderm and VYS endoderm tissues. Differential screening led to the identification of six VYS mesoderm-enriched clones: ribosomal protein L13a, the heat shock proteins hsc 70 and hsp 86, guanine-nucleotide binding protein-related gene, cellular nucleic acid binding protein, and ã-enolase. One VYS endoderm-specific cDNA was identified as apolipoprotein C2. In situ hybridization studies confirmed the differential expression of these genes in E7.5 yolk sac tissues. These results indicate that representative cDNA populations can be obtained from small numbers of cells and that PCR methodologies permit the study of gene expression during early mammalian postimplantation development. While all of the mesoderm-enriched genes were ubiquitously expressed in the embryo proper, apolipoprotein C2 expression was confined to the visceral endoderm. These results are consistent with the hypothesis that at E7.5, the yolk sac endoderm provides differentiated liver-like functions, while the newly developing extraembryonic mesoderm is still a largely undifferentiated tissue. © 1995 wiley-Liss, Inc.  相似文献   

15.
Aquaporins are membrane water channels that play critical roles in controlling the water content of cells and tissues. In this work, nine full-length cDNAs encoding putative aquaporins were isolated from grape berry cDNA libraries. A phylogenetic analysis conducted with 28 aquaporin genes identified in the grapevine genome and previously characterized aquaporins from Arabidopsis indicates that three cDNAs encode putative tonoplast aquaporins (TIPs) whereas six cDNAs belong to the plasma membrane aquaporin subfamily (PIPs). Specific probes designed on the 3' untranslated regions of each cDNA were used for the preparation of cDNA macroarray filters and in situ hybridization experiments. Macroarray data indicate that expression levels of most TIP and PIP genes depend on grape berry developmental stages and point out to a global decrease of aquaporin gene expression during berry ripening. In young berries, high expression of aquaporin genes was preferentially observed in dividing and elongating cells and in cells involved in water and solutes transport. Taken together, the data provided in this paper indicate that aquaporins are implicated in various physiological aspects of grape berry development.  相似文献   

16.
17.
18.
The discovery and characterization of genes specifically induced in vivo upon infection and/or at a specific stage of the infection will be the next phase in studying bacterial virulence at the molecular level. Genes isolated are most likely to encode virulence-associated factors or products essential for survival, bacterial cell division and multiplication in situ. Identification of these genes is expected to provide new means to prevent infection, new targets for, antimicrobial therapy, as well as new insights into the infection process. Analysis of genes and their sequences initially discovered as in vivo induced may now be revealed by functional and comparative genomics. The new field of virulence genomics and their clustering as pathogenicity islands makes feasible their in-depth analysis. Application of new technologies such as in vivo expression technologies, signature-tagged mutagenesis, differential fluorescence induction, differential display using polymerase chain reaction coupled to bacterial genomics is expected to provide a strong basis for studying in vivo induced genes, and a better understanding of bacterial pathogenicity in vivo. This review presents technologies for characterization of genes expressed in vivo.  相似文献   

19.
20.
The expression pattern of Necdin, a gene involved in the etiology of Prader-Willi syndrome and a member of the MAGE family of genes, is described during mouse nervous system development. Using RNA in situ hybridization, immunohistochemical staining, and colocalization with neuronal differentiation markers, we found that Necdin RNA and protein are expressed within post-mitotic neurons at all stages studied. From E10 to E12, Necdin is detected in all developing neurons, in both central and peripheral nervous system, with the highest expression levels in the diencephalon and the hindbrain. After E13, Necdin is expressed in specific structures of the nervous system, in particular the hypothalamus, the thalamus, and the pons, suggesting a specific developmental role therein. In addition, Necdin expression is also detected in non-neural tissues, such as the somites, the developing limb buds, the first branchial arches, the tong, and the axial muscles. Recently, Necdin and other MAGE proteins were found to interact in vitro with the intracellular domain of the p75NTR neurotrophin receptor, but this interaction has not been validated in vivo. We report here that the spatial and temporal expression of p75NTR is included in Necdin expression domain. These results are in agreement with Necdin proposed role on cell cycle arrest, inhibition of apoptosis and facilitation of neuronal differentiation in vitro, and with hypothalamic cellular deficiencies reported in mice with abrogation of the Necdin gene. Furthermore, they are also consistent with the putative role of Necdin in signaling events promoted by p75NTR during mouse nervous system development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号