首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
C4 photosynthesis is functionally dependent on metabolic interactions between mesophyll- and bundle-sheath cells. Although the C4 cycle is biochemically well understood, many aspects of the regulation of enzyme activities, gene expression and cell differentiation are elusive. Protein kinases are likely involved in these regulatory processes, providing links to hormonal, metabolic and developmental signal-transduction pathways. Here we describe the cloning and characterization of 14 different putative protein kinase leaf cDNA clones from the C4 plant Sorghum bicolor. These genes belong to three different protein kinase subfamilies: ribosomal protein S6 kinases, SNF1-like protein kinases, and receptor-like protein kinases. We report the partial cDNA sequences, mesophyll/bundle-sheath steady-state mRNA ratios, mesophyll/etiolated leaf steady-state mRNA ratios, and the positions of 14 protein kinase genes on the genetic map of S. bicolor. Only three of the protein kinase genes described here are expressed preferentially in mesophyll cells as compared with the bundle-sheath. Received: 16 January 1998 / Accepted: 3 April 1998  相似文献   

2.
C4 photosynthesis is functionally dependent on metabolic interactions between mesophyll- and bundle-sheath cells. Although the C4 cycle is biochemically well understood, many aspects of the regulation of enzyme activities, gene expression and cell differentiation are elusive. Protein kinases are likely involved in these regulatory processes, providing links to hormonal, metabolic and developmental signal-transduction pathways. Here we describe the cloning and characterization of 14 different putative protein kinase leaf cDNA clones from the C4 plant Sorghum bicolor. These genes belong to three different protein kinase subfamilies: ribosomal protein S6 kinases, SNF1-like protein kinases, and receptor-like protein kinases. We report the partial cDNA sequences, mesophyll/bundle-sheath steady-state mRNA ratios, mesophyll/etiolated leaf steady-state mRNA ratios, and the positions of 14 protein kinase genes on the genetic map of S. bicolor. Only three of the protein kinase genes described here are expressed preferentially in mesophyll cells as compared with the bundle-sheath.  相似文献   

3.
To study the metabolic interactions between mesophyll and bundle-sheath cells of C4 plants, protein kinases possibly involved in the regulatory processes and signal transduction pathways have been cloned and characterized. A receptor-like protein kinase (RLK) cDNA clone from the C4 plant Sorghum bicolor (L.) Moench has been identified. The deduced protein was designated SbRLK1 for receptor-like protein kinase from S. bicolor. The putative cytoplasmic domain of SbRLK1 contains all amino acids that are characteristic of protein kinases. The extracellular domain contains five leucine-rich repeats. The mRNA of the SbRLK1 gene accumulated to much higher levels in mesophyll cells than in the bundle-sheath and was almost undetectable in roots. This expression pattern indicates that SbRLK1 might be involved in the regulation of specific processes in mesophyll cells. Received: 13 August 1998 / Accepted: 22 December 1998  相似文献   

4.
5.
We have identified several protein kinases that are differentially expressed in mesophyll and bundle sheath cells of the C4 plant Sorghum bicolor. Here we describe the characterization of a protein kinase homologue that shows a high amino acid sequence similarity to the SNF1/AMPK family of protein serine/threonine kinases. The mRNA of this gene accumulates to much higher levels in mesophyll cells than in the bundle sheath and can also be detected in root tissue.  相似文献   

6.
Immunogold labelling has been used to determine the cellular distribution of glycine decarboxylase in leaves of C3, C3–C4 intermediate and C4 species in the genera Moricandia, Panicum, Flaveria and Mollugo. In the C3 species Moricandia foleyi and Panicum laxum, glycine decarboxylase was present in the mitochondria of both mesophyll and bundle-sheath cells. However, in all the C3–C4 intermediate (M. arvensis var. garamatum, M. nitens, M. sinaica, M. spinosa, M. suffruticosa, P. milioides, Flaveria floridana, F. linearis, Mollugo verticillata) and C4 (P. prionitis, F. trinervia) species studied glycine decarboxylase was present in the mitochondria of only the bundle-sheath cells. The bundle-sheath cells of all the C3–C4 intermediate species have on their centripetal faces numerous mitochondria which are larger in profile area than those in mesophyll cells and are in close association with chloroplasts and peroxisomes. Confinement of glycine decarboxylase to the bundle-sheath cells is likely to improve the potential for recapture of photorespired CO2 via the Calvin cycle and could account for the low rate of photorespiration in all C3–C4 intermediate species.Abbreviation and symbol kDa kilodaltons - CO2 compensation point  相似文献   

7.
The cell-specific distribution of the four subunit proteins (P, L, T and H) of glycine decarboxylase (GDC) and of serine hydroxymethyltransferase (SHMT) has been studied in the leaves of C3-C4 intermediate and C4 species of three genera (Flaveria, Moricandia and Panicum) using immunogold localization. Antibodies raised against these proteins from pea leaf mitochondria were used to probe Western blots of total leaf proteins of F. linearis Lag., M. arvensis (L.) DC and P. milioides Nees ex Trin. (C3-C4), and F. trinervia (Spring.) Mohr and P. miliaceum (L.) (C4). For all species, each antibody recognised specifically a protein of similar molecular weight to that in pea leaves. In leaves of M. arvensis the P protein was present in the mitochondria of the bundle-sheath cells but was undetectable in those of the mesophyll, whereas the L, T and H proteins and SHMT were present in both cell types. The density of immunogold labelling of SHMT on the mitochondria of mesophyll cells was less than that on those of the bundle-sheath cells, which correlates with the relative activities of SHMT in these cell types. These data reveal that the lack of functional GDC in the mesophyll cells of M. arvensis, which is the principal biochemical reason for reduced photorespiration in this species, is due to the loss of a single subunit protein. This lack of coordinate expression of the subunit proteins of GDC within a photosynthetic cell represents a clear difference between M. arvensis and other C3 and C3-C4 species. None of the GDC proteins was detectable in the mesophyll cells of the C3-C4 and C4 Flaveria and Panicum species but all were present in the bundle-sheath cells. The differences in the distribution of the GDC proteins in leaves of the C3-C4 species studied are discussed in relation to the evolution of photosynthetic mechanisms.  相似文献   

8.
In order to study the location of enzymes of photorespiration in leaves of the C3–C4 intermediate species Moricandia arvensis (L.). DC, protoplast fractions enriched in mesophyll or bundlesheath cells have been prepared by a combination of mechanical and enzymic techniques. The activities of the mitochondrial enzymes fumarase (EC 4.2.1.2) and glycine decarboxylase (EC 2.1.2.10) were enriched by 3.0- and 7.5-fold, respectively, in the bundle-sheath relative to the mesophyll fraction. Enrichment of fumarase is consistent with the larger number of mitochondria in bundle-sheath cells relative to mesophyll cells. The greater enrichment of glycine decarboxylase indicates that the activity is considerably higher on a mitochondrial basis in bundle-sheath than in mesophyll cells. Serine hydroxymethyltransferase (EC 2.1.2.1) activity was enriched by 5.3-fold and glutamate-dependent glyoxylate-aminotransferase (EC 2.6.1.4) activity by 2.6-fold in the bundle-sheath relative to the mesophyll fraction. Activities of serine- and alanine-dependent glyoxylate aminotransferase (EC 2.6.1.45 and EC 2.6.1.4), glycollate oxidase (EC 1.1.3.1), hydroxypyruvate reductase (EC 1.1.1.81), glutamine synthetase (EC 6.3.1.2) and phosphoribulokinase (EC 2.7.1.19) were not significantly different in the two fractions. These data provide further independent evidence to complement earlier immunocytochemical studies of the distribution of photorespiratory enzymes in the leaves of this species, and indicate that while mesophyll cells of M. arvensis have the capacity to synthesize glycine during photorespiration, they have only a low capacity to metabolize it. We suggest that glycine produced by photorespiratory metabolism in the mesophyll is decarboxylated predominantly by the mitochondria in the bundle sheath.Abbreviation RuBP ribulose 1,5-bisphosphate  相似文献   

9.
The in-situ inter- and intracellular localization patterns of phosphoenolpyruvate (PEP) and ribulose 1,5-bisphosphate (RuBP) carboxylases in green leaves of severalPanicum species were investigated using an indirect immunofluorescence technique. Four species were examined and compared:P. miliaceum (C4),P. bisulcatum (C3), andP. decipiens andP. milioides (C3–C4 intermediates which have Kranz-like leaf anatomy and reduced photorespiration). In the C4 Panicum, PEP carboxylase was located in the cytosol of the mesophyll cells and RuBP carboxylase was restricted to the bundle-sheath chloroplasts. In contrast, in the C3 Panicum species, PEP carboxylase was found throughout the leaf chlorenchyma, in both the cytosol and chloroplasts, and RuBP carboxylase was located in the chloroplasts. For the C3–C4 intermediate plants, the patterns depended on the species examined. ForP. decipiens, the in-situ localization of both carboxylases was similar to that described forP. bisulcatum and other C3 plants. However, inP. milioides, PEP carboxylase was found exclusively in the cytosol of the mesophyll cells, as inP. miliaceum and other C4 species, whereas RuBP carboxylase was distributed in both the mesophyll and bundle-sheath chloroplasts.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose 1,5-bisphosphate  相似文献   

10.
Susanne von Caemmerer 《Planta》1989,178(4):463-474
A model of leaf, photosynthesis has been developed for C3–C4 intermediate species found in the generaPanicum, Moricandia, Parthenium andMollugo where no functional C4 pathway has been identified. Model assumptions are a functional C3 cycle in both mesophyll and bundle-sheath cells and that glycine formed in the mesophyll, as a consequence of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco, EC 4.1.1.39), diffuses to the bundle sheath, where most of the photorespiratory CO2 is released. The model describes the observed gas-exchange characteristics of these C3–C4 intermediates, such as low CO2-compensation points () at an O2 pressure of 200 mbar, a curvilinear response of to changing O2 pressures, and typical responses of CO2-assimilation rate to intercellular CO2 pressure. The model predicts that bundle-sheath CO2 concentration is highest at low mesophyll CO2 pressures and decreases as mesophyll CO2 pressure increases. A partitioning of 5–15% of the total leaf Rubisco into the bundle-sheath cells and a bundlesheath conductance similar to that proposed for C4 species best mimics the gas-exchange results. The model predicts C3-like carbon-isotope discrimination for photosynthesis at atmospheric levels of CO2, but at low CO2 pressures it predicts a higher discrimination than is typically found during C3 photosynthesis at lower CO2 pressures.Abbreviations and symbols PEP phosphoenolpyruvate - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39) - RuBP ribulose-1,5-bisphosphate - p(CO2) partial pressure of CO2 - p(O2) partial pressure of O2. See also p. 471  相似文献   

11.
C4-acid metabolism by isolated bundlesheath chloroplasts, mitochondria and strands of Eriochloa borumensis Hack., a phosphoennolpyruvate-carboxykinase (PEP-CK) species, was investigated. Aspartate, oxaloacetate (OAA) and malate were decarboxylated by strands with several-fold stimulation upon illumination. There was strictly light-dependent decarboxylation of OAA and malate by the chloroplasts, but the chloroplasts did not decarboxylate aspartate in light or dark. PEP was a primary product of OAA or malate decarboxylation by the chloroplasts and its formation was inhibited by 3-(3,4-dichlorophenyl)-1, 1-dimethylurea or NH4Cl. There was very little conversion of PEP to pyruvate by bundle-sheath chloroplasts, mitochondria or strands. Decarboxylation of the three C4-acids by mitochondria was light-independent. Pyruvate was the only product of mitochondrial metabolism of C4-acids, and was apparently transaminated in the cytoplasm since PEP and alanine were primarily exported out of the bundle-sheath strands. Light-dependent C4-acid decarboxylation by the chloroplasts is suggested to be through the PEP-CK, while the mitochondrial C4-acid decarboxylation may proceed through the NAD-malic enzyme (NAD-ME) system. In vivo both aspartate and malate are considered as transport metobolites from mesophyll to bundle-sheath cells in PEP-CK species. Aspartate would be metabolized by the mitochondria to OAA. Part of the OAA may be converted to malate and decarboxylated through NAD-ME, and part may be transported to the chloroplasts for decarboxylation through PEP-CK localized in the chloroplasts. Malate transported from mesophyll cells may serve as carboxyl donor to chloroplasts through the chloroplastic NAD-malate dehydrogenase and PEP-CK. Bundle-sheath strands and chloroplasts fixed 14CO2 at high rates and exhibited C4-acid-dependent O2 evolution in the light. Studies with 3-mercaptopicolinic acid, a specific inhibitor of PEP-CK, have indicated that most (about 70%) of the OAA formed from aspartate is decarboxylated through the chloroplastic PEP-CK and the remaining (about 30%) OAA through the mitochondrial NAD-ME. Pyruvate stimulation of aspartate decarboxylation is discussed; a pyruvate-alanine shuttle and an aspartate-alanine shuttle are proposed between the mesophyll and bundle-sheath cells during aspartate decarboxylation through the PEP-CK and NAD-ME system respectively.Abbreviations CK carboxykinase - -Kg -ketoglutarate - ME malic enzyme - 3-MPA 3-mercaptopicolinic acid - OAA oxaloacetate - PEP phosphoenolpyruvate - R5P ribose-5-phosphate  相似文献   

12.
13.
 An intergeneric hybrid plant was produced between the C3-C4 intermediate species Moricandia nitens and the C3 species Brassica napus by sexual hybridization and in vitro embryo rescue. The hybrid nature of the plant was apparent in its morphology and flower pigmentation and was confirmed by leaf isozyme patterns. The overall plant morphology and the shape and thickness of leaves of the hybrid plant were intermediate between those of the parent species. However, the bundle-sheath cells of the hybrid resembled those of the C3 parent and lacked the organelle development of the C3-C4 intermediate parent. Immunogold labelling for the presence of the P subunit of the mitochondrial glycine decarboxylase complex revealed a very similar labelling density on mitochondria in bundle-sheath and mesophyll cells in B. napus, while in  M. nitens the P subunit was only detectable in bundle sheath cells. In the hybrid the labelling density on mesophyll cell mitochondria was almost half of that on the bundle-sheath mitochondria. The CO2 compensation point of the hybrid was significantly less than that of the C3 parent but was not as low, nor as responsive to changes in light intensity, as for the C3-C4 parent. Received: 23 October 1997 / Accepted: 28 November 1997  相似文献   

14.
15.
Richard C. Leegood 《Planta》1985,164(2):163-171
Sap extracted from attached leaves of two-to three-week-old maize plants witt the aid of a roller device was almost devoid of bundle-sheath contamination as judged by the distribution of mesophyll and bundle-sheath markers. The extraction could be done very rapidly (less than 1 s) and the extract immediately quenched in HClO4 or reserved for enzyme assay. Comparison of the contents of metabolites in intact leaves and in the leaf extract allowed estimation of the distribution of metabolites between the bundle-sheath and the mesophyll compartments. Substantial amounts of metabolites such as malate and amino acids were present in the non-photosynthetic cells of the midrib. In the illuminated leaf, triose phosphate was predominantly located outside the bundle-sheath while the major part of the 3-phosphoglycerate was in the bundle sheath. The results indicate the existence of concentration gradients of triose phosphate and 3-phosphoglycerate in the leaf which are capable of maintaining carbon flow between the mesophyll and bundle-sheath cells during photosynthesis. There was no evidence for the existence of a gradient of pyruvate between the bundle-sheath and the mesophyll cells.  相似文献   

16.
Light activation of either NADP-malate dehydrogenase (EC 1.1.1.82) or fructose-1,6-bisphosphate phosphatase (EC 3.1.3.11) was assayed in a reconstituted chloroplastic, system comprising the isolated proteins of the ferredoxin-thioredoxin light-activation system and thylakoids from either mesophyll or bundle-sheath tissues of different C4 plants. While C4-plant thylakoids functionned almost equally well with C3-or C4-plant proteins, the photosyntem-II-deficient bundle-sheath thylakoids from the NADP-malic enzyme type, were unable to perform enzyme photoactivation unless supplemented with an electron donor to photosystem I. Bundle-sheath thylakoids isolated from plants showing no photosystem-II deficiency did not require such an addition. The results are discussed with respect to a possible requirement for a physiological reductant of ferredoxin for enzyme light activation in bundle-sheath, tissues.Abbreviations Chl chlorophyll - DCMU 3-(3, 4-dichlorophenyl)-1,1-dimethylurea - DPIP dichlorophenolindophenol - FBPase fructose-1,6-bisphosphatase - FTR ferredoxin-thioredoxin reductase - NADP-MDH NADP-dependent malate dehydrogenase - PSI, II photosystems I, II  相似文献   

17.
Two isoenzymes each of glucosephosphate isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.43) were separated by (NH4)2SO4 gradient solubilization and DEAE-cellulose ion-exchange chromatography from green leaves of the C3-plants spinach (Spinacia oleracea L.), tobacco (Nicotiana tabacum L.) and wheat (Triticum aestivum L.), of the Crassulacean-acid-metabolism plants Crassula lycopodioides Lam., Bryophyllum calycinum Salisb. and Sedum rubrotinctum R.T. Clausen, and from the green algae Chlorella vulgaris and Chlamydomonas reinhardii. After isolation of cell organelles from spinach leaves by isopyenic centrifugation in sucrose gradients one of two isoenzymes of each of the four enzymes was found to be associated with whole chloroplasts while the other was restricted to the soluble cell fraction, implying the same intracellular distribution of these isoenzymes also in the other species.Among C4-plants, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in only one form in corn (Zea mays L.), sugar cane (Saccharum officinarum L.) and Coix lacrymajobi L., but as two isoenzymes in Atriplex spongiosa L. and Portulaca oleracea L. In corn, the two dehydrogenases were mainly associated with isolated mesophyll protoplasts while in Atriplex spongiosa they were of similar specific activity in both mesophyll protoplasts and bundle-sheath strands. In all five C4-plants three isoenzymes of glucosephosphate isomerase and phosphoglucomutase were found. In corn two were localized in the bundle-sheath strands and the third one in the mesophyll protoplasts. The amount of activity of the enzymes was similar in each of the two cell fractions. Apparently, C4 plants have isoenzymes not only in two cell compartments, but also in physiologically closely linked cell types such as mesophyll and bundle-sheath cells. New address: Institut für Pflanzenphyiologie und Zellbiologie, Freie Universität Berlin, Königin-Luise-Straße 12-16a, D-1000 Berlin 33  相似文献   

18.
Abstract Evidence is drawn from previous studies to argue that C3—C4 intermediate plants are evolutionary intermediates, evolving from fully-expressed C3 plants towards fully-expressed C4 plants. On the basis of this conclusion, C3—C4 intermediates are examined to elucidate possible patterns that have been followed during the evolution of C4 photosynthesis. An hypothesis is proposed that the initial step in C4-evolution was the development of bundle-sheath metabolism that reduced apparent photorespiration by an efficient recycling of CO2 using RuBP carboxylase. The CO2-recycling mechanism appears to involve the differential compartmentation of glycine decarboxylase between mesophyll and bundle-sheath cells, such that most of the activity is in the bundlesheath cells. Subsequently, elevated phosphoenolpyruvate (PEP) carboxylase activities are proposed to have evolved as a means of enhancing the recycling of photorespired CO2. As the activity of PEP carboxylase increased to higher values, other enzymes in the C4-pathway are proposed to have increased in activity to facilitate the processing of the products of C4-assimilation and provide PEP substrate to PEP carboxylase with greater efficiency. Initially, such a ‘C4-cycle’ would not have been differentially compartmentalized between mesophyll and bundlesheath cells as is typical of fully-expressed C4 plants. Such metabolism would have limited benefit in terms of concentrating CO2 at RuBP carboxylase and, therefore, also be of little benefit for improving water- and nitrogen-use efficiencies. However, the development of such a limited C4-cycle would have represented a preadaptation capable of evolving into the leaf biochemistry typical of fully-expressed C4 plants. Thus, during the initial stages of C4-evolution it is proposed that improvements in photorespiratory CO2-loss and their influence on increasing the rate of net CO2 assimilation per unit leaf area represented the evolutionary ‘driving-force’. Improved resourceuse efficiency resulting from an efficient CO2-concentrating mechanism is proposed as the driving force during the later stages.  相似文献   

19.
Cellular anatomy and expression of glycine decarboxylase (GDC) protein were studied during leaf development of the C3-C4 intermediate species Moricandia arvensis. Leaf anatomy was initially C3-like and the number and profile area of mitochondria in the bundle-sheath cells were the same as those in adjacent mesophyll cells. Between a leaf length of 6 and 12 mm there was a bundle-sheath-specific, 4-fold increase in the number of mitochondrial profiles, followed by a doubling of their individual profile areas as the leaves expanded further. Subunits of GDC were present in whole-leaf extracts before the anatomical development of bundle-sheath cells. Whereas the GDC H-protein content of leaves increased steadily throughout development, the increase in GDC P-protein was synchronous with the development of mitochondria in the bundle sheath. The P-protein was confined to bundle-sheath mitochondria throughout leaf development, and its content in individual mitochondria increased before the anatomical development of the bundle sheath. Anatomical and biochemical attributes of the C3-C4 character were present in the cotyledons and sepals but not in other photosynthetic organs/tissues. In leaves and cotyledons that developed in the dark, the expression of the P-protein and the organellar development were reduced but the bundle-sheath cell specificity was retained.  相似文献   

20.
The intracellular localization of phosphoenolpyruvate (PEP) carboxylase in plants belonging to the C4, Crassulacean acid metabolism (CAM) and C3 types was invetigated using an immunocytochemical method with an immune serum raised against the sorghum leaf enzyme. The plants studied were sorghum, maize (C4 type), kalanchoe (CAM type), french bean, and spinach (C3 type). In the green leaves of C4 plants, it was shown that the carboxylase was located in the mesophyll and stomatic cells, being largely cytosolic in the mesophyll cells. Similarly, in CAM plants, the enzyme was found mainly outside the chloroplasts. In contrast, in C3 plants, the PEP carboxylase appeared to be distributed between the cytosol and the chloroplasts of foliar parenchyma. Examination of sections from etiolated leaves showed fluorescence emission from etioplasts and cytosol for the parenchyma of french bean as well as for the bundle sheath and mesophyll of sorghum leaves. This data indicated that during the greening process photoregulation and evolution of PEP carboxylase is dependent on the tissue and on the metabolic type of the plant considered.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号