首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Abstract: Two fatty acid binding proteins (FABPs) were isolated from Swiss Webster mouse brains. Neither protein cross-reacted with antisera to recombinant liver L-FABP. One protein, designated brain H-FABP, migrated on tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as a single band at 14.5 kDa with pl 4.9. Brain H-FABP bound NBD-stearic acid and cis -parinaric acid with K D values near 0.02 and 0.5 µ M , respectively. Brain H-FABP cross-reacted with affinity-purified antisera to recombinant heart H-FABP. The second protein, mouse brain B-FABP, migrated on tricine SDS-PAGE gels as a doublet at 16.0 and 15.5 kDa with pl values of 4.5 and 4.7, respectively. Brain B-FABP bound NBD-stearic acid and cis -parinaric acid with K D values near 0.01 and 0.7 µ M , respectively. The brain B-FABP doublet was immunoreactive with affinity-purified antibodies against recombinant mouse brain B-FABP, but not with affinity-purified antibodies against heart H-FABP. [3H]Oleate competition binding indicated that the two brain FABPs had distinct ligand binding specificities. Both bound fatty acids, fatty acyl CoA, and lysophosphatidic acid. Although both preferentially bound unsaturated fatty acids, twofold differences in specific saturated fatty acid binding were observed. Brain B-FABP and brain H-FABP represented 0.1 and 0.01% of brain total cytosolic protein, respectively. In summary, mouse brain contains two native fatty acid binding proteins, brain H-FABP and brain B-FABP.  相似文献   

2.
We have made a monoclonal antibody which specifically recognizes smg p25A among many ras p21/ras p21-like GTP-binding proteins thus far purified from bovine brain membranes. By use of this antibody, we have investigated the localization and subcellular distribution of smg p25A in rat brain by light and electron microscopic immunocytochemistry and by immunoblotting. By light microscopic immunocytochemistry, specific immunoreactivity is widely distributed, most abundant in neuropil, weak in neuronal somata, and absent from white matter. By electron microscopic immunocytochemistry, intense labeling is demonstrated on most of the synapses and concentrated in the presynaptic area where synaptic vesicles are observed. Presynaptic plasma membranes are weakly labeled but mitochondria, postsynaptic plasma membranes, and postsynaptic densities are unlabeled. In subcellular fractionation analysis of cerebrum, about one-fifth of smg p25A is found in the soluble cytosol fraction and the rest is found in the particulate fraction. About half of the particulate-bound smg p25A is recovered in the P2 fraction containing synaptosomes, mitochondria, and myelin, among which a major portion of smg p25A is recovered in the synaptosomal fraction. In the synaptosomal fraction, smg p25A is concentrated about 8-fold in the fraction containing synaptic vesicles and about 3-fold in the fraction containing synaptic plasma membranes compared with the original homogenate. smg p25A is present at a low level in the fraction containing synaptosomal soluble substances but almost absent from the fractions containing intrasynaptosomal mitochondria or post-synaptic densities. These results suggest that smg p25A plays important roles in the regulation of synaptic functions such as exo-endocytotic recycling of synaptic vesicles during neurotransmitter release.  相似文献   

3.
Expression of brain fatty acid-binding protein (B-FABP) is spatially and temporally correlated with neuronal differentiation during brain development. Isothermal titration calorimetry demonstrates that recombinant human B-FABP clearly exhibits high affinity for the polyunsaturated n-3 fatty acids alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, and for monounsaturated n-9 oleic acid (K(d) from 28 to 53 nm) over polyunsaturated n-6 fatty acids, linoleic acid, and arachidonic acid (K(d) from 115 to 206 nm). B-FABP has low binding affinity for saturated long chain fatty acids. The three-dimensional structure of recombinant human B-FABP in complex with oleic acid shows that the oleic acid hydrocarbon tail assumes a "U-shaped" conformation, whereas in the complex with docosahexaenoic acid the hydrocarbon tail adopts a helical conformation. A comparison of the three-dimensional structures and binding properties of human B-FABP with other homologous FABPs, indicates that the binding specificity is in part the result of nonconserved amino acid Phe(104), which interacts with double bonds present in the lipid hydrocarbon tail. In this context, analysis of the primary and tertiary structures of human B-FABP provides a rationale for its high affinity and specificity for polyunsaturated fatty acids. The expression of B-FABP in glial cells and its high affinity for docosahexaenoic acid, which is known to be an important component of neuronal membranes, points toward a role for B-FABP in supplying brain abundant fatty acids to the developing neuron.  相似文献   

4.
We have determined the nucleotide sequence for two cDNA clones coding for a fatty acid binding protein (FABP) from zebrafish (Danio rerio). Comparison of the sequence with GenBank entries revealed extensive amino acid identity between this zebrafish FABP and brain FABPs (B-FABP) from other species. The zebrafish B-FABP cDNA hybridized to single restriction fragments of total zebrafish genomic DNA digested with the restriction endonucleases BglII or EcoRI suggesting that a single copy of the B-FABP gene is present in the zebrafish genome. Northern blot analysis demonstrated that the zebrafish B-FABP mRNA is approximately 850 nucleotides in length. In situ hybridization revealed that the B-FABP mRNA was expressed in the periventricular gray zone of the optic tectum of the adult zebrafish brain.  相似文献   

5.
High-affinity, Na+-dependent synaptosomal amino acid uptake systems are strongly stimulated by proteins which are known to bind fatty acids, including the Mr 12 000 fatty acid binding protein (FABP) from liver. To explore the possibility that such a function might be served by fatty acid binding proteins intrinsic to brain, we examined the 105000g supernatant of brain for fatty acid binding. Observed binding was accounted for mainly by components excluded by Sephadex G-50, and to a small degree by the Mr 12 000 protein fraction (brain FABP fraction). The partially purified brain FABP fraction contained a protein immunologically identical with liver FABP as well as a FABP electrophoretically distinct from liver FABP. Brain FABP fraction markedly stimulated synaptosomal Na+-dependent, but not Na+-independent, amino acid uptake, and also completely reversed the inhibition of synaptosomal Na+-dependent amino acid uptake induced by oleic acid. Palmitic, stearic, and oleic acids were endogenously associated with the brain FABP fraction. These data are consistent with the hypothesis that Mr 12 000 soluble FABPs intrinsic to brain may act as regulators of synaptosomal Na+-dependent amino acid uptake by sequestering free fatty acids which inhibit this process.  相似文献   

6.
Antioxidant Defense Systems in the Brains of Type II Diabetic Mice   总被引:2,自引:0,他引:2  
Abstract: The specific activities of superoxide dismutase, catalase, and glutathione S -transferase (μ subtype) were significantly lower in the brains of mice with type II diabetes than in the brains of control mice. On the other hand, the specific activity of glutathione peroxidase was unaltered. The concentration of vitamin E, but not that of total glutathione and ascorbate, was increased in the brains of the type II diabetic mice. The relative amount of polyunsaturated fatty acids (as determined with soybean lipoxygenase) was increased in whole brains and crude synaptosomal membranes of the type II diabetic mice. Endogenous levels of thiobarbituric acid-positive material were decreased in both whole brain homogenates and crude synaptosomal membranes of the db/db mice. Susceptibility of lipids within whole brain homogenates and crude synaptosomal membranes of mice with type II diabetes to peroxidation with iron/ascorbate was also markedly decreased compared with that of controls. Vitamin E is known to quench lipid peroxidation. Therefore, decreased lipid peroxidation in the type II mouse brain may be due to increased vitamin E content.  相似文献   

7.
Nonenzymatic cytosolic fatty acid binding proteins (FABPs) are abundantly expressed in many animal tissues with high rates of fatty acid metabolism. No physiological role has been demonstrated for any FABP, although these proteins have been implicated in transport of free long-chain fatty acids (LCFAs) and protection against LCFA toxicity. We report here that mice lacking heart-type FABP (H-FABP) exhibit a severe defect of peripheral (nonhepatic, non-fat) LCFA utilization. In these mice, the heart is unable to efficiently take up plasma LCFAs, which are normally its main fuel, and switches to glucose usage. Altered plasma levels of LCFAs, glucose, lactate and beta-hydroxybutyrate are consistent with depressed peripheral LCFA utilization, intensified carbohydrate usage, and increased hepatic LCFA oxidation; these changes are most pronounced under conditions favoring LCFA oxidation. H-FABP deficiency is only incompletely compensated, however, causing acute exercise intolerance and, at old age, a localized cardiac hypertrophy. These data establish a requirement for H-FABP in cardiac intracellular lipid transport and fuel selection and a major role in metabolic homeostasis. This new animal model should be particularly useful for investigating the significance of peripheral LCFA utilization for heart function, insulin sensitivity, and blood pressure.  相似文献   

8.
Abstract: CBL/57 strain db/db mice exhibit type II (non-insulin-dependent) diabetes. The affected mice are markedly hyperinsulinemic, hyperglycemic, and hypercholesterolemic, and their serum K+ levels are decreased. The brains of the diabetic mice are significantly smaller than those of their lean, control littermates, but the protein concentration is normal. The low brain weight is accompanied by a loss of major fatty acid components within the whole brain, nerve endings, and mitochondrial membranes. Cholesterol levels are low in whole brain but are not significantly different from normal in the synaptosomal membranes. The phospholipid concentration is significantly decreased in whole brain homogenates, crude synaptosomal membranes, and crude mitochondrial membranes of the diabetic mice. In addition, the specific activities of membrane-bound synaptosomal acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase are decreased in crude synaptosomal membranes of the diabetic mice. The specific activities of carnitine palmitoyltransferase I and carnitine acetyltransferase are significantly increased in the crude mitochondrial fraction isolated from the brains of the type II diabetic mice, whereas the specific activity of pyruvate dehydrogenase complex is decreased. The specific activities of two other mitochondrial enzymes—monoamine oxidase B and citrate synthase—and a cytosolic enzyme—lactate dehydrogenase—are unaltered. The ability to synthesize cyclic AMP is markedly decreased in the brains of the diabetic mice. The concentrations of carnitine and of the amino acids, glutamate, aspartate, glutamine, and serine are unaltered, whereas glycine levels are significantly elevated in the brains of the db/db mice. The data suggest that in vivo the brains of the diabetic mice exhibit a decreased capacity for glucose oxidation and increased capacity for fatty acid oxidation. This hypothesis is supported by the finding that cerebral mitochondria isolated from the db/db mice oxidize [1-14C]palmitate to 14CO2 at a rate almost twice that of control mitochondria. The present findings emphasize the potentially serious alteration of brain metabolism in uncontrolled type II diabetes.  相似文献   

9.
采用行为观察和生化检测相结合的方法 ,在过去工作的基础上 ,研究了 12月龄和 18月龄小鼠学习记忆能力的变化和 18月龄小鼠四个脑区 (海马、大脑皮层、四叠体和小脑 )突触体内 [Ca2 ]i 的水平 ,同时还比较了老年记忆保持良好组与记忆障碍组小鼠的脑钙水平。结果表明 ,随着年龄的增长 ,小鼠的学习记忆能力显著下降 ,上述脑区 (除大脑皮层外 )突触内 [Ca2 ]i 均明显升高 ,其中老年记忆障碍小鼠脑钙水平升高最为显著。提示 ,小鼠衰老性记忆障碍可能与其脑突触体内 [Ca2 ]i 的超载有关。  相似文献   

10.
Proteolipid complex of Folch-Lees has been obtained and purified from the myelin and synaptosomes of the brain of the frog Rana temporaria and hen Gallus domesticus. Relative content of this proteolipid and glycolipids in the myelin is almost twice higher, whereas that of phospholipids--1 1/2 times lower than in the synaptosomal membranes of the same animal. Protein content of this complex is higher for myelin than for synaptosomal membranes; opposite relation was found with respect to phospholipid content. Within this complex, lipids are presented mainly by phospholipids, especially by acid ones which amount to 30-60%. Proteolipid complexes fro the myelin and synaptosomes differ from each other by their lipid component. Myelin proteolipid complex contains mainly phosphatidylserine and phosphatid acid, whereas synaptosomal one--phosphatidylserine and diphosphatediglycerol. No significant differences were found in fatty acid composition of phospholipids from proteolipid complex from myelin and synaptosomes as compared to this composition in the initial membranes.  相似文献   

11.
To study lipid breakdown in brain membranes following hemorrhage, synaptosome and myelin fractions isolated from rat brain were incubated with rat serum. After 3 h in vitro at 37 degrees C, 0.43 and 0.26 mumol of fatty acid were released in incubations containing synaptosomes (1.37 mumols phospholipid) or myelin (1.23 mumols phospholipid), respectively, in the presence of 0.25 mL serum. Less than 0.05 mumol of fatty acid was liberated in incubations containing only serum, synaptosomes, or myelin. For synaptosomes and serum, docosahexaenoate was the principal fatty acid released (28 mol% of total) after 3 h of incubation. This fatty acid and arachidonate made up 43 mol% of the liberated fatty acid. The presence of free docosahexaenoate was of interest, as this fatty acid is particularly enriched in phosphatidylserine and phosphatidylethanolamine, phospholipids found in the cytoplasmic half of the synaptosomal plasma membrane and in interior synaptosomal membranes. In incubations of serum and myelin, oleate was the major free fatty acid produced in 30 min to 3 h of incubation (29-35 mol% of total). After 3 h, docosahexaenoate contributed 20 mol% to the total. The release of fatty acids from the membranes may be mediated by serum phospholipase(s) or possibly by activated endogenous lipolytic activities.  相似文献   

12.
Aminophospholipid Asymmetry in Murine Synaptosomal Plasma Membrane   总被引:13,自引:10,他引:3  
The asymmetric distribution of aminophospholipids in isolated murine synaptosomal plasma membranes was determined by a chemical labeling procedure. Under nonpenetrating conditions, mouse brain synaptosomes were reacted with trinitrobenzenesulfonic acid (TNBS) to label outermonolayer aminophospholipids covalently. About 10-15% of the phosphatidylethanolamine and 20% of the phosphatidylserine were found to be in the outer monolayer of the synaptosomal plasma membrane. Furthermore, the fatty acyl group composition of the labeled phosphatidylethanolamine (outer monolayer) consisted of more saturated fatty acid than did the unlabeled phosphatidylethanolamine (inner monolayer). These results demonstrated an aminophospholipid asymmetry in synaptosomal plasma membranes which was independent of serum-lipoprotein exchange processes and also of phosphatidylethanolamine-methylatingenzymes.  相似文献   

13.
Brain-type fatty acid-binding protein (B-FABP) was localized in Kupffer cells of liver of postnatal day 10 (P10) and older mice in immunolight and electron microscopy as well as by in situ hybridization histochemistry. The immunoreaction products were localized in the cytoplasmic matrix but not within the nucleus. After peritoneal injection of lipopolysaccharide (LPS), the immunoreaction for B-FABP decreased markedly in Kupffer cells at 1 h postinjection and thereafter gradually recovered to the preinjection level by 24 h postinjection, although no decrease in the mRNA expression was detected in Northern blotting throughout the course after the injection. The specific localization of B-FABP, but not the other FABPs, in Kupffer cells, and its rapid decrease after LPS injection suggest the intimate involvement of B-FABP in Kupffer cells in the inflammatory reaction, probably through mediation of n-3 polyunsaturated fatty acids, which are strong binders of B-FABP.  相似文献   

14.
The effects of fatty acids, oleate and palmitate, on gamma-aminobutyric acid (GABA), aspartate, and 3,4- dihydroxyphenylethylamine (dopamine) transport and a variety of other membrane functions were studied in rat brain synaptosomes at a constant lipid-to-protein ratio. Under the conditions utilized oleate, but not palmitate, caused statistically significant changes in synaptosomal functions. Oleic acid inhibited the uptake of the amino acid neurotransmitters and dopamine in a tetrodotoxin-insensitive manner; it also induced the release of neurotransmitters from synaptosomes. The synaptosomal membrane potential decreased and the maximum GABA accumulation ratio [( GABA]i/[GABA]o) declined in parallel. The same depolarizing effect was seen in the presence of 50 microM verapamil or when chloride was replaced by propionate. The rate of respiration was stimulated by the unsaturated fatty acid; neither verapamil (50 microM) nor ouabain (100 microM) was effective in preventing the increase in oxygen consumption. By contrast, ruthenium red substantially decreased the stimulatory effect of oleate. The intrasynaptosomal [Ca2+] was increased by 40%, whereas [Na+]i remained unaltered. It is postulated that under the conditions used the inhibition of neurotransmitter uptake and the decrease in their accumulation caused by oleate result from the depolarization of synaptosomes that arises, at least in part, from increased permeability of the plasma membrane to calcium ions.  相似文献   

15.
The modulation of rat brain microsomal and synaptosomal membrane lipid by diet fat was examined. Brain synaptosomal and microsomal membrane composition was compared for rats fed on diets containing either soya-bean oil (SBO), SBO plus choline, SBO lecithin, sunflower oil (SFO), chow or low-erucic acid rape-seed oil (LER) for 24 days. Cholesterol and phosphatidylcholine levels in both membranes were altered by diet. Diet fat also affected the microsomal content of sphingomyelin. Change in membrane phosphatidylcholine level was related to the relative balance of omega-6, omega-3 and monounsaturated fatty acids within the diets fed. The highest phosphatidylcholine levels appeared in membranes of animals fed on SBO lecithin and the lowest in those fed on LER. Microsomal membrane cholesterol and sphingomyelin content increased by feeding on SBO lecithin. In both synaptosomal and microsomal membranes a highly significant correlation was observed between membrane phosphatidylcholine and cholesterol content. The fatty acyl composition of phospholipids from both membranes also altered with diet and age. Alteration in fatty acid composition was observed in response to dietary levels of omega-6, omega-3 and monounsaturated fatty acids, but the unsaturation index of each phospholipid remained constant for all diet treatments. These changes in lipid composition suggest that dietary fat may be a significant modulator in vivo of the physicobiochemical properties of brain synaptosomal and microsomal membranes.  相似文献   

16.
Murphy EJ  Owada Y  Kitanaka N  Kondo H  Glatz JF 《Biochemistry》2005,44(16):6350-6360
Heart fatty acid binding protein (H-FABP) is expressed in neurons, but its role in brain fatty acid incorporation and metabolism is poorly defined. We examined the effect of H-FABP gene ablation on brain incorporation of arachidonic ([1-(14)C]20:4n-6) or palmitic ([1-(14)C]16:0) acid in vivo. Analysis of brain mRNA confirmed gene ablation and demonstrated no compensatory changes in the levels of other FABP mRNA in the gene-ablated mice. In brains from H-FABP gene-ablated mice, the incorporation coefficient for [1-(14)C]20:4n-6 was reduced 24%, while that for [1-(14)C]16:0 was unaffected. Within the organic and aqueous fractions, significantly more [1-(14)C]20:4n-6 was distributed into the aqueous fraction, suggesting a disruption in the metabolic targeting of 20:4n-6 in these mice. There was less incorporation of [1-(14)C]20:4n-6 into total phospholipids and a marked reduction (51%) in the level of incorporation into the choline glycerophospholipids (ChoGpl). Because FABP can influence steady-state lipid mass, brain individual lipid masses were measured. The brain total phospholipid mass was reduced 17% by gene ablation, ascribed to a 27% and 32% reduction in the masses of ChoGpl and sphingomyelin, respectively. Plasmalogen subclass masses were also reduced, suggesting that H-FABP may augment brain plasmalogen synthesis. In gene-ablated mice, the phosphatidylinositol 20:4n-6 level was reduced 25%, while the proportion of total n-6 fatty acids was reduced in the major phospholipid classes. Thus, these results demonstrate for the first time that H-FABP expression influences brain 20:4n-6 uptake and trafficking as well as steady-state brain lipid levels.  相似文献   

17.
Electron cytochemical studies have been made of the effect of various concentrations of the glutamic acid on localisation of adenylate and guanylate cyclases in synaptosomes from the brain cortex of rats. It was found that the glutamic acid (10(-3) M) stimulates the activity of intrasynaptosomal adenylate cyclase, but does not affect postsynaptic pool of the enzyme. The effect of glutamate on guanylate cyclase results in the increase of the frequency of the reaction both in synaptosomal and postsynaptic membranes. It is suggested that in the conduction of glutamate signal, guanylate cyclase--cGMP, but not adenylate cyclase--cAMP, system may be involved, although activation of intrasynaptosomal adenylate cyclase indicates its participation in presynaptic processes.  相似文献   

18.
Arachidonic acid, a major polyunsaturated fatty acid of membrane phospholipids in the CNS, reduced the high-affinity uptake of glutamate and gamma-aminobutyric acid (GABA) in both rat brain cortical slices and synaptosomes. alpha-Aminoisobutyric acid uptake was not affected. Intrasynaptosomal sodium was increased concomitant with decreased (Na+ + K+)-ATPase activity in synaptosomal membranes. The reduction of GABA uptake in synaptosomes could be partially reversed by alpha-tocopherol. The inhibition of membrane-bound (Na+ + K+)-ATPase by arachidonic acid was not due to a simple detergent-like action on membranes, since sodium dodecyl sulfate stimulated the sodium pump activity in synaptosomes. These data indicate that arachidonic acid selectively modifies membrane stability and integrity associated with reductions of GABA and glutamate uptake and of (Na+ + K+)-ATPase activity.  相似文献   

19.
Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called “portal region”, formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that B-FABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs.  相似文献   

20.
Fatty acid-binding proteins (FABPs) are members of a superfamily of lipid-binding proteins, occurring intracellularly in invertebrates and vertebrates. This study was designed to clone and characterize the genes of heart fatty acid-binding protein and intestine fatty acid-binding protein in the chicken. PCR primers were designed according to the chicken EST sequences to amplify cDNA of H-FABP and I-FABP genes from chicken heart and intestinal tissues. Analysis of sequence showed that the cDNA of the chicken H-FABP gene is 75 to 77% homologues to human, mouse, and pig H-FABP genes, and the chicken I-FABP gene is 71 to 72% homologues to human, mouse, and pig I-FABP genes. In addition, Northern blot analysis indicated that of the two genes, similar to the copartner of the mammal, H-FABP gene was expressed in a wide variety of tissues, and I-FABP gene was expressed only in intestinal tissues. The expression levels of the chicken H-FABP mRNA in heart and I-FABP mRNA in intestine had significant differences between the broilers from fat line and Bai'er layers at six weeks of age. The results of this study provided basic molecular information for studying the role of two FABPs in the regulation of fatty acid metabolism in avian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号