首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simone Fulda 《Mitochondrion》2013,13(3):195-198
Most anticancer therapies exert their action by triggering programmed cell death (apoptosis) in cancer cells. The mitochondrial pathway of apoptosis is initiated by mitochondrial outer membrane permeabilization, leading to the release of apoptogenic factors such as cytochrome c or Smac from the mitochondrial intermembrane space into the cytosol. Mitochondrial outer membrane permeabilization is tightly controlled, for example by pro- and anti-apoptotic proteins of the Bcl-2 family. Recent evidence indicates that inhibition of the PI3K/Akt/mTOR pathway by small-molecule PI3K inhibitors primes cancer cells to mitochondrial apoptosis by tipping the balance towards pro-apoptotic Bcl-2 proteins, resulting in increased mitochondrial outer membrane permeabilization. Thus, mitochondrial apoptotic events play an important role in PI3K inhibitor-mediated sensitization for apoptosis.  相似文献   

2.
In many apoptotic responses, pro-apoptotic members of the Bcl-2 family trigger the permeabilization of the outer mitochondrial membrane, thereby allowing the release of mitochondrial apoptogenic factors that contribute to caspase activation in the cytosol. The mechanisms that lead to the activation of pro-apoptotic Bcl-2 family members and to the permeabilization of the outer mitochondrial membrane are not yet completely understood. Here, we attempt to summarize our current view of the mechanisms that lead to these events, regarding both additional proteins that were recently suggested to be involved, and the roles of lipids.  相似文献   

3.
Mitochondrial outer membrane permeabilization (MOMP) is a critical step in apoptosis and is regulated by Bcl-2 family proteins. In vitro systems using cardiolipin-containing liposomes have demonstrated the key features of MOMP induced by Bax and cleaved Bid; however, the nature of the “pores” and how they are formed remain obscure. We found that mitochondrial outer membranes contained very little cardiolipin, far less than that required for liposome permeabilization, despite their responsiveness to Bcl-2 family proteins. Strikingly, the incorporation of isolated mitochondrial outer membrane (MOM) proteins into liposomes lacking cardiolipin conferred responsiveness to cleaved Bid and Bax. Cardiolipin dependence was observed only when permeabilization was induced with cleaved Bid but not with Bid or Bim BH3 peptide or oligomerized Bax. Therefore, we conclude that MOM proteins specifically assist cleaved Bid in Bax-mediated permeabilization. Cryoelectron microscopy of cardiolipin-liposomes revealed that cleaved Bid and Bax produced large round holes with diameters of 25–100 nm, suggestive of lipidic pores. In sum, we propose that activated Bax induces lipidic pore formation and that MOM proteins assist cleaved Bid in this process in the absence of cardiolipin.  相似文献   

4.
Radiation-induced tumor cells death is the theoretical basis of tumor radiotherapy. Death signaling disorder is the most important factor for radioresistance. However, the signaling pathway(s) leading to radiation-triggered cell death is (are) still not completely known. To better understand the cell death signaling induced by radiation, the immortalized mouse embryonic fibroblast (MEF) deficient in “initiator” caspases, “effector” caspases or different Bcl-2 family proteins together with human colon carcinoma cell HCT116 were used. Our data indicated that radiation selectively induced the activation of caspase-9 and caspase-3/7 but not caspase-8 by triggering mitochondrial outer membrane permeabilization (MOMP). Importantly, the role of radiation in MOMP is independent of the activation of both “initiator” and “effector” caspases. Furthermore, both proapoptotic and antiapoptotic Bcl-2 family proteins were involved in radiation-induced apoptotic signaling. Overall, our study indicated that radiation specifically triggered the intrinsic apoptotic signaling pathway through Bcl-2 family protein-dependent mitochondrial permeabilization, which indicates targeting mitochondria is a promising strategy for cancer radiotherapy.  相似文献   

5.
Apoptosis: mitochondrial membrane permeabilization--the (w)hole story?   总被引:7,自引:0,他引:7  
One critical step of apoptosis is the release of mitochondrial proteins through the outer mitochondrial membrane. Recent work shows that two pro-apoptotic Bcl-2 family proteins, Bax and Bid, as well as the mitochondrion-specific lipid cardiolipin may cooperate in chemically defined liposomes to generate a protein-permeable conduit, relaunching the debate on the identity of the pore responsible for mitochondrial membrane permeabilization during apoptosis.  相似文献   

6.
Programmed cell death or apoptosis is central to many physiological processes and pathological conditions such as organogenesis, tissue homeostasis, cancer, and neurodegenerative diseases. Bcl-2 family proteins tightly control this cell death program by regulating the permeabilization of the mitochondrial outer membrane and, hence, the release of cytochrome c and other pro-apoptotic factors. Control of the formation of the mitochondrial apoptosis-induced channel, or MAC, is central to the regulation of apoptosis by Bcl-2 family proteins. MAC is detected early in apoptosis by patch clamping the mitochondrial outer membrane. The focus of this review is on the regulation of MAC activity by Bcl-2 family proteins. The role of MAC as the putative cytochrome c release channel during early apoptosis and insights concerning its molecular composition are also discussed.  相似文献   

7.
Interactions between individual members of the B-cell lymphoma 2 (Bcl-2) family of proteins form a regulatory network governing mitochondrial outer membrane permeabilization (MOMP). Bcl-2 family initiated MOMP causes release of the inter-membrane pro-apoptotic proteins to cytosol and creates a cytosolic environment suitable for the executionary phase of apoptosis. We designed the mathematical model of this regulatory network where the synthesis rates of the Bcl-2 family members served as the independent inputs. Using computational simulations, we have then analyzed the response of the model to up-/downregulation of the Bcl-2 proteins. Under several assumptions, and using estimated reaction parameters, a non-linear stimulus-response emerged, whose characteristics are associated with bistability and switch-like behavior. Interestingly, using the principal component analysis (PCA) we have shown that the given model of the Bcl-2 family interactions classifies the random combinations of inputs into two distinct classes, and responds to these by one of the two qualitatively distinct outputs. As we showed, the emergence of this behavior requires specific organization of the interactions between particular Bcl-2 proteins.  相似文献   

8.
The Bcl-2 family of proteins is formed by pro- and antiapoptotic members. Together they regulate the permeabilization of the mitochondrial outer membrane, a key step in apoptosis. Their complex network of interactions both in the cytosol and on mitochondria determines the fate of the cell. In the past 2 decades, the members of the family have been identified and classified according to their function. Several competing models have been proposed to explain how the Blc-2 proteins orchestrate apoptosis signaling. However, basic aspects of the action of these proteins remain elusive. This review is focused on the biophysical mechanisms that are relevant for their action in apoptosis and on the challenging gaps in our knowledge that necessitate further exploration to finally understand how the Bcl-2 family regulates apoptosis.  相似文献   

9.
Bcl-2 family proteins regulate the release of proteins like cytochrome c from mitochondria during apoptosis. We used cell-free systems and ultimately a vesicular reconstitution from defined molecules to show that outer membrane permeabilization by Bcl-2 family proteins requires neither the mitochondrial matrix, the inner membrane, nor other proteins. Bid, or its BH3-domain peptide, activated monomeric Bax to produce membrane openings that allowed the passage of very large (2 megadalton) dextran molecules, explaining the translocation of large mitochondrial proteins during apoptosis. This process required cardiolipin and was inhibited by antiapoptotic Bcl-x(L). We conclude that mitochondrial protein release in apoptosis can be mediated by supramolecular openings in the outer mitochondrial membrane, promoted by BH3/Bax/lipid interaction and directly inhibited by Bcl-x(L).  相似文献   

10.
Intrinsic apoptosis in mammals is regulated by protein–protein interactions among the B-cell lymphoma-2 (Bcl-2) family. The sequences, structures and binding specificity between pro-survival Bcl-2 proteins and their pro-apoptotic Bcl-2 homology 3 motif only (BH3-only) protein antagonists are now well understood. In contrast, our understanding of the mode of action of Bax and Bak, the two necessary proteins for apoptosis is incomplete. Bax and Bak are isostructural with pro-survival Bcl-2 proteins and also interact with BH3-only proteins, albeit weakly. Two sites have been identified; the in-groove interaction analogous to the pro-survival BH3-only interaction and a site on the opposite molecular face. Interaction of Bax or Bak with activator BH3-only proteins and mitochondrial membranes triggers a series of ill-defined conformational changes initiating their oligomerization and mitochondrial outer membrane permeabilization. Many actions of the mammalian pro-survival Bcl-2 family are mimicked by viruses. By expressing proteins mimicking mammalian pro-survival Bcl-2 family proteins, viruses neutralize death-inducing members of the Bcl-2 family and evade host cell apoptosis during replication. Remarkably, structural elements are preserved in viral Bcl-2 proteins even though there is in many cases little discernible sequence conservation with their mammalian counterparts. Some viral Bcl-2 proteins are dimeric, but they have distinct structures to those observed for mammalian Bcl-2 proteins. Furthermore, viral Bcl-2 proteins modulate innate immune responses regulated by NF-κB through an interface separate from the canonical BH3-binding groove. Our increasing structural understanding of the viral Bcl-2 proteins is leading to new insights in the cellular Bcl-2 network by exploring potential alternate functional modes in the cellular context. We compare the cellular and viral Bcl-2 proteins and discuss how alterations in their structure, sequence and binding specificity lead to differences in behavior, and together with the intrinsic structural plasticity in the Bcl-2 fold enable exquisite control over critical cellular signaling pathways.  相似文献   

11.
Bcl-2 family members, like the structurally similar translocation domain of diphtheria toxin, can form ion-selective channels and larger-diameter pores in artificial lipid bilayers. Recent studies show how Bcl-2 family members change topology in membranes during apoptosis and that these different states may either promote or inhibit apoptosis. Binding of BH3-only proteins alters the subcellular localization and/or membrane topology and probably affects the channel formation of Bcl-2, Bcl-xL and Bcl-w. However, it remains unclear how the pore-forming activity functions in cells to regulate mitochondrial membrane permeabilization and cell death. Bcl-2 family members in flies and worms regulate apoptosis by mechanisms seemingly unrelated to membrane permeabilization, leaving a unifying model for the biochemical activity of this protein family unknown. Work linking Bcl-2 family members to mitochondrial morphogenesis in worms and mammals suggests some common functions of Bcl-2 family proteins may exist.  相似文献   

12.
Mitochondrial membrane permeabilisation by Bax/Bak   总被引:15,自引:0,他引:15  
Recent studies on cells derived from mice deficient in both multi-domain pro-apoptotic genes of the Bcl-2 family, Bax and Bak, suggest that one or other of these proteins are required for the release of apoptogens such as cytochrome c from mitochondria. In addition BH-3 only proteins of this family such as Bid are suggested to act as critical death inducing ligands via interactions with pro- and anti-apoptotic Bcl-2 family proteins with Bax or Bak at the mitochondrial surface. Despite this increase in knowledge it remains unclear precisely how Bak and Bax promote outer mitochondrial membrane (OMM) permeabilisation. We suggest that Bax and Bak may not operate in precisely the same manner and evaluate the current models for their function. We also consider the emerging information that lipid-protein interactions may be crucial to the actions of Bax and Bak.  相似文献   

13.
Bcl-2 family proteins regulate a critical step in apoptosis referred to as mitochondrial outer membrane permeabilization (MOMP). Members of a subgroup of the Bcl-2 family, known as the BH3-only proteins, activate pro-apoptotic effectors (Bax and Bak) to initiate MOMP. They do so by neutralizing pro-survival Bcl-2 proteins and/or directly activating Bax/Bak. Bim and Bid are reported to be direct activators; however, here we show that BH3 peptides other than Bim and Bid exhibited various degrees of direct activation of the effector Bax or Bak, including Bmf and Noxa BH3s. In the absence of potent direct activators, such as Bim and Bid, we unmasked novel direct activator BH3 ligands capable of inducing effector-mediated cytochrome c release and liposome permeabilization, even when both Bcl-xL- and Mcl-1-type anti-apoptotic proteins were inhibited. The ability of these weaker direct activator BH3 peptides to cause MOMP correlated with that of the corresponding full-length proteins to induce apoptosis in the absence of Bim and Bid. We propose that, in certain contexts, direct activation by BH3-only proteins other than Bim and Bid may significantly contribute to MOMP and apoptosis.  相似文献   

14.
A critical step in apoptosis is mitochondrial outer membrane permeabilization (MOMP), releasing proteins critical to downstream events. While the regulation of this process by Bcl-2 family proteins is known, the role of ceramide, which is known to be involved at the mitochondrial level, is not well-understood. Here, we demonstrate that Bax and ceramide induce MOMP synergistically. Experiments were performed on mitochondria isolated from both rat liver and yeast (lack mammalian apoptotic machinery) using both a protein release assay and real-time measurements of MOMP. The interaction between activated Bax and ceramide was also studied in a defined isolated system: planar phospholipid membranes. At concentrations where ceramide and activated Bax have little effects on their own, the combination induces substantial MOMP. Direct interaction between ceramide and activated Bax was demonstrated both by using yeast mitochondria and phospholipid membranes. The apparent affinity of activated Bax for ceramide increases with ceramide content indicating that activated Bax shows enhanced propensity to permeabilize in the presence of ceramide. An agent that inhibits ceramide-induced but not activated Bax induced permeabilization blocked the enhanced MOMP, suggesting that ceramide is the key permeabilizing entity, at least when ceramide is present. These and previous findings that anti-apoptotic proteins disassemble ceramide channels suggest that ceramide channels, regulated by Bcl-2-family proteins, may be responsible for the MOMP during apoptosis.  相似文献   

15.
The mitochondrial pathway of apoptosis proceeds when molecules sequestered between the outer and inner mitochondrial membranes are released to the cytosol by mitochondrial outer membrane permeabilization (MOMP). This process is controlled by the BCL-2 family, which is composed of both pro- and anti-apoptotic proteins. Although there is no disagreement that BCL-2 proteins regulate apoptosis, the mechanism leading to MOMP remains controversial. Current debate focuses on what interactions within the family are crucial to initiate MOMP. Specifically, do the BH3-only proteins directly engage BAX and/or BAK activation or do these proteins solely promote apoptosis by neutralization of anti-apoptotic BCL-2 proteins? We describe these models and contend that BH3-only proteins must perform both functions to efficiently engage MOMP and apoptosis.  相似文献   

16.
Mitochondrial membrane permeabilization: the sine qua non for cell death   总被引:13,自引:0,他引:13  
Mitochondria are essential for maintaining cell life but they also play a role in regulating cell death, which occurs when their membranes become permeabilized. Mitochondria possess two distinct membrane systems including an outer membrane in close communication with the cytosol and an inner membrane involved in energy transduction. Outer membrane permeabilization is regulated by Bcl-2 family proteins, which control the release of proteins from the mitochondrial intermembrane space; these proteins then activate apoptosis. Inner membrane permeabilization is regulated by the mitochondrial permeability transition (MPT), which is activated by calcium and oxidative stress and leads to bioenergetic failure and necrosis. The purpose of this review is to discuss the biochemical mechanisms regulating mitochondrial membrane permeabilization; this is crucial to our understanding of the role of cell death in diseases such as cancer and the neurodegenerative diseases.  相似文献   

17.
Apoptosis is a phenomenon fundamental to higher eukaryotes and essential to mechanisms controlling tissue homeostasis. Bcl-2 family proteins tightly control this cell death program by regulating the permeabilization of the mitochondrial outer membrane and, hence, the release of cytochrome c and other proapoptotic factors. Mitochondrial apoptosis-induced channel (MAC) is the mitochondrial apoptosis-induced channel and is responsible for cytochrome c release early in apoptosis. MAC activity is detected by patch clamping mitochondria at the time of cytochrome c release. The Bcl-2 family proteins regulate apoptosis by controlling the formation of MAC. Depending on cell type and apoptotic inducer, Bax and/or Bak are structural component(s) of MAC. Overexpression of the antiapoptotic protein Bcl-2 eliminates MAC activity. The focus of this review is a biophysical characterization of MAC activity and its regulation by Bcl-2 family proteins, and ends with some discussion of therapeutic targets.  相似文献   

18.
The role of ion channels in apoptosis   总被引:2,自引:0,他引:2  
The plasma membrane as well as the mitochondrial outer and inner membranes contain a number of ion channels that are responsible not only for existence of cells under physiological conditions but they also participate directly in apoptosis. In the apoptotic cells the activated K+, Cl- channels of plasma membrane control the cell volume and mediate the regulation of protease and nuclease activities. The mitochondrial channels are involved in the ionic movements and leakage of apoptogenic factors from the intermembrane space to cytosol. During apoptosis, an important role in the permeabilization of the outer mitochondrial membrane play Bcl-2 family proteins. In this review the recent findings on the function of ion channels in apoptotic cells and the role played by Bcl-2 proteins in the control of apoptosis are discussed.  相似文献   

19.
Bcl-2 family proteins are known to control cell death and influence mitochondrial function. The function of Mcl-1, an anti-apoptotic Bcl-2 protein, is now shown to depend on its subcellular localization. Mcl-1 at the mitochondrial outer membrane inhibits mitochondrial permeabilization to block apoptosis. However, a cleaved form of Mcl-1 localizes to the mitochondrial matrix and controls inner mitochondrial morphology and oxidative phosphorylation, without directly modulating apoptosis.  相似文献   

20.
线粒体在能量代谢、自由基产生、衰老、细胞凋亡中起重要作用。线粒体的基因突变,呼吸链缺陷,线粒体膜的改变等因素均会影响整个细胞的正常功能,从而导致病变。凋亡发生时,线粒体通透性转换孔开放,使得线粒体膜电位降低,呼吸链电子传递障碍,细胞ATP合成障碍,生成大量活性氧簇,线粒体发生水肿,线粒体外膜破裂,膜间隙释放大量促凋亡因子如细胞色素C。Bcl-2家族对线粒体的功能有调控作用,介导细胞色素C的释放,Caspase酶原的激活等。病毒性肝炎、酒精性肝病,梗阻性黄疸、肝癌、毒素和药物介导的肝损伤等疾病中都伴随着肝细胞凋亡的发生,目前保肝药物对肝细胞线粒体功能的保护机制主要体现在稳定线粒体膜功能,减轻氧化损伤等方面,针对临床疾病的治疗有很好的指导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号