首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variation in vertebral formulae within and among hominoid species has complicated our understanding of hominoid vertebral evolution. Here, variation is quantified using diversity and similarity indices derived from population genetics. These indices allow for testing models of hominoid vertebral evolution that call for disparate amounts of homoplasy, and by inference, different patterns of evolution. Results are interpreted in light of "short-backed" (J Exp Zool (Mol Dev Evol) 302B:241-267) and "long-backed" (J Exp Zool (Mol Dev Evol) 314B:123-134) ancestries proposed in different models of hominin vertebral evolution. Under the long-back model, we should expect reduced variation in vertebral formulae associated with adaptively driven homoplasy (independently and repeatedly reduced lumbar regions) and the relatively strong directional selection presumably associated with it, especially in closely related taxa that diverged relatively recently (e.g., Pan troglodytes and Pan paniscus). Instead, high amounts of intraspecific variation are observed among all hominoids except humans and eastern gorillas, taxa that have likely experienced strong stabilizing selection on vertebral formulae associated with locomotor and habitat specializations. Furthermore, analyses of interspecific similarity support an evolutionary scenario in which the vertebral formulae observed in western gorillas and chimpanzees represent a reasonable approximation of the ancestral condition for great apes and humans, from which eastern gorillas, humans, and bonobos derived their unique vertebral profiles. Therefore, these results support the short-back model and are compatible with a scenario of homology of reduced lumbar regions in hominoid primates. Fossil hominin vertebral columns are discussed and shown to support, rather than contradict, the short-back model.  相似文献   

2.
Hominoid cranial evolution is characterized by substantial phenotypic diversity, yet the cause of this variability has rarely been explored. Quantitative genetic techniques for investigating evolutionary processes underlying morphological divergence are dependent on the availability of good ancestral models, a problem in hominoids where the fossil record is fragmentary and poorly understood. Here, we use a maximum likelihood approach based on a Brownian motion model of evolutionary change to estimate nested hypothetical ancestral forms from 15 extant hominoid taxa. These ancestors were then used to calculate rates of evolution along each branch of a phylogenetic tree using Lande's generalized genetic distance. Our results show that hominoid cranial evolution is characterized by strong stabilizing selection. Only two instances of directional selection were detected; the divergence of Homo from its last common ancestor with Pan, and the divergence of the lesser apes from their last common ancestor with the great apes. In these two cases, selection gradients reconstructed to identify the specific traits undergoing selection indicated that selection on basicranial flexion, cranial vault expansion, and facial retraction characterizes the divergence of Homo, whereas the divergence of the lesser apes was defined by selection on neurocranial size reduction.  相似文献   

3.
Diversification on an ecologically constrained adaptive landscape   总被引:3,自引:2,他引:1  
We used phylogenetic analysis of body-size ecomorphs in a crustacean species complex to gain insight into how spatial complexity of ecological processes generates and maintains biological diversity. Studies of geographically widespread species of Hyalella amphipods show that phenotypic evolution is tightly constrained in a manner consistent with adaptive responses to alternative predation regimes. A molecular phylogeny indicates that evolution of Hyalella ecomorphs is characterized by parallel evolution and by phenotypic stasis despite substantial levels of underlying molecular change. The phylogeny suggests that species diversification sometimes occurs by niche shifts, and sometimes occurs without a change in niche. Moreover, diversification in the Hyalella ecomorphs has involved the repeated evolution of similar phenotypic forms that exist in similar ecological settings, a hallmark of adaptive evolution. The evolutionary stasis observed in clades separated by substantial genetic divergence, but existing in similar habitats, is also suggestive of stabilizing natural selection acting to constrain phenotypic evolution within narrow bounds. We interpret the observed decoupling of genetic and phenotypic diversification in terms of adaptive radiation on an ecologically constrained adaptive landscape, and suggest that ecological constraints, perhaps acting together with genetic and functional constraints, may explain the parallel evolution and evolutionary stasis inferred by the phylogeny.  相似文献   

4.
The evolutionary history of the living hominoids has remained elusive despite years of exploration and the discovery of numerous Miocene fossil ape species. Part of the difficulty can be attributed to the changing nature of our views about the course of hominoid evolution. In the 1950s and 1960s, individual Miocene taxa were commonly viewed as the direct ancestors of specific living ape species, suggesting an early divergence of the modern lineages.1–5 However, in most cases, the Miocene forms were essentially “dental apes,” resembling extant species in dental and a few cranial features, but possessing more primitive postcranial features that suggested arboreal quadrupedalism rather than suspensory habits. With the introduction of molecular methods of phylogenetic reconstruction and the increasing use of cladistic analysis, it has become apparent that the radiation leading to the modern hominoids was somewhat more recent than had been believed, and that most of the Miocene hominoid species had little to do with the evolutionary history of the living apes. © 1998 Wiley-Liss, Inc.  相似文献   

5.

Background

Acquisition of bipedality is a hallmark of human evolution. How bipedality evolved from great ape-like locomotor behaviors, however, is still highly debated. This is mainly because it is difficult to infer locomotor function, and even more so locomotor kinematics, from fossil hominin long bones. Structure-function relationships are complex, as long bone morphology reflects phyletic history, developmental programs, and loading history during an individual’s lifetime. Here we discriminate between these factors by investigating the morphology of long bones in fetal and neonate great apes and humans, before the onset of locomotion.

Methodology/Principal Findings

Comparative morphometric analysis of the femoral diaphysis indicates that its morphology reflects phyletic relationships between hominoid taxa to a greater extent than taxon-specific locomotor adaptations. Diaphyseal morphology in humans and chimpanzees exhibits several shared-derived features, despite substantial differences in locomotor adaptations. Orangutan and gorilla morphologies are largely similar, and likely represent the primitive hominoid state.

Conclusions/Significance

These findings are compatible with two possible evolutionary scenarios. Diaphyseal morphology may reflect retained adaptive traits of ancestral taxa, hence human-chimpanzee shared-derived features may be indicative of the locomotor behavior of our last common ancestor. Alternatively, diaphyseal morphology might reflect evolution by genetic drift (neutral evolution) rather than selection, and might thus be more informative about phyletic relationships between taxa than about locomotor adaptations. Both scenarios are consistent with the hypothesis that knuckle-walking in chimpanzees and gorillas resulted from convergent evolution, and that the evolution of human bipedality is unrelated to extant great ape locomotor specializations.  相似文献   

6.
Extreme environments are closely associated with phenotypic evolution, yet the mechanisms behind this relationship are poorly understood. Several themes and approaches in recent studies significantly further our understanding of the importance that stress-induced variation plays in evolution. First, stressful environments modify (and often reduce) the integration of neuroendocrinological, morphological and behavioural regulatory systems. Second, such reduced integration and subsequent accommodation of stress-induced variation by developmental systems enables organismal 'memory' of a stressful event as well as phenotypic and genetic assimilation of the response to a stressor. Third, in complex functional systems, a stress-induced increase in phenotypic and genetic variance is often directional, channelled by existing ontogenetic pathways. This accounts for similarity among individuals in stress-induced changes and thus significantly facilitates the rate of adaptive evolution. Fourth, accumulation of phenotypically neutral genetic variation might be a common property of locally adapted and complex organismal systems, and extreme environments facilitate the phenotypic expression of this variance. Finally, stress-induced effects and stress-resistance strategies often persist for several generations through maternal, ecological and cultural inheritance. These transgenerational effects, along with both the complexity of developmental systems and stressor recurrence, might facilitate genetic assimilation of stress-induced effects. Accumulation of phenotypically neutral genetic variance by developmental systems and phenotypic accommodation of stress-induced effects, together with the inheritance of stress-induced modifications, ensure the evolutionary persistence of stress-response strategies and provide a link between individual adaptability and evolutionary adaptation.  相似文献   

7.
8.
Wood TE  Burke JM  Rieseberg LH 《Genetica》2005,123(1-2):157-170
Until recently, parallel genotypic adaptation was considered unlikely because phenotypic differences were thought to be controlled by many genes. There is increasing evidence, however, that phenotypic variation sometimes has a simple genetic basis and that parallel adaptation at the genotypic level may be more frequent than previously believed. Here, we review evidence for parallel genotypic adaptation derived from a survey of the experimental evolution, phylogenetic, and quantitative genetic literature. The most convincing evidence of parallel genotypic adaptation comes from artificial selection experiments involving microbial populations. In some experiments, up to half of the nucleotide substitutions found in independent lineages under uniform selection are the same. Phylogenetic studies provide a means for studying parallel genotypic adaptation in non-experimental systems, but conclusive evidence may be difficult to obtain because homoplasy can arise for other reasons. Nonetheless, phylogenetic approaches have provided evidence of parallel genotypic adaptation across all taxonomic levels, not just microbes. Quantitative genetic approaches also suggest parallel genotypic evolution across both closely and distantly related taxa, but it is important to note that this approach cannot distinguish between parallel changes at homologous loci versus convergent changes at closely linked non-homologous loci. The finding that parallel genotypic adaptation appears to be frequent and occurs at all taxonomic levels has important implications for phylogenetic and evolutionary studies. With respect to phylogenetic analyses, parallel genotypic changes, if common, may result in faulty estimates of phylogenetic relationships. From an evolutionary perspective, the occurrence of parallel genotypic adaptation provides increasing support for determinism in evolution and may provide a partial explanation for how species with low levels of gene flow are held together.  相似文献   

9.
Genetics, development and evolution of adaptive pigmentation in vertebrates   总被引:6,自引:0,他引:6  
Hoekstra HE 《Heredity》2006,97(3):222-234
The study of pigmentation has played an important role in the intersection of evolution, genetics, and developmental biology. Pigmentation's utility as a visible phenotypic marker has resulted in over 100 years of intense study of coat color mutations in laboratory mice, thereby creating an impressive list of candidate genes and an understanding of the developmental mechanisms responsible for the phenotypic effects. Variation in color and pigment patterning has also served as the focus of many classic studies of naturally occurring phenotypic variation in a wide variety of vertebrates, providing some of the most compelling cases for parallel and convergent evolution. Thus, the pigmentation model system holds much promise for understanding the nature of adaptation by linking genetic changes to variation in fitness-related traits. Here, I first discuss the historical role of pigmentation in genetics, development and evolutionary biology. I then discuss recent empirically based studies in vertebrates, which rely on these historical foundations to make connections between genotype and phenotype for ecologically important pigmentation traits. These studies provide insight into the evolutionary process by uncovering the genetic basis of adaptive traits and addressing such long-standing questions in evolutionary biology as (1) are adaptive changes predominantly caused by mutations in regulatory regions or coding regions? (2) is adaptation driven by the fixation of dominant mutations? and (3) to what extent are parallel phenotypic changes caused by similar genetic changes? It is clear that coloration has much to teach us about the molecular basis of organismal diversity, adaptation and the evolutionary process.  相似文献   

10.

Background  

There is spectacular morphological diversity in nature but lineages typically display a limited range of phenotypes. Because developmental processes generate the phenotypic variation that fuels natural selection, they are a likely source of evolutionary biases, facilitating some changes and limiting others. Although shifts in developmental regulation are associated with morphological differences between taxa, it is unclear how underlying mechanisms affect the rate and direction of evolutionary change within populations under selection.  相似文献   

11.
A major goal in postsynthesis evolutionary biology has been to better understand how complex interactions between traits drive movement along and facilitate the formation of distinct evolutionary pathways. I present analyses of a character matrix sampled across the haplorrhine skeleton that revealed several modules of characters displaying distinct patterns in macroevolutionary disparity. Comparison of these patterns to those in neurological development showed that early ape evolution was characterized by an intense regime of evolutionary and developmental flexibility. Shifting and reduced constraint in apes was met with episodic bursts in phenotypic innovation that built a wide array of functional diversity over a foundation of shared developmental and anatomical structure. Shifts in modularity drove dramatic evolutionary changes across the ape body plan in two distinct ways: (1) an episode of relaxed integration early in hominoid evolution coincided with bursts in evolutionary rate across multiple character suites; (2) the formation of two new trait modules along the branch leading to chimps and humans preceded rapid and dramatic evolutionary shifts in the carpus and pelvis. Changes to the structure of evolutionary mosaicism may correspond to enhanced evolvability that has a “preadaptive” effect by catalyzing later episodes of dramatic morphological remodeling.  相似文献   

12.
Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life‐history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses.  相似文献   

13.
14.
Phenotypic integration refers to the study of complex patterns of covariation among functionally related traits in a given organism. It has been investigated throughout the 20th century, but has only recently risen to the forefront of evolutionary ecological research. In this essay, I identify the reasons for this late flourishing of studies on integration, and discuss some of the major areas of current endeavour: the interplay of adaptation and constraints, the genetic and molecular bases of integration, the role of phenotypic plasticity, macroevolutionary studies of integration, and statistical and conceptual issues in the study of the evolution of complex phenotypes. I then conclude with a brief discussion of what I see as the major future directions of research on phenotypic integration and how they relate to our more general quest for the understanding of phenotypic evolution within the neo‐Darwinian framework. I suggest that studying integration provides a particularly stimulating and truly interdisciplinary convergence of researchers from fields as disparate as molecular genetics, developmental biology, evolutionary ecology, palaeontology and even philosophy of science.  相似文献   

15.
16.
Morphological similarities between organisms may be due to either homology or homoplasy. Homologous structures arise by common descent from an ancestral form, whereas homoplasious structures are independently derived in the respective lineages. The finding that similar ontogenetic mechanisms underlie the production of the similar structures in both lineages is not sufficient evidence of homology, as such similarities may also be due to parallel evolution. Parallelisms are a class of homoplasy in which the two lineages have come up with the same solution independently using the same ontogenetic mechanism. The other main class of homoplasy, convergence, is superficial similarity in morphological structures in which the underlying ontogenetic mechanisms are distinct. I argue that instances of convergence and parallelism are more common than is generally realized. Convergence suggests flexibility in underlying ontogenetic mechanisms and may be indicative of developmental processes subject to phenotypic plasticity. Parallelisms, on the other hand, may characterize developmental processes subject to constraints. Distinguishing between homology, parallelisms and convergence may clarify broader taxonomic patterns in morphological evolution.  相似文献   

17.
Host–microbe symbioses often evolved highly complex developmental processes and colonization mechanisms for establishment of stable associations. It has long been recognized that many insects harbour beneficial bacteria inside specific symbiotic cells (bacteriocytes) or organs (bacteriomes). However, the evolutionary origin and mechanisms underlying bacterial colonization in bacteriocyte/bacteriome formation have been poorly understood. In order to uncover the origin of such evolutionary novelties, we studied the development of symbiotic organs in five stinkbug species representing the superfamily Lygaeoidea in which diverse bacteriocyte/bacteriome systems have evolved. We tracked the symbiont movement within the eggs during the embryonic development and determined crucial stages at which symbiont infection and bacteriocyte formation occur, using whole-mount fluorescence in situ hybridization. In summary, three distinct developmental patterns were observed: two different modes of symbiont transfer from initial symbiont cluster (symbiont ball) to presumptive bacteriocytes in the embryonic abdomen, and direct incorporation of the symbiont ball without translocation of bacterial cells. Across the host taxa, only closely related species seemed to have evolved relatively conserved types of bacteriome development, suggesting repeated evolution of host symbiotic cells and organs from multiple independent origins.  相似文献   

18.
Comparative studies of closely related taxa can provide insights into the evolutionary forces that shape genome evolution and the prevalence of convergent molecular evolution. We investigated patterns of genetic diversity and differentiation in stonechats (genus Saxicola), a widely distributed avian species complex with phenotypic variation in plumage, morphology and migratory behaviour, to ask whether similar genomic regions have become differentiated in independent, but closely related, taxa. We used whole‐genome pooled sequencing of 262 individuals from five taxa and found that levels of genetic diversity and divergence are strongly correlated among different stonechat taxa. We then asked whether these patterns remain correlated at deeper evolutionary scales and found that homologous genomic regions have become differentiated in stonechats and the closely related Ficedula flycatchers. Such correlation across a range of evolutionary divergence and among phylogenetically independent comparisons suggests that similar processes may be driving the differentiation of these independently evolving lineages, which in turn may be the result of intrinsic properties of particular genomic regions (e.g. areas of low recombination). Consequently, studies employing genome scans to search for areas important for reproductive isolation or adaptation should account for corresponding regions of differentiation, as these regions may not necessarily represent speciation islands or evidence of local adaptation.  相似文献   

19.
Variation in development mediates phenotypic differences observed in evolution and disease. Although the mechanisms underlying phenotypic variation are still largely unknown, recent research suggests that variation in developmental processes may play a key role. Developmental processes mediate genotype–phenotype relationships and consequently play an important role regulating phenotypes. In this review, we provide an example of how shared and interacting developmental processes may explain convergence of phenotypes in spliceosomopathies and ribosomopathies. These data also suggest a shared pathway to disease treatment. We then discuss three major mechanisms that contribute to variation in developmental processes: genetic background (gene–gene interactions), gene–environment interactions, and developmental stochasticity. Finally, we comment on evolutionary alterations to developmental processes, and the evolution of disease buffering mechanisms.  相似文献   

20.
Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model‐based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species‐level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号