首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The course of anemia and the erythropoietic response in the bone marrow, spleen, and blood were studied during Plasmodium chabaudi AS infection in resistant C57BL/6 (B6) and susceptible A/J (A) mice. Infections in B6 mice were characterized by moderate levels of both parasitemia and anemia and survival. In contrast, A mice experienced high parasitemia, severe anemia, and high mortality rates. During the period of anemia, erythropoiesis, as measured by in vivo 59Fe incorporation, was significantly more depressed in bone marrow and more increased in the spleen in resistant B6 mice. The increase in splenic 59Fe incorporation was a function of the size of the spleen. Bone marrow CFU-E were decreased to 50% of control in both strains, while splenic CFU-E were increased twofold greater in B6 mice compared to those in A mice. However, the absolute numbers of CFU-E per spleen in the two strains were not significantly different during peak parasitemia. Bone marrow BFU-E were transiently increased before peak parasitemia whereas splenic BFU-E peaked during peak parasitemia. A mice had significantly lower numbers of BFU-E per spleen on all days except at peak parasitemia. The frequency of blood-borne BFU-E and plasma erythropoietin titers was increased earlier and to a greater extent in A mice. These results suggest that an impaired amplification of late-stage splenic erythropoiesis may be an important determinant in the severity of anemia and lethality of infection with P. chabaudi AS in A mice. Moreover, these results demonstrate that the defective amplification of splenic erythropoiesis in A mice is neither caused by a defect in the mobilization of BFU-E from the bone marrow to the spleen nor caused by a defect in erythropoietin production.  相似文献   

2.
Postirradiation administration of Leukotrophin to whole-body irradiated mice was associated with increased LD50/30 and DRF. As indicated by 59Fe uptake and ESC number, haemopoiesis was significantly stimulated in spleen and bone marrow after Leukotrophin application to irradiated mice. DNA content and the uptake of 3H-thymidine in DNA was significantly enhanced in the thymus and bone marrow of irradiated and Leukotrophin-treated mice. The micronucleus test confirmed that Leukotrophin is a therapeutic agents, while administered before irradiation it does not influence the initial radio-lesions.  相似文献   

3.
In a rat model of chronic mountain sickness, the excessive polycythemic response to hypoxic exposure is associated with profound splenic erythropoiesis. We studied the uptake and distribution of radioactive iron and red blood cell (RBC) morphology in intact and splenectomized rats over a 30-day hypoxic exposure. Retention of (59)Fe in the plasma was correlated with (59)Fe uptake by both spleen and marrow and the appearance of (59)Fe-labeled RBCs in the blood. (59)Fe uptake in both the spleen and the marrow paralleled the production of nucleated RBCs. Splenic (59)Fe uptake was approximately 10% of the total marrow uptake under normoxic conditions but increased to 60% of the total marrow uptake during hypoxic exposure. Peak splenic (59)Fe uptake and splenomegaly occurred at the most intense phase of erythropoiesis and coincided with the rapid appearance of (59)Fe-labeled RBCs in the blood. The bone marrow remains the most important erythropoietic organ under both resting and stimulated states, but inordinate splenic erythropoiesis in this rat strain accounts in large measure for the excessive polycythemia during the development of chronic mountain sickness in chronic hypoxia.  相似文献   

4.
The effect of erythropoietin, increased by bleeding, on the erythropoiesis induced by irradiation in the spleen of AKR mice, has been studied. The following parameters were measured to quantify the erythropoietic activity: the number and size of hematopoietic nodules (colonies) and proerythroblasts in the spleen, the spleen, blood and red-cell 59Fe uptake and the hematocrit and reticulocytes in the blood. Under erythropoietic stimulus an increase in the number and size of colonies was observed and these colonies were observed sooner because of their more rapid growth. The proerythroblasts in the spleen appeared earlier, and there were increases in the spleen, blood and red-cell 59Fe uptake and in the hematocrit and reticulocytes in the blood.  相似文献   

5.
Infection of BALB/c mice with Rauscher leukemia virus (RLV) gives rise to pronounced erythrocytopoiesis manifesting in splenomegaly and is associated with progressive development of anemia. In the spleen erythroid colony forming units (CFU-E) increase exponentially up to 800-fold that of normal levels by the third week of infection. In vitro these CFU-E are dependent on erythropoietin for colony formation, their erythropoietin requirements being higher than that of CFU-E from normal mice. Numbers of CFU-E in spleen and degree of splenomegaly in anemic RLV infected mice were also shown to be modified by red blood cell transfusion, but progression of the disease was not stopped. Erythroid burst forming units (BFU-E) were also responsive to erythropoietin. However, a small proportion of cells also formed BFU-E colonies at concentrations which did not support growth of normal marrow BFU-E. When compared to normal, CFU-E found in RLV-infected spleen have similar velocity sedimentation rates. However, buoyant density separation of leukemic spleen cells indicated that CFU-E were more homogeneous (modal density 1.0695 g/cm3) than CFU-E from normal spleen. Analysis of physical properties of CFU-E and the nonhemoglobinized erythroblast-like cells, which accumulate in the spleen showed that they differed mainly in their distribution of cell diameter. Our findings show that erythroid progenitor cells in RLV infected mice are responsive to erythropoietin in vitro. Also in vivo erythropoiesis appears to be under control of erythropoietin but other factors which lead to progression of RLV disease apparently exist. Most proerythroblast-like cells, which are characteristic of this disease, apparently lack the potential to form colonies and may be more mature than CFU-E.  相似文献   

6.
This paper describes a study of the incorporation of 5 9Fe from 5 9Fe-labelled rat transferrin into rat bone marrow cells in culture. 5 9Fe was found in both stroma and cytoplasm of marrow cells, and the cytoplasmic 5 9Fe separated by polyacrylamide gel electrophoresis, into ferritin, haemoglobin and a low molecular weight fraction.The incorporation of 5 9Fe into all three cytoplasmic fractions, but not into the stroma, increased progressively with time. Erythropoietin stimulated the increase of 5 9Fe in ferritin within 1 h, the earliest time examined, and more than 3 h later in the stroma and haemoglobin.A proportion of the 59Fe incorporated into the stroma and low molecular weight iron fractions during a 1 h incubation with 59Fe-labelled transferrin was mobilised into ferritin and haemoglobin during a subsequent 4-h “cold-chase”. Erythropoietin, when present during the “cold-chase”, did not influence these 59Fe fluxes. The erythropoietin stimulation of 59Fe incorporation into ferritin, one of the earliest erythropoietin effects to be recorded, was therefore considered to be due to an increase of 59Fe uptake by the hormone-responsive cells rather than a direct effect on ferritin synthesis.20-h cultures containing erythropoietin when incubated with 59Fe-labelled transferrin for 4 h, showed dose-related erythropoietin stimulation of 59Fe incorporation into haemoglobin only.In the presence of 10 mM isonicotinic acid hydrazide, 59Fe incorporation into haemoglobin was inhibited, as in reticulocytes (Ponka, P. and Neuwirt, J. (1969) Blood 33, 690–707), while that into the stroma, ferritin and low molecular weight iron fractions, was stimulated; there were no reproducible effects of erythropoietin.  相似文献   

7.
Current knowledge about the effects of vanadium compounds on erythropoiesis is still reduced and even contradictory. The aim of this work was to evaluate the in vivo effects of a single dose of sodium orthovanadate (OV, 33 mg/kg i.p.) on CF-1 mice in a time course study (0-8 days). Murine erythropoiesis was assessed through a combinatory of experimental approaches. Classical peripheral and bone marrow (BM) hematological parameters were determined. Erythroid maturation in blood stream and hemopoietic tissues (59Fe uptake assays), BM erythroid progenitor frequency (clonogenic assays) and erythroid crucial protein expressions for commitment and survival: GATA-1, erythropoietin receptor (Epo-R) and Bcl-xL (immunoblottings) were evaluated. Neither BM cellularities nor BM viabilities changed noticeably during the study. Peripheral reticulocytes showed a biphasic increment on days 2 and 8 post-OV. hematocrits enhanced transiently between days 2 and 4. 59Fe uptake percentages enhanced in peripheral blood nearly two-fold over control values between 4 and 8 days (p<0.01) without changes in BM and spleen. Additionally, mature erythroid BM compartments: polychromatophilic erythroblasts and orthochromatic normoblasts increased by the eighth day. BFU-E colonies remained near basal values during the whole experience, whilst CFU-E colonies raised 60% over control at 8 days post-OV (p<0.05). GATA-1 and Epo-R were significantly over-expressed from the third until the end of the experimental protocol (p<0.01). Surprisingly, Bcl-xL showed a constitutive expression pattern without changes during the experience. Experimental data let us suggest that OV does not to cause bone marrow cytotoxicity and that it accelerates maturation of BM committed erythroid precursors. Moreover, there are significant correlations among erythroid-related protein expressions: GATA-1 and Epo-R and the frequency of CFU-E. In addition, Bcl-xL expression invariance during the time course study would indicate that the stimulatory effect of OV treatment on erythropoiesis was mainly exerted on the maturation of red cell precursors rather than on the antiapoptosis of erythroid terminal progenitors.  相似文献   

8.
The effect of RBC transfusion and erythropoietin (EPO) on the proliferation of immature erythrocyte progenitors was studied in the spleens of RBC transfused, lethally irradiated mice injected with bone marrow. Transfusion decreased expansion of the progenitors and slowed their proliferation: the mean cycle time as measured by per cent labelled mitosis (PLM) on the third day after injection of bone marrow was 10.7 hr in transfused as compared to 5.6 hr in non-transfused mice. One injection of five units of erythropoietin on day 2 decreased the mean cycle time to 7.3 hr in transfused mice and increased expansion of the progenitor cells. The effects of erythropoietin on cell proliferation were prompt: a significant increase of incorporation of 3H-TdR into DNA occurred within 2 hr of injection. Erythroblasts were absent from the spleens of transfused, irradiated bone marrow injected mice; however, erythroblasts appeared by 72 hr and 48 hr following EPO injection either 2 days or 5 days after transplantation respectively. Increased uptake of radioactive iron in spleen after erythropoietin injection preceded the appearance of erythroblasts by 2 and 1 days when erythropoietin was injected either 2 or 5 days after marrow transplantation respectively. The increase in cellular proliferation induced by erythropoietin in transfused irradiated mice injected with bone marrow equivalent to 0.35 femoral shaft was manifested as an increase of the total DNA content in the spleen by 119 μg (11.9 × 106 cells) within 48 hr of injection. The cellular increment produced by EPO injection on day 5 to mice given 0.05 femoral shaft consisted mainly of undifferentiated mononuclear cells, most of which were labelled, with erythroblasts comprising only one quarter of the increment. Erythropoietin inactivated by mild acid hydrolysis failed to increase cellular proliferation.  相似文献   

9.
Erythropoiesis, as measured by the uptake of 59Fe into plethoric mice, is stimulated by adenosine, AMP, cyclic AMP, and dibutyryl cyclic AMP, but not by cytidine, its nucleotides or cyclic GMP. This stimulation is erythropoietin dependent, because it is prevented by anti-erythropoietin. Theophylline neither stimulates erythropoiesis nor potentiates the action of erythropoietin on bone marrow cells in plethoric mice. Theophylline does potentiate the production of erythropoietin in rats following a frief hypoxic exposure but does not cause a similar increase in mice.  相似文献   

10.
11.
After acute intake of 90Sr the changes of d-9 CFUs number in mice (CBA) bone marrow, spleen and peripheral blood were investigated. The obtained results indicated similar quantitative changes in bone marrow and spleen CFUs on exposure to the 90Sr when radiation doses did not cause the decrease in life-time (1.11 kBq/g). Sarcomogeneous doses of 90Sr (29.6 kBq/g) resulted in drastic changes of hemopoietic system: spleen haematopoiesis activation and suppression of bone marrow functions. On the first day after 90Sr injection (29.6 kBq/g) the increase in number of peripheral blood CFUs (circulating pool) was observed.  相似文献   

12.
Retroviruses that cause acute oncogenesis are generally complexes of a replication-competent helper virus and a replication-defective component. However, the pure defective components have not been previously available. We prepared the defective spleen focus-forming virus component of Rauscher erythroleukemia virus (R-SFFV) by transfecting a colinear R-SFFV DNA clone into a retroviral packaging cell line (psi 2 cells). The transfected cells released virus (psi 2/SFFV) that was free of helper virus and that induced erythropoietin-dependent erythroid burst formation in bone marrow cultures. When injected into normal adult NIH/Swiss mice in moderate doses, psi 2/SFFV caused a rapid splenic erythroblastosis that regressed. Extensive erythroblastosis could be maintained by repeated injections of psi 2/SFFV into anemic mice or by the addition of a helper virus. We conclude that R-SFFV alone causes proliferation but not immortalization of a population of erythroblasts that is normally replenished from a precursor stem cell pool. Because these precursor cells are inefficiently infected, a single moderate inoculum of psi 2/SFFV causes a wave of erythroblastosis. The properties of the proliferating erythroblasts are substantially determined by the R-SFFV viral component.  相似文献   

13.
Adult susceptible mice (DBA/2J) infected with MPSV (myeloproliferative sarcoma virus), a defective RNA tumour virus, develop splenomegaly and progressive disruption of the haematologic system culminating in death. The present study was specifically directed toward determining the effects of the virus on erythroid differentiation. Early and late precursor cells (erythroid burst-forming units; BFU-E and colony-forming units; CFU-E, respectively) were evaluated by the ability of bone marrow and spleen cells to form colonies of fully differentiated erythroid cells in vitro. MPSV caused substantial modification of both the BFU-E and CFU-E populations in the bone marrow and spleen of infected animals. Changes were detected in the CFU-E population preceding any significant increase in spleen weight. In the bone marrow, the proportion of CFU-E cells increased almost twofold by days 5-10 after virus infection but decreased by day 15. In the spleen, CFU-E frequency rose 40-fold by days 10-15 and then declined steadily prior to death. At the peak of CFU-E expansion, a small proportion of the population appeared to be erythropoietin (Ep) independent, although there was no evidence of a complete switch to Ep-independence which occurs in Friend virus-induced erythroleukemia. Dose-response curves showed that none of these data could be explained in terms of a changing responsiveness to Ep. However, evidence is presented that indicates that BFU-E from MPSV-infected animals lose or have a reduced requirement for burst-promoting activity (BPA) relative to normal cells although their progeny still need Ep for terminal erythroid differentiation.  相似文献   

14.
The myeloproliferative sarcoma virus induces spleen focus formation in vivo and transforms fibroblasts in vitro. We showed in this study that in vitro infection of spleen or bone marrow cells from susceptible mice with the myeloproliferative sarcoma virus leads to the formation of erythroid bursts. Under optimal conditions erythroid bursts formed in the absence of added erythropoietin, but the addition of as little as 0.05 U of erythropoietin per ml to infected cultures resulted in a significant increase in numbers of erythroid bursts and the proportion of hemoglobinized cells. A comparison of the kinetics of burst formation and the size of the induced bursts with those induced with Friend virus suggested that either sarcoma virus such as the myeloproliferative sarcoma virus or the target cells for the two viruses were not the same. Density characterization and heat lability studies indicated that the increased erythroid proliferation in vitro was a virus-induced event, but the possibility that the induced erythroid burst formation is mediated via interaction with a nonerythroid target cell and subsequent release of a soluble factor cannot be ruled out.  相似文献   

15.
JLS-V9, a mouse bone marrow cell line infected with Rauscher leukemia virus at high passage level, produced larger amounts of virus than the standard JLS-V10 cells. The enhanced virus production was attributed to the increased saturation density of JLS-V9 cells.  相似文献   

16.
It was established by previous works that thymocytes treated with antilymphocyte serum secrete soluble factor capable of inhibiting exogenous colony formation in the spleen of lethally irradiated mice injected with bone marrow cells treated with the stem cell inhibition factor (SCIF). The purpose of the present investigation was to explore possible mechanisms of SCIF action. Regeneration of erythropoiesis (measured by 59Fe incorporation) in the spleen and bone marrow of mice injected with SCIF-treated bone marrow cells was inhibited as compared with control, while CFUs started proliferating with a 3-day delay. Two hours after SCIF treatment 60% of CFUs entered S phase as judged by hydroxyurea cell kill. The CFUs fraction treated with the SCIF was found to be diminished 3-4-fold as compared with control. The data obtained suggest that SCIF treatment makes CFUs enter 3 phase, which may account for the reduced capacity of CFUs to populate the spleen and to proliferate with a 3-day delay.  相似文献   

17.
Two doses of 1 mg/g of hydroxyurea (HU), injected 7 hr apart into irradiated mice in which CFU-S were proliferating during marrow regeneration, killed about 90% of CFU-S. This same dose regime injected into normal female mice, with non-proliferating CFU-S killed 92 % of CFU-C, 99 % of ESC and only 30 % of CFU-S. One day after the treatment CFU-S had decreased to 50 % and remained at about this level for a further day then returned to normal values. In spleen the increase in CFU-S was delayed by a day and showed a marked overshoot. During the period that CFU-S were decreased in number they were actively proliferating. Marrow CFU-C recovered in an exponential manner with a doubling time of 16 hr. Spleen CFU-C recovered 1 day later than marrow and showed a pronounced overshoot. ESC recovered very rapidly with doubling time of 5 hr. The changes in 59Fe incorporation into RBC, and the peripheral blood picture, were a delayed reflection of the changes in ESC and CFU-C.  相似文献   

18.
Erythropoietin stimulates DNA synthesis in the spleen of the polycythemic mouse with the maximum effect occurring approx 48 h after the hormone is administered. The increase in DNA synthesis is accompanied by morphologic evidence of increased erythropoiesis, increased 59Fe incorporation into heme, and an increase in the activity of the cytoplasmic high molecular weight DNA polymerase (DNA polymerase-α). In contrast, the activity of the low molecular weight DNA polymerase (DNA polymerase-β) does not significantly change after administration of erythropoietin. Vinblastine, colcemid, and daunomycin prevent the effects of erythropoietin on mouse spleen, so that increases in DNA synthesis, DNA polymerase-α, and 59Fe incorporation do not occur. DNA polymerase-α may have a short half-life in cells since its activity is barely detectable 12 to 24 h after administration of inhibitors of cellular proliferation or nucleic acid synthesis. The half-life of DNA polymerase-β may be long since it is unaffected by these inhibitors. Cytoplasmic rather than nuclear DNA polymerases appear to play a major role in erythropoietin-stimulated DNA synthesis and replication of erythroid cells.  相似文献   

19.
Transgenic mice were obtained inheriting the human erythropoietin gene under the control of viral regulatory elements. The reliable difference in haematocrit, the content of haemoglobin and percentage of reticulocytes in peripheral blood were not revealed. The level of serum erythropoietin in transgenic mice is several fold higher than in control mice. The increased pool of erythroid cells was observed in the bone marrow of transgenic mice, especially of normoblasts (3-fold) and reticulocytes (4,5-fold).  相似文献   

20.
Vibrio cholerae neuraminidase (VCN) treatment of donor bone marrow cells results in a reduction in the number of hematopoietic colonies (CFUs) formed in the spleens of lethally irradiated mice. Treatment of marrow cells with sodium periodate under mild conditions, known to preferentially oxidze sialic acid, also reduced CFUs while subsequent potassium borohydride reduction restored CFUs to 80% of control levels. Innoculum viability as measured by in vitro incorporation of tritiated precursors into proteins, nucleic acids, and oligosaccharides was unaffected by VCN treatment. The ability of bone marrow cells in culture to respond to the hormone erythropoietin, as measured by the incorporation of 59Fe into cyclohexanone-extractable heme, was also not affected by neuraminidase, making a cytotoxic effect of the VCN preparation unlikely. Incubation of VCN-treated marrow with either β-galactosidase or trypsin had no effect on the VCN-induced reduction in CFUs. These results are consistent with the idea that membrane sialic acid plays a direct and specific role in the implantation and development of CFUs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号