首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex glycoprotein biopharmaceuticals, such as follicle stimulating hormone (FSH), erythropoietin and tissue plasminogen activator consist of a range of charge isoforms due to the extent of sialic acid capping of the glycoprotein glycans. Sialic acid occupies the terminal position on the oligosaccharide chain, masking the penultimate sugar residue, galactose from recognition and uptake by the hepatocyte asialoglycoprotein receptor. It is therefore well established that the more acidic charge isoforms of glycoprotein biopharmaceuticals have higher in vivo potencies than those of less acidic isoforms due to their longer serum half-life. Current strategies for manipulating glycoprotein charge isoform profile involve cell engineering or altering bioprocesss parameters to optimise expression of more acidic or basic isoforms, rather than downstream separation of isoforms. A method for the purification of a discrete range of bioactive recombinant human FSH (rhFSH) charge isoforms based on Gradiflowtrade mark preparative electrophoresis technology is described. Gradiflowtrade mark electrophoresis is scaleable, and incorporation into glycoprotein biopharmaceutical production bioprocesses as a potential final step facilitates the production of biopharmaceutical preparations of improved in vivo potency.  相似文献   

2.
The inhibition of axon regeneration upon mechanical injury is dependent on interactions between Nogo receptors (NgRs) and their myelin-derived ligands. NgRs are composed of a leucine-rich repeat (LRR) region, thought to be structurally similar among the different isoforms of the receptor, and a divergent "stalk" region. It has been shown by others that the LRR and stalk regions of NgR1 and NgR2 have distinct roles in conferring binding affinity to the myelin associated glycoprotein (MAG) in vivo. Here, we show that purified recombinant full length NgR1 and NgR2 maintain significantly higher binding affinity for purified MAG as compared to the isolated LRR region of either NgR1 or NgR2. We also present the crystal structure of the LRR and part of the stalk regions of NgR2 and compare it to the previously reported NgR1 structure with respect to the distinct signaling properties of the two receptor isoforms.  相似文献   

3.
The alternative splicing of myelin-associated glycoprotein (MAG) mRNA generates two isoforms that harbor distinct potential phosphorylation sites in their cytoplasmic tails. Here we characterize the in vivo phosphorylation of MAG isoforms in NIH 3T3 cells transfected with the cDNAs encoding the two isoforms of MAG. Our results demonstrate that the longer isoform, L-MAG, is phosphorylated constitutively mainly on serine, but also on threonine and tyrosine residues. This phosphorylation is subject to change by 12-O-tetradecanoylphorbol 13-acetate (TPA) and ammonium vanadate, but not by dibutyryl-cyclic AMP. The shorter isoform, S-MAG, is constitutively phosphorylated only on serine residues. While TPA and dibutyryl-cyclic AMP have no detectable effect, ammonium vanadate induces tyrosine and threonine phosphorylation in S-MAG. 32P labeling of v-src-transformed NIH 3T3 cells that express L-MAG also show that L-MAG is likely to be an in vivo substrate for pp60v-src tyrosine kinase activity. These results demonstrate that both MAG isoforms are phosphorylated in a heterologous cell system and that this phosphorylation is subject to pharmacological manipulation.  相似文献   

4.
Bioassays constitute a unique approach to determine the functional aspects of gonadotropins. Indeed, these highly complex glycoprotein hormones, including pituitary lutropin (LH) and follitropin (FSH), are heterogeneous in terms of both peptidic and carbohydrate moieties, and, as a consequence, the bioactivity of the different molecular forms often does not match their immunoreactivity. In this article, we review the different types of LH and FSH bioassays. Conventional methods for measuring FSH bioactivity are first described and include the in vivo Steelman and Pohley bioassay, the radioligand receptor assays (RRAs), the in vitro Sertoli cell bioassay, the in vitro granulosa cell bioassay, and the inhibin immunoassay. Recent methods based on cell lines transfected with cloned receptors, particularly the human FSH receptor, are then described. Methods for developing these assays are presented, and the advantages and disadvantages of the different bioassays are discussed.  相似文献   

5.
We evaluated by immunohistochemistry the expression of progesterone receptor (PR) isoforms in different cell subpopulations of the ovary of newly-hatched chicks after a treatment with Follicle-stimulating hormone (FSH) or Luteinizing hormone (LH) administered on days 13, 15 and 17 of embryonic development. Two monoclonal antibodies that recognize either both PR isoforms or only PR-B, were used. The results indicate that FSH increased both the total number of cells and the number of PR-immunoreactive ones in all cell subpopulations of the ovary. In all cases, PR-B was the isoform regulated by FSH. In contrast, LH did not modify the number of total cells in any cell subpopulations of the ovary. Besides, LH decreased the number of PR-B immunoreactive interstitial cells, without modifying PR expression in any other cell subpopulations of the ovary. These results reveal differential effects of FSH and LH on PR-expression in cell subpopulations of the ovary of newly hatched chicks treated during embryonic development. We conclude that gonadotropins regulate PR-B isoform in the prefollicular ovary of the chick.  相似文献   

6.
7.
OBJECTIVE: To pursue whether leptin regulates anterior pituitary cells, we studied the ex vivo expression of several isoforms of the leptin receptor (OB-R) as well as the in vitro effects of leptin administration in human pituitary adenomas. METHODS: OB-R mRNA expression and in vitro response to leptin were studied in 39 pituitary macroadenomas. RESULTS: All 4 OB-R subtypes were expressed in most adenomas. The expression was significantly more pronounced in GH-secreting adenomas as compared to non-functioning tumor cells (p < 0.05). Leptin administration in vitro did not significantly influence cell proliferation or the secretion of GH, FSH, LH or alpha-subunit. CONCLUSIONS: (1) Several isoforms of the OB-R, including the signal transducing full-length receptor, are expressed in most human pituitary adenomas. (2) This expression ex vivo is not associated with significant effects of leptin in vitro.  相似文献   

8.
The effects of Follicle-stimulating hormone (FSH) and Luteinizing hormone (LH) on progesterone receptor (PR) isoforms presence in different cell populations from the oviduct magnum of newly-hatched chicks treated in vivo on days 13, 15 and 17 of embryonic development, were analyzed by immunohistochemistry. We found that FSH promoted cytodifferentiation of the magnum's mucosa and increased PR immunoreactivity in all cell types of the oviduct magnum, whereas LH-treatment did not exert cytodifferentiation of magnum's mucosa, and PR immunoreactivity was only induced in some epithelial and stromal cells of the oviduct magnum. In all treatments the number of PR immunopositive cells incubated with the antibody PgR Ab-8 that recognizes both PR isoforms were significantly higher than the number of immunopositive cells incubated with antibody PgR Ab-6 that only recognizes PR-B. This suggests that PR-A should be the predominant isoform in the oviduct magnum of newly-hatched chicks treated with gonadotropins during embryonic development.We conclude that gonadotropins differentially regulate PR-A isoform presence in the oviduct magnum of newly-hatched chicks.  相似文献   

9.
We previously demonstrated that genetically linking one or more of the glycoprotein hormone-specific beta subunit genes to the common alpha subunit resulted in single-chain analogues that were bioactive in vitro. The ability of such large structures to bind their cognate receptors with high affinity supported the hypothesis that extensive flexibility exists between the ligand and receptor to establish a functional complex. To further characterize the extent of this conformational flexibility, we engineered a single-chain analogue that consists of sequentially linked thyroid-stimulating hormone (TSH) beta, follicle-stimulating hormone (FSH) beta, and chorionic gonadotropin (CG) beta subunits to the alpha subunit and expressed this chimera in transfected CHO (Chinese hamster ovary) cells. Because the four subunits are genetically linked and expressed as a single-chain, this analogue presumably lacks significant native structural features of the individual heterodimers. However, it exhibited FSH, CG, and TSH activities in vitro. Here, we test whether this nonnative structure would be stable in vivo and thus biologically active. Using a variety of bioassay protocols, we demonstrate that the analogue elicits multihormone activities when injected in vivo. First, treatment with the analogue caused increases in ovarian and uterine weights and resulted in elevated serum estradiol. Second, the analogue-stimulated ovarian follicle growth and pharmacologically rescued in vivo FSH deficiency similar to recombinant human FSH or equine CG (eCG) as confirmed by induction of aromatase in the ovaries of FSHbeta knockout mice. Third, in a superovulation protocol, when primed with eCG, the analogue elicited a dose-dependent ovulatory response comparable with that by native heterodimeric human CG. Finally, the analogue-stimulated thyroxin production in hypothyroid mice similar to the pituitary-derived human TSH standard. Based on these data, we conclude that a single-chain tetradomain glycoprotein hormone analogue, despite its presumed altered conformation, is stable and biologically active in vivo. Our results establish the permissiveness and conformational plasticity with which the glycoprotein hormones are recognized in vivo by their target cell receptors.  相似文献   

10.
Multiple biological responses activated by nuclear protein kinase C.   总被引:3,自引:0,他引:3  
Protein kinase C is a family of serine-threonine kinases that are physiologically activated by a number of lipid cofactors and are important transducers in many agonist-induced signaling cascades. To date, 12 different isozymes of this kinase have been identified and are believed to play distinct regulatory roles. Protein kinase C was thought to reside in the cytosol in an inactive conformation and translocate to the plasma membrane upon cell activation by different stimuli. Nevertheless, a growing body of evidence has illustrated that this family of isozymes is capable of translocating to other cellular sites, including the nucleus. Moreover, it seems that some protein kinase C isoforms are resident within the nucleus. A wealth of data is being accumulated, demonstrating that nuclear protein kinase C isoforms are involved in the regulation of several critical biological functions such as cell proliferation and differentiation, neoplastic transformation, and apoptosis. In this review, we will discuss the most significant findings concerning nuclear protein kinase C which have been published during the past 5 years.  相似文献   

11.
Cell migration is essential for many biological processes in animals and is a complex highly co‐ordinated process that involves cell polarization, actin‐driven protrusion and formation and turnover of cell adhesions. The PI3K (phosphoinositide 3‐kinase) family of lipid kinases regulate cell migration in many different cell types, both through direct binding of proteins to their lipid products and indirectly through crosstalk with other pathways, such as Rho GTPase signalling. Emerging evidence suggests that the involvement of PI3Ks at different stages of migration varies even within one cell type, and is dependent on the combination of external stimuli, as well as on the signalling status of the cell. In addition, it appears that different PI3K isoforms have distinct roles in cell polarization and migration. This review describes how PI3K signalling is regulated by pro‐migratory stimuli, and the diverse ways in which PI3K‐mediated signal transduction contributes to different aspects of cell migration.  相似文献   

12.
Although myelin oligodendrocyte glycoprotein is a candidate autoantigen in multiple sclerosis, its function remains unknown. In humans, mRNA expressed by the myelin oligodendrocyte glycoprotein gene is alternatively spliced resulting in at least nine unique protein isoforms. In this study, we investigated the sub-cellular localisation and membrane trafficking of six isoforms by cloning them into mammalian expression vectors. Confocal microscopy revealed that these protein products are expressed in different cellular compartments. While two full-length isoforms (25.6 and 25.1) are expressed at the cell surface, three alternatively spliced forms (22.7, 21.0 and 20.5) have a more intracellular distribution, localising to the endoplasmic reticulum and/or endosomes. Isoform 16.3, which lacks a transmembrane domain, is secreted. A switch in the sub-cellular localisation of myelin oligodendrocyte glycoprotein may have profound effects on receptor:ligand interactions and consequently the function of the protein. The structural features of the alternative isoforms and their differential, sub-cellular expression patterns could dictate the exposure of major immunogenic determinants within the central nervous system. Our findings highlight myelin oligodendrocyte glycoprotein splicing as a factor that could be critical to the phenotypic expression of multiple sclerosis.  相似文献   

13.
14.
The WNT genes encode a large family of secreted glycoprotein signalling molecules important from the earliest stages of development through to the adult. We have identified a novel isoform of the recently described WNT family member, Wnt16, following analysis of chromosome 7q31 genomic sequence. We find differential organisation of Wnt16 with the generation of two mRNA isoforms, Wnt16a and Wnt16b. These isoforms differ in the composition of their 5'-UTR and first exons and show evidence of differential expression. In normal human tissues, Wnt16a is expressed at significant levels only in the pancreas, whereas Wnt16b is expressed more ubiquitously with highest levels in adult kidney, placenta, brain, heart, and spleen. Wnt16 is one of a growing number of WNT genes showing evidence of distinct isoforms. We present evidence to suggest that these isoforms may be regulated from alternative promoters and discuss the potential functional differentiation afforded by these WNT isoforms. This may reveal subtle new mechanisms of regulation of WNT expression and function.  相似文献   

15.
The human glycoprotein hormones chorionic gonadotropin (CG), TSH, LH, and FSH are heterodimers composed of a common alpha-subunit and a hormone-specific beta-subunit. The subunits assemble noncovalently early in the secretory pathway. LH and FSH are synthesized in the same cell (pituitary gonadotrophs), and several of the alpha-subunit sequences required for association with either beta-subunit are different. Nevertheless, no ternary complexes are observed for LH and FSH in vivo, i.e. both beta-subunits assembled with a single alpha-subunit. To address whether the alpha-subunit can interact with more than one beta-subunit simultaneously, we genetically linked the FSHbeta- and CGbeta-subunit genes to the common alpha-subunit, resulting in a single-chain protein that exhibited both activities in vitro. These studies also indicated that the bifunctional triple-domain variant (FSHbeta-CGbeta-alpha), is secreted as two distinct bioactive populations each corresponding to a single activity, and each bearing the heterodimer-like contacts. Although the data are consistent with the known secretion events of gonadotropins from the pituitary, we could not exclude the possibility whether transient intermediates are generated in vivo in which the alpha-subunit shuttles between the two beta-subunits during early stages of accumulation in the endoplasmic reticulum. Therefore, constructs were engineered that would direct the synthesis of single-chain proteins completely devoid of heterodimer-like interactions but elicit both LH and FSH actions. These triple-domain, single-chain chimeras contain the FSHbeta- and CGbeta-subunits and an alpha-subunit with cystine bond mutations (cys10-60 or cys32-84), which are known to prevent heterodimer formation. Here we show that, despite disrupting the intersubunit interactions between the alpha- and both CGbeta- and FSHbeta-subunits, these mutated analogs exhibit both activities in vivo comparable to nonmutated triple-domain single chain. Such responses occurred despite the absence of quaternary contacts due to the disrupted bonds in the alpha-subunit. Thus, gonadotropin heterodimer assembly is critical for intracellular events, e.g. hormone-specific posttranslational modifications, but when heterodimers are present in the circulation, the alpha/beta-contacts are not a prerequisite for receptor recognition.  相似文献   

16.
Two isoforms of human CD99 have been identified, but only heterotypic interaction between the isomers was recently demonstrated. In this study, we performed bimolecular fluorescence complementation analysis to further characterize the interaction in vivo. Upon transiently transfecting plasmids expressing either of the two isoforms fused with yellow fluorescent protein (YFP) fragments, all the YFPtagged CD99 molecules were properly localized on cell surfaces, and formed fluorescent dimers. Interestingly, however, unlike the previous report, the homodimers formed as efficiently as the heterodimer via their extracellular domains, implying its distinct regulatory role through modulating the complex profile.  相似文献   

17.
Redox signaling plays important roles in the regulation of cell death and survival in response to cancer therapy. Autophagy and apoptosis are discrete cellular processes mediated by distinct groups of regulatory and executioner molecules, and both are thought to be cellular responses to various stress conditions including oxidative stress, therefore controlling cell fate. Basic levels of reactive oxygen species (ROS) may function as signals to promote cell proliferation and survival, whereas increase of ROS can induce autophagy and apoptosis by damaging cellular components. Growing evidence in recent years argues for ROS that below detrimental levels acting as intracellular signal transducers that regulate autophagy and apoptosis. ROS-regulated autophagy and apoptosis can cross-talk with each other. However, how redox signaling determines different cell fates by regulating autophagy and apoptosis remains unclear. In this review, we will focus on understanding the delicate molecular mechanism by which autophagy and apoptosis are finely orchestrated by redox signaling and discuss how this understanding can be used to develop strategies for the treatment of cancer.  相似文献   

18.
19.
Glucocorticoids are widely used in the treatment of inflammatory and other diseases. However, high-dose or chronic administration often triggers troublesome side effects such as metabolic syndrome and osteoporosis. We recently described that one glucocorticoid receptor gene produces eight translational glucocorticoid receptor isoforms that have distinct gene-regulatory abilities. We show here that specific, but not all, glucocorticoid receptor isoforms induced apoptosis in human osteosarcoma U-2 OS bone cells. Whole human genome microarray analysis revealed that the majority of the glucocorticoid target genes were selectively regulated by specific glucocorticoid receptor isoforms. Real-time PCR experiments confirmed that proapoptotic enzymes necessary for cell death, granzyme A and caspase-6, were induced by specific glucocorticoid receptor isoforms. Chromatin immunoprecipitation assays further suggested that glucocorticoid receptor isoform-dependent induction of proapoptotic genes was likely due to selective coregulator recruitment and chromatin modification. Interestingly, the capabilities to transrepress proinflammatory genes were similar among glucocorticoid receptor isoforms. Together, these findings provide new evidence that translational glucocorticoid receptor isoforms can elicit distinct glucocorticoid responses and may be useful for the development of safe glucocorticoids with reduced side effects.  相似文献   

20.
Sialoadhesin is a macrophage-restricted transmembrane glycoprotein of 185 kDa that mediates cell–cell interactions through recognition of Neu5Acα2,3Gal in glycoconjugates. The extracellular region of sialoadhesin is composed of seventeen immunoglobulin-like domains, of which the amino-terminal two are highly-related structurally and functionally to the amino-terminal domains of CD22, myelin associated glycoprotein and CD33. These proteins, collectively known as the sialoadhesin family, are able to mediate sialic acid-dependent binding with distinct specificities for both the type of sialic acid and its linkage to subterminal sugars. In this review we discuss our recent studies on sialoadhesin and suggest how this molecule may contribute to a range of macrophage functions, both under normal conditions as well as during inflammatory reactions. Abbreviations: Ig, immunoglobulin; CEA, carcinoembryonic antigen; MAG, myelin associated glycoprotein; SMP Schwann cell myelin protein; mAb, monoclonal antibody; Chinese hamster ovary (CHO); UTR, untranslated region This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号