首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of the present study is to investigate the effect of histone deacetylase inhibitor, trichostatin A (TSA) on the cell growth, apoptosis, genomic DNA damage and the expression of telomerase and associated factors in human normal and brain cancer cells. Here, human normal un-transformed fibroblasts (MRC-5), human normal hTERT-immortalised fibroblasts (hTERT-BJ1) and human brain cancer cell lines (glioblastoma cell line, A-172 and medulloblastoma cell line, ONS-76) were treated with 0.5–3.0 μM TSA for 24 h. Exposure to TSA resulted in apoptosis in a dose-dependent manner in the brain cancer cells. Glioblastoma cell line (A-172) displayed higher sensitivity to TSA-induced cell killing effect and apoptosis than the medulloblastoma cell line (ONS-76). The brain cancer cell lines and hTERT-BJ1 cell line displayed significant inhibition in telomerase activity and hTERT mRNA level after 2 μM TSA treatment. Elevated expressions of p53 and p21 with a decrease in cyclin-D level supported the observation on cell cycle arrest following TSA treatment. Upregulation of Bax and cytochrome c correlated with the apoptotic events in TSA-treated cells. This study suggests that telomerase and hTERT might be the primary targets of TSA which may have the potential to be used as a telomerase inhibitor in cancer therapy.  相似文献   

2.
3.
RNase P complexed with external guide sequence (EGS) represents a novel nucleic-acid-based gene interference approach to modulate gene expression. In this study, a functional EGS RNA was constructed to target the overlapping mRNA region of two human cytomegalovirus (HCMV) capsid proteins, the capsid scaffolding protein (CSP) and assemblin. The EGS RNA was shown to be able to direct human RNase P to cleave the target mRNA sequence efficiently in vitro. A reduction of approximately 75%-80% in the mRNA and protein expression levels of both CSP and assemblin and a reduction of 800-fold in viral growth were observed in human cells that expressed the functional EGS, but not in cells that either did not express the EGS or produced a "disabled" EGS that carried nucleotide mutations that precluded RNase P recognition. The action of the EGS is specific as the RNase P-mediated cleavage only reduces the expression of the CSP and assemblin but not other viral genes examined. Further studies of the antiviral effects of the EGS indicate that the expression of the functional EGS has no effect on HCMV genome replication but blocks viral capsid maturation, consistent with the notion that CSP and assemblin play essential roles in HCMV capsid formation. Our study provides the first direct evidence that EGS RNAs effectively inhibit HCMV gene expression and growth. Moreover, these results demonstrate the utility of EGS RNAs in gene therapy applications, including the treatment of HCMV infection by inhibiting the expression of virus-encoded essential proteins.  相似文献   

4.
5.
6.
RNA interference (RNAi) has recently shown promise as a mode of inhibition of slowly replicating viruses causing chronic diseases such as hepatitis C. To investigate whether RNAi is also feasible for rapidly growing RNA viruses such as alphaviruses, we tested the ability of expressed short hairpin RNAs (shRNAs) to inhibit the Semliki Forest virus (SFV), a rapidly replicating positive-strand RNA virus. Plasmids expressing shRNAs targeting SFV target sequences under the control of a human U6 promoter were introduced into BHK-21 cells. The targets included sequences encoding nonstructural (nsP1, 2, and 4) and structural (capsid) proteins as well as nonviral sequences serving as control targets. Twenty-four to 48 hours following transfection with shRNA plasmids, the cells were infected with replication-competent or replication-deficient recombinant SFV expressing green fluorescent protein (GFP) at a multiplicity of infection (MOI) of approximately 5. Viral replication was monitored by fluorescence microscopy and flow cytometry. Specific and marked reduction of viral replication was observed with shRNAs targeting nsP1 and nsP4. The degree of inhibition of the replication-deficient SFV was >or=70% over a 5-day period, a level similar to the transfection efficiency, suggesting complete inhibition of nonreplicating virus in the transfected cell population. However, only nsP1 shRNA was inhibitory against replication-competent SFV (approximately 30%-50% reduction), and this effect was transient. No inhibition was observed with control shRNAs. In contrast to the recent success of RNAi approaches for slowly growing viruses, these results illustrate the challenge of inhibiting very rapidly replicating RNA viruses by RNAi. However, the addition of RNAi approaches to other antiviral modalities might improve the response to acute infections.  相似文献   

7.
8.
Survivin (SVV) is a multifunctional protein that has been implicated in the development of neointimal hyperplasia. Nuclear SVV is essential for mitosis, whereas in mitochondria SVV has a cytoprotective function. Here, we investigated the effects of RNA interference (RNAi)-mediated SVV knockdown on cell cycle kinetics, apoptosis, migration, and gene expression in primary cultured vascular smooth muscle cells (VSMCs) from the human saphenous vein. Primary Human VSMCs were obtained from saphenous veins and cultured under standard conditions. SVV knockdown was achieved by either small interfering RNA or lentiviral transduction of short hairpin RNA, reducing SVV gene expression by quantitative PCR (>75%, P < 0.01) without a loss of cell viability. Subcellular fractionation revealed that RNAi treatment effectively targeted the nuclear SVV pool, whereas the larger mitochondrial pool was much less sensitive to transient knockdown. Both p53 and p27 protein levels were notably increased. SVV RNAi treatment significantly blocked VSMC proliferation in response to serum and PDGF-AB, arresting VSMC growth. Cell cycle analysis revealed an increased G(2)/M fraction consistent with a mitotic defect; 4',6-diamidino-2-phenylindole staining confirmed an increased frequency of polyploid and abnormal nuclei. In a transwell assay, SVV knockdown reduced migration to PDGF-AB, and actin-phalloidin staining revealed disorganized actin filaments and polygonal cell shape. However, apoptosis (DNA content and annexin V flow cytometry) was not directly induced by SVV RNAi, and sensitivity to apoptotic agonists (e.g., staurosporine and cytokines) was unchanged. In conclusion, RNAi-mediated SVV knockdown in VSMCs leads to profound cell cycle arrest at G(2)/M and impaired chemotaxis without cytotoxicity. The regulation of mitosis and apoptosis in VSMC involves differentially regulated subcellular pools of SVV. Thus, treatment of VSMC with RNAi targeting SVV might limit the response to vascular injury without destabilizing the vessel wall.  相似文献   

9.
10.
11.
The MDA-468 human breast cancer cell line displays the unusual phenomenon of growth inhibition in response to pharmacological concentrations of EGF. This study was initiated with the objective of elucidating the cellular mechanisms involved in EGF-induced growth inhibition. Following EGF treatment the percentage of MDA-468 cells in G1 phase increased, together with a concomitant depletion in S and G2/M phase populations, as revealed by flow cytometry of DNA content. The apparent G1 block in the cell cycle was confirmed by treating the cells with vinblastine. DNA synthesis was reduced to about 35% of that measured in control, untreated cells after 48 h of EGF treatment, as measured by the incorporation of [3H]thymidine. DNA synthesis returned to normal following the removal of EGF from the growth-arrested cells. In order to locate the EGF-induced event responsible for the G1 arrest more precisely, we examined the expression of certain cell cycle-dependent genes by Northern blot analysis. EGF treatment did not alter either the induction of the early G1 marker, c-myc, or the expression of the late G1 markers, proliferating cell nuclear antigen, and thymidine kinase. However, EGF-treated cells revealed down regulation of p53 and histone 3.2 expression, which are expressed at the G1/S boundary and in S phase, respectively. These results indicate that EGF-induced growth inhibition in MDA-468 human breast cancer cells is characterized by a reversible cell cycle block at the G1/S boundary.  相似文献   

12.
The majority of gastric cancers express high levels of human telomerase template RNA (hTR) that is essential for cellular survival. In this study, we examined whether antisense hTR (ahTR) had a growth inhibitory effect on three gastric cancer cell lines, MKN-1, MKN-28, and TMK-1, through transfection via an ahTR expression vector. Both the ahTR transfected MKN-1 and TMK-1 cells changed morphologically into multinucleate giant cells, and subsequently underwent cell death. Conversely, the ahTR transfected MKN-28 cells survived over 50 PDs in spite of telomere shortening. Surprisingly, high levels of telomerase activity were observed in the telomere-reduced cells. Furthermore, the expression of mRNAs for p21/Waf1/Cip1/Sdi1, IRF-1 and IFN inducible 6-16 was higher in the telomere-reduced cells than in the parental cells. These results suggest overall that the ahTR expression may bring about telomere shorting, leading to cell death or cellular senescence in gastric cancer cells.  相似文献   

13.
Magnetic resonance studies have previously shown that solid tumors and cancer cells in culture typically exhibit high phosphocholine and total choline. Treatment of cancer cells with the anti-inflammatory agent, indomethacin (INDO), reverted the phenotype of choline phospholipid metabolites in cancer cells towards a less malignant phenotype. Since endothelial cells form a key component of tumor vasculature, in this study, we used MR spectroscopy to characterize the phenotype of choline phospholipid metabolites in human umbilical vein endothelial cells (HUVECs). We determined the effect of growth factors, the anti-inflammatory agent INDO, and conditioned media obtained from a malignant cell line, on choline phospholipid metabolites. Growth factor depletion or treatment with INDO induced similar changes in the choline phospholipid metabolites of HUVECs. Treatment with conditioned medium obtained from MDA-MB-231 cancer cells induced changes similar to the presence of growth factor supplements. These results suggest that cancer cells secrete growth factors and/or other molecules that influence the choline phospholipid metabolism of HUVECs. The ability of INDO to alter choline phospholipid metabolism in the presence of growth factor supplements suggests that the inflammatory response pathways of HUVECs may play a role in cancer cell-HUVEC interaction and in the response of HUVECs to growth factors.  相似文献   

14.
15.
16.
It was established that remarkable changes in the N-glycosylation are induced in immortalized cancer cells. Whether changes were induced in human stromal cells immortalized by transfection with the human telomerase catalytic subunit (hTert) cDNA was examined by lectin blot analysis. Morphological appearance and growth rate of the gene-transfected stromal cells were not changed significantly. However, lectin blot analysis of membrane glycoprotein samples showed that bindings of Ricinus communis agglutinin-I (RCA-I) and of leuko-agglutinating phytohemagglutinin to glycoprotein bands increase significantly in the gene-transfected cells. No lectin binding was observed when blotted filters were treated with diplococcal beta-1,4-galactosidase or N-glycanase prior to incubation with RCA-I. In contrast, no changes in Coomassie brilliant blue-staining and in binding of concanavalin A were obtained between the primary and gene-transfected stromal cells. These results indicate that the highly branched N-glycosylation with augmented galactosylation is induced in human stromal cells immortalized by the telomerase expression.  相似文献   

17.
Treatment of MCF7 human mammary carcinoma cells with the nonsteroidal antioestrogens, tamoxifen and clomiphene, leads to a concentration-dependent decrease in cellular proliferation rate which can be resolved into oestrogen-reversible and oestrogen-irreversible components. This became more clearly apparent when cells were treated with the 4-hydroxylated derivatives of these compounds where, because of enhanced affinity for the oestrogen receptor (ER), the dose-response curves for the two components could be separated. Thus treatment with 4-hydroxyclomiphene resulted in a distinct biphasic effect on cell growth. In the concentration range 10(-10)-10(-8) M, cell proliferation was inhibited in a concentration-dependent manner to a maximum of 60-70%, there was no further effect between 10(-8) and 10(-6) M, but at concentrations greater than 10(-6) M there was another concentration-dependent decrease in cell growth. Studies with a series of vinyl-substituted hydroxytriphenylethylenes revealed that in the nanomolar concentration range, where the effects of the drugs could be completely negated by the simultaneous addition of oestradiol, the potency for growth inhibition was highly correlated with affinity for ER. Such data provide strong evidence that in this concentration range the growth inhibitory effects of nonsteroidal antioestrogens are mediated by the intracellular ER. In the micromolar concentration range the effects of antioestrogens are not completely reversed by oestradiol, potency is not well correlated with affinity for either ER or the antioestrogen binding site (AEBS) but the effect is cell cycle phase-specific. Furthermore, the disparity between the affinity for AEBS (0.8-3.3 nM) and the concentration of drug needed for oestrogen-irreversible growth inhibition (greater than or equal to 2.5 microM) argue against a central role for AEBS in mediating this effect. The observation that triphenylethylene antioestrogens are calmodulin antagonists may provide some insight into potential mechanisms for this oestrogen-irreversible effect. Indeed, in identical experiments two phenothiazine calmodulin antagonists inhibited MCF 7 cell proliferation at concentrations greater than or equal to 2.5 x 10(-6) M. Growth inhibition following administration of fluphenazine, perphenazine and triphenylethylene antioestrogens was accompanied by qualitatively similar changes in the cell cycle kinetic parameters, i.e. accumulation in G1 phase at the expense of S phase cells. These data suggest triphenylethylene antagonism of calmodulin activated cellular processes as a potential mechanism for the oestrogen-irreversible effects of the nonsteroidal antioestrogens.  相似文献   

18.
S P Kunapuli  H Singh  P Singh  A Kumar 《Life sciences》1987,40(23):2225-2228
The copper transport protein, ceruloplasmin, is suggested to have a role in cancer since it is involved in angiogenesis and neovascularization. In order to understand the role of ceruloplasmin in malignant cells, we have recently isolated and sequenced a human ceruloplasmin cDNA clone. In the present study, we have investigated the ceruloplasmin gene expression in human colon and breast cancer cell lines. The poly (A) RNA from human colon (WiDr) and human breast (MCF-7) cancer cell lines was analyzed for the presence of ceruloplasmin mRNA. The Northern blot analysis revealed the presence of a 3.7 kb band of ceruloplasmin mRNA in these cell lines. Dot blot analysis revealed that ceruloplasmin mRNA is at least three fold more abundant in tumor cells as compared to normal rat liver.  相似文献   

19.
Stathmin (Oncoprotein18), a signal transduction regulatory factor, plays an important role in cell division and malignant tumor development. Stathmin is a ubiquitous intracellular phosphoprotein that is overexpressed in a variety of human malignancies, including osteosarcoma. To investigate the potential use of stathmin as a therapeutic target for human osteosarcomas, we employed RNA interference [small interfering RNA (siRNA)] to reduce stathmin expression in human osteosarcoma cell lines and analyzed their phenotypic changes. Results showed that the downregulation of stathmin expression in human osteosarcoma cells significantly inhibited cell proliferation in vitro and tumorigenicity in vivo. The specific downregulation induced cell arrest in the G(2)/M phase of cell cycle and eventually apoptotic cell death. Taxanes are a group of effective chemotherapeutic agents whose activity is mediated through stabilization of the microtubules of the mitotic spindle. In the present study, we also observed a synergistic enhancement of the cytotoxicity effect by combination use of taxanes and RNA interference-mediated stathmin downregulation. All these experimental data indicate that stathmin downregulation can lead to potent antitumor activity and chemosensitizing activity to taxanes in human osteosarcomas.  相似文献   

20.
To elucidate the possible roles of proto-oncogenes and growth factors in estrogen-regulated cell proliferation of human breast and gynecologic cancers, we have determined the gene expressions of c-myc, transforming growth factor-alpha and beta 1 (TGF-alpha, beta 1) and epidermal growth factor receptor (EGFR) in a number of these cancer cell lines by using an intron-Differential (ID) RNA/PCR method, which differentially identifies the amplified cDNA from PCR products of genomic DNA contaminants. With this method, we demonstrated the expression of these genes, except EGFR, in an estrogen-dependent breast cancer cell line (CAMA-1). Our results show that TGF-alpha/EGF does not function as an autocrine factor in this cell line. Accordingly, it is unlikely that the TGF-alpha/EGFR system participates as a mediator in the estrogen-induced cell proliferation of CAMA-1 cells. The ID RNA/PCR method is a rapid, sensitive and specific technique for mRNA phenotyping and will have great clinical utility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号