首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defects in the development or maintenance of tubule diameter correlate with polycystic kidney disease. Here, we report that absence of the cadherin regulator p120 catenin (p120ctn) from the renal mesenchyme prior to tubule formation leads to decreased cadherin levels with abnormal morphologies of early tubule structures and developing glomeruli. In addition, mutant mice develop cystic kidney disease, with markedly increased tubule diameter and cellular proliferation, and detached luminal cells only in proximal tubules. The p120ctn homolog Arvcf is specifically absent from embryonic proximal tubules, consistent with the specificity of the proximal tubular phenotype. p120ctn knockdown in renal epithelial cells in 3D culture results in a similar cystic phenotype with reduced levels of E-cadherin and active RhoA. We find that E-cadherin knockdown, but not RhoA inhibition, phenocopies p120ctn knockdown. Taken together, our data show that p120ctn is required for early tubule and glomerular morphogenesis, as well as control of luminal diameter, probably through regulation of cadherins.  相似文献   

2.
PIP3 is involved in neuronal polarization and axon formation   总被引:1,自引:0,他引:1  
Recent experiments in various cell types such as mammalian neutrophils and Dictyostelium discoideum amoebae point to a key role for the lipid product of PI 3-kinase, PIP(3), in determining internal polarity. In neurons, as a consequence of the elongation of one neurite, the axon is specified and the cell acquires its polarity. To test the hypothesis that PI 3-kinase and PIP(3) may play a role in neuronal polarity, and especially in axon specification, we observed localization of PIP(3) visualized by Akt-PH-GFP in developing hippocampal neurons. We found that PIP(3) accumulates in the tip of the growing processes. This accumulation is inhibited by addition of PI 3-kinase inhibitors. Those inhibitors, consistently with a role of PIP(3) in process formation and elongation, delay the transition from stage 1 neurons to stage 3 neurons, and both axon formation and elongation. Moreover, when the immature neurite contacts a bead coated with laminin, a substrate known to induce axon specification, PIP(3) accumulates in its growth cone followed by a rapid elongation of the neurite. In such conditions, the addition of PI 3-kinase inhibitors inhibits both PIP(3) accumulation and future axon elongation. These results suggest that PIP(3) is involved in axon specification, possibly by stimulating neurite outgrowth. In addition, when a second neurite contacted the beads, this neurite rapidly elongates whereas the elongation of the first laminin-contacting neurite stops, consistently with the hypothesis of a negative feedback mechanism from the growing future axon to the other neurites.  相似文献   

3.
beta-Catenin has a key role in the formation of adherens junction through its interactions with E-cadherin and alpha-catenin. We show here that interaction of beta-catenin with alpha-catenin is regulated by the phosphorylation of beta-catenin Tyr-142. This residue can be phosphorylated in vitro by Fer or Fyn tyrosine kinases. Transfection of these kinases to epithelial cells disrupted the association between both catenins. We have also examined whether these kinases are involved in the regulation of this interaction by K-ras. Stable transfectants of the K-ras oncogene in intestinal epithelial IEC18 cells were generated which show little alpha-catenin-beta-catenin association with respect to control clones; this effect is accompanied by increased Tyr-142 phosphorylation and activation of Fer and Fyn kinases. As reported for Fer, Fyn kinase is constitutively bound to p120 catenin; expression of K-ras induces the phosphorylation of p120 catenin on tyrosine residues increasing its affinity for E-cadherin and, consequently, promotes the association of Fyn with the adherens junction complex. Yes tyrosine kinase also binds to p120 catenin but only upon activation, and stimulates Fer and Fyn tyrosine kinases. These results indicate that p120 catenin acts as a docking protein facilitating the activation of Fer/Fyn tyrosine kinases by Yes and demonstrate the role of these p120 catenin-associated kinases in the regulation of beta-catenin-alpha-catenin interaction.  相似文献   

4.
RhoA organizes actin stress fibres and is necessary for cell transformation by oncogenes such as src and ras. Moreover, RhoA is implicated in cadherin clustering during the formation of adherens junctions. The catenin p120 has also been implicated in cadherin clustering through an unknown mechanism. Here we show that p120 selectively inhibits RhoA activity in vitro and in vivo. RhoA inhibition and the interaction of p120 with cadherins are mutually exclusive, suggesting a mechanism for regulating the recruitment and exchange of RhoA at nascent cell-cell contacts. By affecting RhoA activation, p120 could modulate cadherin functions, including suppression of invasion, neurite extension and junction formation.  相似文献   

5.
During epithelial tumor progression, the loss of E-cadherin expression and inappropriate expression of mesenchymal cadherins coincide with increased invasiveness. Reexpression experiments have established E-cadherin as an invasion suppressor. However, the mechanism by which E-cadherin suppresses invasiveness and the role of mesenchymal cadherins are poorly understood. We show that both p120 catenin and mesenchymal cadherins are required for the invasiveness of E-cadherin-deficient cells. p120 binding promotes the up-regulation of mesenchymal cadherins and the activation of Rac1, which are essential for cell migration and invasiveness. p120 also promotes invasiveness by inhibiting RhoA activity, independently of cadherin association. Furthermore, association of endogenous p120 with E-cadherin is required for E-cadherin-mediated suppression of invasiveness and is accompanied by a reduction in mesenchymal cadherin levels. The data indicate that p120 acts as a rheostat, promoting a sessile cellular phenotype when associated with E-cadherin or a motile phenotype when associated with mesenchymal cadherins.  相似文献   

6.
Cadherins and catenins play an important role in cell-cell adhesion. Two of the catenins, beta and gamma, are members of a group of proteins that contains a repeating amino acid motif originally described for the Drosophila segment polarity gene armadillo. Another member of this group is a 120-kD protein termed p120, originally identified as a substrate of the tyrosine kinase pp60src. In this paper, we show that endothelial and epithelial cells express p120 and p100, a 100-kD, p120- related protein. Peptide sequencing of p100 establishes it as highly related to p120. p120 and p100 both appear associated with the cadherin/catenin complex, but independent p120/catenin and p100/catenin complexes can be isolated. This association is shown by coimmunoprecipitation of cadherins and catenins with an anti-p120/p100 antibody, and of p120/p100 with cadherin or catenin antibodies. Immunocytochemical analysis with a p120-specific antibody reveals junctional colocalization of p120 and beta-catenin in epithelial cells. Catenins and p120/p100 also colocalize in endothelial and epithelial cells in culture and in tissue sections. The cellular content of p120/p100 and beta-catenin is similar in MDCK cells, but only approximately 20% of the p120/p100 pool associates with the cadherin/catenin complex. Our data provide further evidence for interactions among the different arm proteins and suggest that p120/p100 may participate in regulating the function of cadherins and, thereby, other processes influenced by cell-cell adhesion.  相似文献   

7.
8.
A novel role for p120 catenin in E-cadherin function   总被引:18,自引:0,他引:18  
Indirect evidence suggests that p120-catenin (p120) can both positively and negatively affect cadherin adhesiveness. Here we show that the p120 gene is mutated in SW48 cells, and that the cadherin adhesion system is impaired as a direct consequence of p120 insufficiency. Restoring normal levels of p120 caused a striking reversion from poorly differentiated to cobblestone-like epithelial morphology, indicating a crucial role for p120 in reactivation of E-cadherin function. The rescue efficiency was enhanced by increased levels of p120, and reduced by the presence of the phosphorylation domain, a region previously postulated to confer negative regulation. Surprisingly, the rescue was associated with substantially increased levels of E-cadherin. E-cadherin mRNA levels were unaffected by p120 expression, but E-cadherin half-life was more than doubled. Direct p120-E-cadherin interaction was crucial, as p120 deletion analysis revealed a perfect correlation between E-cadherin binding and rescue of epithelial morphology. Interestingly, the epithelial morphology could also be rescued by forced expression of either WT E-cadherin or a p120-uncoupled mutant. Thus, the effects of uncoupling p120 from E-cadherin can be at least partially overcome by artificially maintaining high levels of cadherin expression. These data reveal a cooperative interaction between p120 and E-cadherin and a novel role for p120 that is likely indispensable in normal cells.  相似文献   

9.
Identification of Src phosphorylation sites in the catenin p120ctn   总被引:8,自引:0,他引:8  
p120-catenin (p120(ctn)) interacts with the cytoplasmic tail of cadherins and is thought to regulate cadherin clustering during formation of adherens junctions. Several observations suggest that p120 can both positively and negatively regulate cadherin adhesiveness depending on signals that so far remain unidentified. Although p120 tyrosine phosphorylation is a leading candidate, the role of this modification in normal and Src-transformed cells remains unknown. Here, as a first step toward pinpointing this role, we have employed two-dimensional tryptic mapping to directly identify the major sites of Src-induced p120 phosphorylation. Eight sites were identified by direct mutation of candidate tyrosines to phenylalanine and elimination of the accompanying spots on the two-dimensional maps. Identical sites were observed in vitro and in vivo, strongly suggesting that the physiologically important sites have been correctly identified. Changing all of these sites to phenylalanine resulted in a p120 mutant, p120-8F, that could not be efficiently phosphorylated by Src and failed to interact with SHP-1, a tyrosine phosphatase shown previously to interact selectively with tyrosine-phosphorylated p120 in cells stimulated with epidermal growth factor. Using selected tyrosine to phenylalanine p120 mutants as dominant negative reagents, it may now be possible to selectively block events postulated to be dependent on p120 tyrosine phosphorylation.  相似文献   

10.
At developing neuromuscular junctions (NMJs), muscles initially contact motor axons by microprocesses, or myopodia, which are induced by nerves and nerve-secreted agrin, but it is unclear how myopodia are assembled and how they influence synaptic differentiation at the NMJ. Here, we report that treatment of cultured muscle cells with agrin transiently depleted p120 catenin (p120ctn) from cadherin junctions in situ, and increased the tyrosine phosphorylation and decreased the cadherin-association of p120ctn in cell extracts. Whereas ectopic expression of wild-type p120ctn in muscle generated myopodia in the absence of agrin, expression of a specific dominant-negative mutant form of p120ctn, which blocks filopodial assembly in nonmuscle cells, suppressed nerve- and agrin-induction of myopodia. Significantly, approaching neurites triggered reduced acetylcholine receptor (AChR) clustering along the edges of muscle cells expressing mutant p120ctn than of control cells, although the ability of the mutant cells to cluster AChRs was itself normal. Our results indicate a novel role of p120ctn in agrin-induced myopodial assembly and suggest that myopodia increase muscle-nerve contacts and muscle's access to neural agrin to promote NMJ formation.  相似文献   

11.
12.
Pak5 is a member of the Group B p21‐activated kinases, which are effectors of the Rho family GTPases Cdc42 and Rac. Pak5 has been shown to promote cytoskeletal reorganization, inducing filopodia formation and neurite outgrowth in neuroblastoma cells. In this study, we used affinity chromatography followed by SDS–PAGE and mass spectrometry to identify potential downstream effectors of Pak5. Using this approach, we isolated p120‐catenin (p120), a known regulator of cytoskeletal reorganization and Rho GTPases. Using co‐immunoprecipitation assays we found that p120 preferentially interacts with Pak5 among the Group B Paks. Results from immunofluorescence studies revealed that Pak5 and p120 co‐localize in cells. Both Pak5 and constitutively active Pak4, the founding member of the Group B Paks, directly phosphorylate p120 in vitro. The phosphorylation was shown by Western blot and immunofluorescence to take place specifically on serine 288. This study is the first report of an upstream serine/threonine kinase that phosphorylates p120. J. Cell. Biochem. 110: 1244–1254, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

13.
The number of autosomal mammalian genes subject to random monoallelic expression has been limited to genes highly specific to the function of chemosensory neurons or lymphocytes, making this phenomenon difficult to address systematically. Here we demonstrate that asynchronous DNA replication can be used as a marker for the identification of novel genes with monoallelic expression and identify p120 catenin, a gene involved in cell adhesion, as belonging to this class. p120 is widely expressed; its presence in available cell lines allowed us to address quantitative aspects of monoallelic expression. We show that the epigenetic choice of active allele is clonally stable and that biallelic clones express p120 at twice the level of monoallelic clones. Unlike previous reports about genes of this type, we found that expression of p120 can be monoallelic in one cell type and strictly biallelic in another. We show that in human lymphoblasts, the silencing of one allele is incomplete. These unexpected properties are likely to be wide-spread, as we show that the Tlr4 gene shares them. Identification of monoallelic expression of a nearly ubiquitous gene indicates that this type of gene regulation is more common than previously thought. This has important implications for carcinogenesis and definition of cell identity.  相似文献   

14.
A prominent tyrosine-phosphorylated protein of approximately 100 kDa (designated pp100) in epidermal growth factor (EGF)-stimulated A431 cells was found to be a main interaction partner of the protein-tyrosine phosphatase SHP-1 in pull-down experiments with a glutathione S-transferase-SHP-1 fusion protein. Binding was largely mediated by the N-terminal SH2 domain of SHP-1 and apparently direct and independent from the previously described association of SHP-1 with the activated EGF receptor. pp100 was partially purified and identified by mass spectrometric analysis of tryptic fragments, partial amino acid sequencing, and use of authentic antibodies as the 3A isoform of the Armadillo repeat protein superfamily member p120 catenin (p120(ctn)). Different p120(ctn) isoforms expressed in human embryonal kidney 293 cells, exhibited differential binding to SHP-1 that correlated partly with the extent of EGF-dependent p120(ctn) tyrosine phosphorylation. Despite strong phosphorylation, p120(ctn) isoforms 3B and 3AB bound, however, less readily to SHP-1. SHP-1 associated transiently with p120(ctn) in EGF-stimulated A431 cells stably transfected with a tetracycline-responsive SHP-1 expression construct, and p120(ctn) exhibited elevated phosphorylation upon a tetracycline-mediated decrease in the SHP-1 level. Functions of p120(ctn), which are regulated by tyrosine phosphorylation, may be modulated by the described SHP-1-p120(ctn) interaction.  相似文献   

15.
p120 catenin is a scaffold protein that interacts with cadherin cytoplasmic domain and acts as a crucial component of the signalling that regulates the cycle of adherens junction formation and disassembly. Here, we review the nature of stimuli that modulate p120ctn function and are translated as serine/threonine and tyrosine phosphorylation events at this multisite substrate for a variety of protein kinases. We also highlight recent findings that tentatively link phosphorylation of p120ctn to its role as a signal integrator capable to influence the state of the cadherin adhesive bond, the cytoskeleton and cell motility.  相似文献   

16.
The cadherin-binding catenin p120ctn was originally identified as an Src-tyrosine kinase substrate. More recently, p120ctn has been shown in some cell types to be associated with catenin/cadherin complexes of adherens junctions. To address the question whether p120ctn is restricted to certain cell types or whether it is a general cellular component we investigated tissue distribution of p120ctn by immunohistochemistry and immunoblotting in the rat. We found p120ctn to be widely distributed in several tissues where it is mainly restricted to the plasma membrane. In various epithelia p120ctn was found in association with different adherens junctions such as the zonula adherens and puncta adherentia. In addition, p120ctn was localized along infoldings of the basal cell membrane, most prominently in renal proximal and distal tubules. pl20ctn was not restricted to epithelia. It was also found at intercalated discs of cardiomyocytes. In the nervous system, immunostaining was particularly prominent in areas rich in synapses suggesting that pl20ctn is a component of synaptic adherens junctions as well. By immunoblotting, four different isoforms of pl20ctn could be detected displaying similar electrophoretic mobilities as the isoforms 1A, 1B, 2A, and 2B reported from mice. Whereas all epithelia assayed contained at least two isoforms, testis, heart, brain, and retina contained a single 110-kDa band that corresponds to isoform 1B in mice.  相似文献   

17.
At the developing neuromuscular junction (NMJ), physical contact between motor axons and muscle cells initiates presynaptic and postsynaptic differentiation. Using Xenopus nerve-muscle cocultures, we previously showed that innervating axons induced muscle filopodia (myopodia), which facilitated interactions between the synaptic partners and promoted NMJ formation. The myopodia were generated by nerve-released signals through muscle p120 catenin (p120ctn), a protein of the cadherin complex that modulates the activity of Rho GTPases. Because axons also extend filopodia that mediate early nerve-muscle interactions, here we test p120ctn's function in the assembly of these presynaptic processes. Overexpression of wild-type p120ctn in Xenopus spinal neurons leads to an increase in filopodial growth and synaptic vesicle (SV) clustering along axons, whereas the development of these specializations is inhibited following the expression of a p120ctn mutant lacking sequences important for regulating Rho GTPases. The p120ctn mutant also inhibits the induction of axonal filopodia and SV clusters by basic fibroblast growth factor, a muscle-derived molecule that triggers presynaptic differentiation. Of importance, introduction of the p120ctn mutant into neurons hinders NMJ formation, which is observed as a reduction in the accumulation of acetylcholine receptors at innervation sites in muscle. Our results suggest that p120ctn signaling in motor neurons promotes nerve-muscle interaction and NMJ assembly.  相似文献   

18.
Penta-EF-hand (PEF) proteins bind calcium and participate in a variety of calcium-dependent processes in vertebrates. In yeast, intracellular cations regulate processes like cell division and polarized growth. This study reports the identification of a unique PEF protein in Saccharomyces cerevisiae encoded by the uncharacterized open reading frame YGR058w. Pef1p has a long and unstructured N-terminal domain conserved in ascomycetes, and a highly conserved C-terminal calcium binding domain homologous to human ALG-2 and sorcin. Pef1p binds calcium and zinc and homodimerizes in vitro and in vivo like vertebrate homologues. Disruption of PEF1 induces defective growth in SDS and cation depletion conditions. Significantly, a critical substitution in the second EF hand (E218A) lowers the in vitro affinity for zinc and phenocopies growth defects. The dissection of protein-protein interactions and the cellular localization of Pef1p analogous to that of RAM pathway components controlling daughter-specific gene expression at the site of bud emergence bring out the importance of this novel protein. Our data suggest that cation homeostasis is involved in the control of polarized growth and in stress response in budding yeast.  相似文献   

19.
At developing neuromuscular junctions (NMJs), muscles initially contact motor axons by microprocesses, or myopodia, which are induced by nerves and nerve‐secreted agrin, but it is unclear how myopodia are assembled and how they influence synaptic differentiation at the NMJ. Here, we report that treatment of cultured muscle cells with agrin transiently depleted p120 catenin (p120ctn) from cadherin junctions in situ, and increased the tyrosine phosphorylation and decreased the cadherin‐association of p120ctn in cell extracts. Whereas ectopic expression of wild‐type p120ctn in muscle generated myopodia in the absence of agrin, expression of a specific dominant‐negative mutant form of p120ctn, which blocks filopodial assembly in nonmuscle cells, suppressed nerve‐ and agrin‐induction of myopodia. Significantly, approaching neurites triggered reduced acetylcholine receptor (AChR) clustering along the edges of muscle cells expressing mutant p120ctn than of control cells, although the ability of the mutant cells to cluster AChRs was itself normal. Our results indicate a novel role of p120ctn in agrin‐induced myopodial assembly and suggest that myopodia increase muscle–nerve contacts and muscle's access to neural agrin to promote NMJ formation. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号