首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fusarium head blight, caused primarily by Fusarium graminearum (Fg), is one of the most devastating diseases of wheat. Host resistance in wheat is classified into five types (Type‐I to Type‐V), and a majority of moderately resistant genotypes carry Type‐II resistance (resistance to pathogen spread in the rachis) alleles, mainly from the Chinese cultivar Sumai 3. Histopathological studies in the past failed to identify the key tissue in the spike conferring resistance to pathogen spread, and most of the studies used destructive techniques, potentially damaging the tissue(s) under study. In the present study, nondestructive synchrotron‐based phase contrast X‐ray imaging and computed tomography techniques were used to confirm the part of the wheat spike conferring Type‐II resistance to Fg spread, thus showcasing the application of synchrotron‐based techniques to image host–pathogen interactions. Seven wheat genotypes of moderate resistance to Fusarium head blight were studied for changes in the void space volume fraction and grayscale/voxel intensity following Fg inoculation. Cell‐wall biopolymeric compounds were quantified using Fourier‐transform midinfrared spectroscopy for all genotype‐treatment combinations. The study revealed that the rachilla and rachis nodes together are structurally important in conferring Type‐II resistance. The structural reinforcement was not necessarily observed from lignin deposition but rather from an unknown mechanism.  相似文献   

2.
Fusarium head blight, caused primarily by Fusarium graminearum, is the most important wheat disease in Canada causing both grain yield and quality losses. Selection for resistance to Fusarium head blight in breeding programs has been difficult because of the complex inheritance of resistance and the environmental effect on disease development and expression. The present study was conducted to examine microsatellite markers associated with resistance to Fusarium head blight and evaluate the effectiveness of these microsatellite markers in selecting for resistance to Fusarium head blight in two doubled-haploid populations segregating for Sumai 3-derived resistance genes. Both doubled-haploid populations were evaluated for resistance to Fusarium head blight by inoculation with F. graminearum in the greenhouse. Eight microsatellite markers from chromosomes 3BS, 6B and 5AL were applied to both doubled-haploid populations. The most significant microsatellite markers were found on the short arm of chromosome 3B, explaining 12% and 36% of phenotypic variation for resistance in the DH181/AC Foremost and AC Foremost/93FHB 21 doubled-haploid populations, respectively. Another important microsatellite marker, gwm644 on 6B, explained 21 % of the phenotypic variation for resistance to Fusarium head blight in the DH181/AC Foremost doubled-haploid population. There was a general lack of marker polymorphism on 5AL for the parents used in this study. Microsatellite markers on chromosome 3BS in addition to microsatellite markers on 6B have the potential for accelerating the development of wheat cultivars with improved Fusarium head blight resistance through the use of marker-assisted selection.  相似文献   

3.
Fifty-three commercially grown cultivars and germplasm lines of winter triticale (n = 18), wheat (n = 13), and rye (n = 5) and spring triticale (n = 8), wheat (n = 7) and rye (n = 2) were inoculated at mid anthesis with a spore suspension consisting of a mixture of Fusarium culmorum, Fusarium avenaceum and Fusarium graminearum isolates of known toxinogenic activity. Reactions to Fusarium head blight were measured as disease severity, reductions of kernel number/head, kernel weight/head and 1000 kernel weight, number of Fusarium-damaged kernels and kernel content of deoxynivalenol (DON) and its acetyl-derivatives 3-AcDON, 15-AcDON, and moniliformin. None of the cereal genotypes was completely resistant to Fusarium head blight. Wheat suffered from the largest kernel weight reductions, and accumulated the largest amounts of deoxynivalenol (up to 39.5 mg/kg) and 3AcDON (up to 6.0 mg/kg) in kernels. Deoxynivalenol was not detected in grain samples of winter rye cv. Dańkowskie Z?ote, and spring rye cv. Ludowe. 15-AcDON was only detected in genotypes of triticale, and 3AcDON only in a few genotypes of winter wheat and rye. Moniliformin was detected at low concentrations (up to 0.092 mg/kg) in kernels of some genotypes selected for the mycotoxin analysis. A moderately strong Pearson correlation was found between head blight severity parameters and the accumulation of deoxynivalenol and its derivatives in grain of the cereal genotypes studied. Fusarium head blight severity parameters were correlated with the percentage of Fusarium-damaged kernels and reductions of yield components. However, some head blight-susceptible genotypes realized their potential yields, but accumulated high levels of mycotoxins in kernels. Both Fusarium head blight resistant and susceptible genotypes of the three cereal species accumulated deoxynivalenol in kernels. This finding suggests that the system regulating deoxynivalenol accumulation may be independent of Fusarium head blight reaction.  相似文献   

4.
小麦赤霉病是全球性小麦病害,严重影响小麦产量和品质,赤霉菌产生的毒素进一步威胁人畜安全,培育抗病品种是控制小麦赤霉病危害的根本途径。植物细胞工程技术可创造新的遗传变异、加快育种进程,已经广泛应用于小麦抗赤霉病育种。概述了体细胞无性系变异诱导、花药培养、小麦与玉米杂交培育加倍单倍体以及幼胚培养一年多代快速成苗等植物细胞工程技术研究进展,着重介绍了其在抗小麦赤霉病育种中的应用。最后对未来发展趋势做了展望,植物细胞工程结合分子育种技术将在小麦抗赤霉病品种培育中发挥更重要的作用。  相似文献   

5.
To determine whether resistance to Fusarium head blight in winter wheat is horizontal and non-species specific, 25 genotypes from five European countries were tested at six locations across Europe in the years 1990, 1991, and 1992. The five genotypes from each country had to cover the range from resistant to susceptible. The locations involved were Wageningen, Vienna, Rennes, Hohenheim, Oberer Lindenhof, and Szeged. In total, 17 local strains of Fusarium culmorum, F. graminearum, and F. nivale were used for experimental inoculation. One strain, F. culmorum IPO 39-01, was used at all locations. Best linear unbiased predictions (BLUPs) for the head blight ratings of the genotypes were formed within each particular location for each combination of year and strain. The BLUPs over all locations were collected in a genotype-by environment table in which the genotypic dimension consisted of the 25 genotypes, while the environmental dimension was made up of 59 year-by-strain-by-location combinations. A multiplicative model was fitted to the genotype by-environment interaction in this table. The inverses of the variances of the genotype-by-environment BLUPs were used as weights. Interactions between genotypes and environments were written as sums of products between genotypic scores and environmental scores. After correction for year-by-location influence very little variation in environmental scores could be ascribed to differences between strains. This provided the basis for the conclusion that the resistance to Fusarium head blight in winter wheat was of the horizontal and non-species specific type. There was no indication for any geographical pattern in virulence genes. Any reasonable aggressive strain, a F. culmorum strain for the cool climates and a F. graminearum strain for the warmer humid areas, should be satisfactory for screening purposes.  相似文献   

6.
1H NMR measurements on protein-free extracts from wheat leaf and stem tissue were used to investigate the biochemical correlates of partial resistance to fungal species implicated in the Fusarium head blight (FHB) disease complex. The wheat genotypes included five commercial wheat cultivars and 116 wheat genotypes, from the CIMMYT international FHB breeding programme in Mexico, that had been bred for FHB disease resistance, utilizing exotic, typically Chinese, resistance sources. Principal component analysis of the nuclear magentic resonance (NMR)-derived metabolite profiles revealed distinct separation of the commercial wheat cultivars from the majority of the CIMMYT wheat genotypes with the commercial cultivars exhibiting markedly higher carbohydrate concentrations. A cross-validated partial least squares (PLS) regression model of the metabolite profile against the partial disease resistance component latent period (delay in sporulation of the fungus on the plant tissue) predicted latent periods that were significantly correlated with the experimentally determined values ( R 2 = 0.34, P  < 0.001). Identified metabolites that were found in plants with shorter latent periods (higher disease susceptibility) included choline, the single most influential metabolite in the PLS model, betaine, the amino acids glutamine, glutamate and alanine, trans -aconitate and sucrose. Metabolites related to increased disease resistance included glucose and unassigned resonances in the carbohydrate and aromatic regions of the NMR spectra. The current study has demonstrated the potential of metabolite profiling as a tool for marker-assisted selection in commercial breeding for resistance to FHB in wheat.  相似文献   

7.
Summary In 3 consecutive years, a set of 17 winter wheat genotypes, representing a wide range of Fusarium head blight resistance, was inoculated with four strains of Fusarium culmorum. Fusarium head blight ratings were analyzed. The interaction between genotypes, strains, and years was described using a Finlay-Wilkinson model and an Additive Main effects and Multiplicative Interaction effects (AMMI) model. The interaction consisted primarily of a divergence of genotypical responses with increasing disease pressure, modified by genotype specific reactions in certain years. The divergence was mainly caused by one very pathogenic strain. The Fusarium head blight resistance in this study can be described as horizontal resistance in terms of Vanderplank, with the exception of three genotypes selected from one particular cross that showed a strain-year combination dependent resistance which was ineffective in 1 year.  相似文献   

8.
A genetic basis of resistance of winter wheat to Fusarium graminearum causing Fusarium head blight was defined as a result of F1, F2, BC1 hybrid analysis in the crosses of some lines and varieties with highly susceptible variety Odesskaya polukarlikovaya. It was found out that resistance to Fusarium graminearum inherited regardless of resistance to rust, mildew and Septoria.  相似文献   

9.
Fusarium head blight of wheat is a major deterrent to wheat production world-wide. The genetics of FHB resistance in wheat are becoming clear and there is a good understanding of the genome location of FHB resistance QTL from different sources such as Sumai3, Wuhan, Nyubai and Frontana. All the components needed for assembling complex genotypes through large-scale molecular breeding experiments are now available. This experiment used high throughput microsatellite genotyping and half-seed analysis to process four independent crosses through a molecular breeding strategy to introduce multiple pest resistance genes into Canadian wheat. This included two backcrosses and selection for a total of six FHB resistance QTL, orange blossom wheat midge resistance (Sm1) and leaf rust resistance (Lr21). In addition, the fixation of the elite genetic background was monitored with 45–76 markers to accelerate restoration of the genetic background at each backcross. The strategy resulted in 87% fixation of the elite genetic background on average at the BC2F1 generation and successfully introduced all of the chromosome segments containing FHB, Sm1 and Lr21 resistance genes. The molecular breeding strategy was completed in 25 months, at an equal pace to conventional crossing and selection of spring wheat.  相似文献   

10.
小麦抗赤霉病研究现状与展望   总被引:7,自引:0,他引:7  
张爱民  阳文龙  李欣  孙家柱 《遗传》2018,40(10):858-873
小麦是我国最重要的口粮作物之一。在小麦生产所面临的各种病害中,赤霉病的发生具有愈来愈严重的趋势,引起小麦产业界的高度关注。近几十年来,科研人员在小麦抗赤霉病遗传育种以及防控技术领域进行了持续不懈的努力,在赤霉病病原菌致病基因、小麦赤霉病抗性基因定位、克隆及功能研究以及抗赤霉病分子育种等方面取得了重大进展。本文主要从赤霉病抗性基因资源的发掘和鉴定、不同抗源遗传基础解析、小麦赤霉病抗性基因、抗赤霉病分子标记辅助选择育种与基因聚合以及小麦抗赤霉病基因的克隆和功能研究等方面进行了综述,分析了目前小麦抗赤霉病研究中存在的问题,并提出应加强基因克隆、功能分子标记开发以及应用单体型辅助选择(HAS)和标记组辅助选择(MSAS)等小麦抗赤霉病研究的相关建议。  相似文献   

11.
Head blight caused by Fusarium culmorum may lead to yield reduction and the contamination of cereal grain with the mycotoxins deoxynivalenol (DON), 3-acetyl deoxynivalenol (3-ADON), nivalenol (NIV), fusarenone-X (FUS), and others. In this study, the covariation between DON and NIV accumulation of 12 rye and eight wheat genotypes that differed in resistance were analysed by inoculating them with a DON-and a NIV-producing isolate, respectively, in three locations. The resistance traits head blight rating and plot yield relative to the uninoculated plots of the same genotype were assessed and the contents of DON, 3-ADON, NIV, and FUS in the grain were analysed by gas chromatography with mass spectrometry. The NIV-producing isolate was significantly (P=0.05) less aggressive and led to a considerably lower mean NIV content in the grain compared with the aggressiveness and mean DON content of the DON-producing isolate (19.5 mg NIV/kg grain versus 48.4 mg DON/kg). Wheat and rye genotypes significantly differed in their DON and NIV accumulation. All genotypes reacted in a similar manner to both chemotypes of F. culmorum for the resistance traits and the respective mycotoxin contents with the exception of one wheat variety, that caused a change in rank order for mycotoxin content. In conclusion, resistance to head blight and tolerance to mycotoxin accumulation seems to be most likely the same for DON- and NIV-producing isolates of F. culmorum .  相似文献   

12.
由镰孢菌引起的赤霉病是小麦的重要病害,其抗性比较复杂。准确可靠的鉴定和评价方法是抗性改良成功的前提。评述了小麦赤霉病抗性类型及其不同赤霉病抗性鉴定和评价方法的优缺点,重点讨论了抗性类型与抗性鉴定方法的对应性。希望对赤霉病表型鉴定、不同抗性类型的理解和评价以及抗性改良有借鉴意义。  相似文献   

13.
Ban T  Watanabe N 《Hereditas》2001,135(2-3):95-99
Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most destructive diseases of wheat in areas where the weather is warm and humid after heading. Previous studies indicate that the level of resistance to FHB varies not only among wheat cultivars but also among some of their wild relatives. No accession, however, has yet been identified to be completely immune to FHB among the Gramineae. It is known that durum wheat (Triticum turgidum L. conv. durum) is consistently more susceptible to FHB than common wheat (T. aestivum L.). The importance of the D genome in conferring resistance to FHB has been emphasized. Meanwhile, recent studies using molecular markers report effective QTLs on chromosome 3BS in a hexaploid population and on 3A in tetraploid recombinant inbred chromosome lines. In this study, we performed an evaluation of the effects of homoeologous group 3 chromosomes of T. turgidum ssp. dicoccoides on resistance to FHB using a set of chromosome substitution lines of a durum wheat cultivar 'Langdon'. The accession of T. turgidum ssp. dicoccoides examined in this study was more susceptible for Type II resistance (resistance to spread of FHB in the head) than 'Langdon'. Both of the chromosome substitution lines of 3A and 3B showed the same level of resistance with 'Langdon', but bleaching of the heads was completely prevented in the substitution lines of chromosome 3A without relationship to rachis fragility. It was concluded that the chromosome 3A of T. turgidum ssp. dicoccoides carries resistance gene(s) to head bleaching caused by FHB.  相似文献   

14.
小麦赤霉病是危害小麦安全生产的重要病害之一,种植抗病品种是防治赤霉病最经济有效的手段。目前在生产上应用的抗源很少,越来越多的研究者将目光转移到小麦的近缘属种,寻找新的抗源以及寻求新的育种突破。携带抗性基因的外源染色体可以通过染色体工程手段以附加系、代换系和易位系等形式导入小麦。综述了将大赖草等多个小麦近缘种的抗赤霉病基因导入普通小麦、创制抗病外源种质和育种利用的最新研究进展,以期为小麦抗赤霉病育种提供参考信息。  相似文献   

15.
小麦种质对茎基腐病抗性评价及优异种质筛选   总被引:1,自引:0,他引:1  
小麦茎基腐病是由镰孢菌侵染引起的一种世界性土传病害,近年来已严重威胁到我国小麦的安全生产。为筛选具有茎基腐病抗性的小麦种质资源,本研究采用孢子悬浮液浸种法,分别以国外抗病材料Sunco和中国品种陕253为抗病和感病对照,对670份我国小麦品种(系)进行了茎基腐病温室苗期抗性鉴定。结果发现,我国供试品种(系)感病材料(病情指数>30)所占比例达到84%,且包含多个近年来小麦生产中的主推品种,表明我国小麦品种总体抗性水平低是导致茎基腐病近年来发病频率与程度不断增加的重要原因之一。经多轮筛选,发掘获得15份抗病表现稳定、抗性水平与抗病对照Sunco相仿的材料。15份材料平均病情指数在10.9~19.4之间,其株高、抽穗期等农艺性状表现出较为丰富的变异,为我国小麦抗茎基腐病品种选育和抗性遗传研究提供了种质资源。  相似文献   

16.
A few EST-derived STS markers localized on Qfhs.ndsu-3BS, a major QTL for resistance to Fusarium head blight (FHB) in wheat, have been previously identified in the 'Sumai 3'/'Stoa' population. In this study, we used a 'Wangshuibai' (resistant)/'Seri82' (susceptible) derived population, linkage group, QTL, and quantitative gene expression analysis to assess the genetic background dependence and stability of the EST-derived STS markers for use in marker aided selection to improve FHB resistance in wheat. Based on our results, a QTL in the map interval of Xsts3B-138_1-Xgwm493 on chromosome 3BS was detected for FHB resistance, which accounted for up to 16% of the phenotypic variation. BLASTN analysis indicated that Xsts3B-138_1 sequence had significant similarity with the resistance gene analogue. Real-time quantitative PCR showed that the relative expression of Xsts3B-1381 in 'Wangshuibai' at 96 h after inoculation was 2.6 times higher than 'Seri82'. Our results underlined that EST-derived STS3B-138 markers could be predominantly used in marker aided selection to improve FHB resistance in wheat.  相似文献   

17.
The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.  相似文献   

18.
Genetic differences between 20 Chinese wheat (Triticum aestivum L.) landraces highly resistant to Fusarium head blight (FHB) and 4 wheat lines highly susceptible to FHB were evaluated by means of microsatellite markers, in order to select suitable parents for gene mapping studies. Thirty-nine out of 40 microsatellite markers (97.5%) were polymorphic among the 24 wheat genotypes. A total of 276 alleles were detected at the 40 microsatellite loci. The number of alleles per locus ranged from 1 to 16, with an average of 6.9 alleles. Among these microsatellite loci, the largest polymorphism information content (PIC) value was 0.914 (GWM484), while the lowest PIC value was 0 (GWM24). The mean genetic similarity index among the 24 genotypes was 0.419, ranging from 0.103 to 0.673. Clustering analysis indicated that the highly susceptible synthetic wheat line RSP was less genetically related to and more divergent from the Chinese highly resistant landraces. These results were useful in the identification of suitable parents for the development of mapping populations for tagging the FHB resistance genes among these Chinese wheat landraces.  相似文献   

19.
20.
Fusarium head blight (FHB) is a disease of the floral tissues of wheat and barley for which highly resistant varieties are not available. Thus, there is a need to identify genes/mechanisms that can be targeted for the control of this devastating disease. Fusarium graminearum is the primary causal agent of FHB in North America. In addition, it also causes Fusarium seedling blight. Fusarium graminearum can also cause disease in the model plant Arabidopsis thaliana. The Arabidopsis–F. graminearum pathosystem has facilitated the identification of targets for the control of disease caused by this fungus. Here, we show that resistance against F. graminearum can be enhanced by flg22, a bacterial microbe-associated molecular pattern (MAMP). flg22-induced resistance in Arabidopsis requires its cognate pattern recognition receptor (PRR) FLS2, and is accompanied by the up-regulation of WRKY29. The expression of WRKY29, which is associated with pattern-triggered immunity (PTI), is also induced in response to F. graminearum infection. Furthermore, WRKY29 is required for basal resistance as well as flg22-induced resistance to F. graminearum. Moreover, constitutive expression of WRKY29 in Arabidopsis enhances disease resistance. The PTI pathway is also activated in response to F. graminearum infection of wheat. Furthermore, flg22 application and ectopic expression of WRKY29 enhance FHB resistance in wheat. Thus, we conclude that the PTI pathway provides a target for the control of FHB in wheat. We further show that the ectopic expression of WRKY29 in wheat results in shorter stature and early heading time, traits that are important to wheat breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号