首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine the dependence of poleward force at a kinetochore on the number of kinetochore microtubules (kMTs), we altered the normal balance in the number of microtubules at opposing homologous kinetochores in meiosis I grasshopper spermatocytes at metaphase with a focused laser microbeam. Observations were made with light and electron microscopy. Irradiations that partially damaged one homologous kinetochore caused the bivalent chromosome to shift to a new equilibrium position closer to the pole to which the unirradiated kinetochore was tethered; the greater the dose of irradiation, the farther the chromosome moved. The number of kMTs on the irradiated kinetochore decreased with severity of irradiation, while the number of kMTs on the unirradiated kinetochore remained constant and independent of chromosome-to-pole distance. Assuming a balance of forces on the chromosome at congression equilibrium, our results demonstrate that the net poleward force on a chromosome depends on the number of kMTs and the distance from the pole. In contrast, the velocity of chromosome movement showed little dependence on the number of kMTs. Possible mechanisms which explain the relationship between the poleward force at a kinetochore, the number of kinetochore microtubules, and the lengths of the kinetochore fibers at congression equilibrium include a "traction fiber model" in which poleward force producers are distributed along the length of the kinetochore fibers, or a "kinetochore motor-polar ejection model" in which force producers located at or near the kinetochore pull the chromosomes poleward along the kMTs and against an ejection force that is produced by the polar microtubule array and increases in strength toward the pole.  相似文献   

2.
Kinetochores bound to kinetochore microtubules (kMTs) exhibit directional instability in mammalian and other mitotic vertebrate cells, oscillating between poleward (P) and away-from-the-pole (AP) movements. These oscillations are coupled to changes in length of kMTs in a way that maintains a net stretch of the centromere. To understand how sister kinetochore directional instability and kMT plus-end dynamic instability are coupled to oscillations in centromere stretch, we tracked at high resolution the positions of fluorescent kinetochores and their poles for oscillating chromosomes within spindles of metaphase PtK1 cells. We found that the kinetics of P and AP movement are nonlinear and different. By subtracting contributions from the poleward flux of kMTs, we found that maximum centromere stretch occurred when the leading kinetochore switched from depolymerization to polymerization, whereas minimum centromere stretch occurred on average 7 s after the initially trailing kinetochore switched from polymerization to depolymerization. These differences produce oscillations in centromere stretch at about twice the frequency of kinetochore directional instability and at about twice the frequency of centromere oscillations back and forth across the spindle equator.  相似文献   

3.
In mitotic vertebrate tissue cells, chromosome congression to the spindle equator in prometaphase and segregation to the poles in anaphase depend on the movements of kinetochores at their kinetochore microtubule attachment sites. To test if kinetochores sense tension to control their states of movement poleward (P) and away from the pole (AP), we applied an external force to the spindle in preanaphase newt epithelial cells by stretching chromosome arms with microneedles. For monooriented chromosomes (only one kinetochore fiber), an abrupt stretch of an arm away from the attached pole induced the single attached kinetochore to persist in AP movement at about 2 μm/min velocity, resulting in chromosome movement away from the pole. When the stretch was reduced or the needle removed, the kinetochore switched to P movement at about 2 μm/min and pulled the chromosome back to near the premanipulation position within the spindle. For bioriented chromosomes (sister kinetochores attached to opposite poles) near the spindle equator, stretching one arm toward a pole placed the kinetochore facing away from the direction of stretch under tension and the sister facing toward the stretch under reduced tension or compression. Kinetochores under increased tension exhibited prolonged AP movement while kinetochores under reduced tension or compression exhibited prolonged P movement, moving the centromeres at about 2 μm/min velocities off the metaphase plate in the direction of stretch. Removing the needle resulted in centromere movement back to near the spindle equator at similar velocities. These results show that tension controls the direction of kinetochore movement and associated kinetochore microtubule assembly/disassembly to position centromeres within the spindle of vertebrate tissue cells. High tension induces persistent AP movement while low tension induces persistent P movement. The velocity of P and AP movement appears to be load independent and governed by the molecular mechanisms which attach kinetochores to the dynamic ends of kinetochore microtubules.  相似文献   

4.
During metaphase and anaphase in newt lung cells, tubulin subunits within the kinetochore microtubule (kMT) lattice flux slowly poleward as kMTs depolymerize at their minus-ends within in the pole. Very little is known about how and where the force that moves the tubulin subunits poleward is generated and what function it serves during mitosis. We found that treatment with the drug taxol (10 microM) caused separated centrosomes in metaphase newt lung cells to move toward one another with an average velocity of 0.89 microns/min, until the interpolar distance was reduced by 22-62%. This taxol-induced spindle shortening occurred as kMTs between the chromosomes and the poles shortened. Photoactivation of fluorescent marks on kMTs revealed that taxol inhibited kinetochore microtubule assembly/disassembly at kinetochores, whereas minus-end MT disassembly continued at a rate typical of poleward flux in untreated metaphase cells. This poleward flux was strong enough to stretch the centromeric chromatin between sister kinetochores as much as it is stretched in control metaphase cells. In anaphase, taxol blocked kMT disassembly/assembly at the kinetochore whereas minus-end disassembly continued at a rate similar to flux in control cells (approximately 0.2 microns/min). These results reveal that the mechanism for kMT poleward flux 1) is not dependent on kMT plus-end dynamics and 2) produces pulling forces capable of generating tension across the centromeres of bioriented chromosomes.  相似文献   

5.
During metaphase in budding yeast mitosis, sister kinetochores are tethered to opposite poles and separated, stretching their intervening chromatin, by singly attached kinetochore microtubules (kMTs). Kinetochore movements are coupled to single microtubule plus-end polymerization/depolymerization at kinetochore attachment sites. Here, we use computer modeling to test possible mechanisms controlling chromosome alignment during yeast metaphase by simulating experiments that determine the 1) mean positions of kinetochore Cse4-GFP, 2) extent of oscillation of kinetochores during metaphase as measured by fluorescence recovery after photobleaching (FRAP) of kinetochore Cse4-GFP, 3) dynamics of kMTs as measured by FRAP of GFP-tubulin, and 4) mean positions of unreplicated chromosome kinetochores that lack pulling forces from a sister kinetochore. We rule out a number of possible models and find the best fit between theory and experiment when it is assumed that kinetochores sense both a spatial gradient that suppresses kMT catastrophe near the poles and attachment site tension that promotes kMT rescue at higher amounts of chromatin stretch.  相似文献   

6.
We argue that hypotheses for how chromosomes achieve a metaphase alignment, that are based solely on a tug-of-war between poleward pulling forces produced along the length of opposing kinetochore fibers, are no longer tenable for vertebrates. Instead, kinetochores move themselves and their attached chromosomes, poleward and away from the pole, on the ends of relatively stationary but shortening/elongating kinetochore fiber microtubules. Kinetochores are also "smart" in that they switch between persistent constant-velocity phases of poleward and away from the pole motion, both autonomously and in response to information within the spindle. Several molecular mechanisms may contribute to this directional instability including kinetochore-associated microtubule motors and kinetochore microtubule dynamic instability. The control of kinetochore directional instability, to allow for congression and anaphase, is likely mediated by a vectorial mechanism whose magnitude and orientation depend on the density and orientation or growth of polar microtubules. Polar microtubule arrays have been shown to resist chromosome poleward motion and to push chromosomes away from the pole. These "polar ejection forces" appear to play a key role in regulating kinetochore directional instability, and hence, positions achieved by chromosomes on the spindle.  相似文献   

7.
Organization of kinetochore fiber microtubules (MTs) throughout mitosis in the endosperm of Haemanthus katherinae Bak. has been analysed using serial section reconstruction from electron micrographs. Accurate and complete studies have required careful analysis of individual MTs in precisely oriented serial sections through many (45) preselected cells. Kinetochore MTs (kMTs) and non-kinetochore MTs (nkMTs) intermingle within the fiber throughout division, undergoing characteristic, time- dependent, organizational changes. The number of kMTs increases progressively throughout the kinetochore during prometaphase-metaphase. Prometaphase chromosomes which were probably moving toward the pole at the time of fixation have unequally developed kinetochores associated with many nkMTs. The greatest numbers of kMTs (74-109/kinetochore), kinetochore cross-sectional area, and kMT central density all occur at metaphase. Throughout anaphase and telophase there is a decrease in the number of kMTs and, in the kinetochore cross-sectional area, an increased obliquity of kMTs and increased numbers of short MTs near the kinetochore. Delayed kinetochores possess more kMTs than do kinetochores near the poles, but fewer kMTs than chromosomes which have moved equivalent distances in other cells. The frequency of C-shaped proximal MT terminations within kinetochores is highest at early prometaphase and midtelophase, falling to zero at midanaphase. Therefore, in Haemanthus, MTs are probably lost from the periphery of the kinetochore during anaphase in a manner which is related to both time and position of the chromosome along the spindle axis. The complex, time-dependent organization of MTs in the kinetochore region strongly suggests that chromosome movement is accompanied by continual MT rearrangement and/or assembly/disassembly.  相似文献   

8.
In mitosis, kinetochores are initially captured by the lateral sides of single microtubules and are subsequently transported toward spindle poles. Mechanisms for kinetochore transport are not yet known. We present two mechanisms involved in microtubule-dependent poleward kinetochore transport in Saccharomyces cerevisiae. First, kinetochores slide along the microtubule lateral surface, which is mainly and probably exclusively driven by Kar3, a kinesin-14 family member that localizes at kinetochores. Second, kinetochores are tethered at the microtubule distal ends and pulled poleward as microtubules shrink (end-on pulling). Kinetochore sliding is often converted to end-on pulling, enabling more processive transport, but the opposite conversion is rare. The establishment of end-on pulling is partly hindered by Kar3, and its progression requires the Dam1 complex. We suggest that the Dam1 complexes, which probably encircle a single microtubule, can convert microtubule depolymerization into the poleward kinetochore-pulling force. Thus, microtubule-dependent poleward kinetochore transport is ensured by at least two distinct mechanisms.  相似文献   

9.
It is now clear that a centrosome-independent pathway for mitotic spindle assembly exists even in cells that normally possess centrosomes. The question remains, however, whether this pathway only activates when centrosome activity is compromised, or whether it contributes to spindle morphogenesis during a normal mitosis. Here, we show that many of the kinetochore fibers (K-fibers) in centrosomal Drosophila S2 cells are formed by the kinetochores. Initially, kinetochore-formed K-fibers are not oriented toward a spindle pole but, as they grow, their minus ends are captured by astral microtubules (MTs) and transported poleward through a dynein-dependent mechanism. This poleward transport results in chromosome bi-orientation and congression. Furthermore, when individual K-fibers are severed by laser microsurgery, they regrow from the kinetochore outward via MT plus-end polymerization at the kinetochore. Thus, even in the presence of centrosomes, the formation of some K-fibers is initiated by the kinetochores. However, centrosomes facilitate the proper orientation of K-fibers toward spindle poles by integrating them into a common spindle.  相似文献   

10.
Li Y  Yu W  Liang Y  Zhu X 《Cell research》2007,17(8):701-712
For proper chromosome segregation, all kinetochores must achieve bipolar microtubule (MT) attachment and subsequently align at the spindle equator before anaphase onset. The MT minus end-directed motor dynein/dynactin binds kinetoehores in prometaphase and has long been implicated in chromosome congression. Unfortunately, inactivation of dynein usually disturbs spindle organization, thus hampering evaluation of its kinetochore roles. Here we specifically eliminated kinetochore dynein/dynactin by RNAi-mediated depletion of ZW10, a protein essential for kinetochore localization of the motor. Time-lapse microscopy indicated markedly-reduced congression efficiency, though congressing chromosomes displayed similar velocities as in control cells. Moreover, cells frequently failed to achieve full chromosome alignment, despite their normal spindles. Confocal microcopy revealed that the misaligned kinetochores were monooriented or unattached and mostly lying outside the spindle, suggesting a difficulty to capture MTs from the opposite pole. Kinetoehores on monoastral spindles were dispersed farther away from the pole and exhibited only mild oscillation. Furthermore, inactivating dynein by other means generated similar phenotypes. Therefore, kinetochore dynein produces on monooriented kinetochores a poleward pulling force, which may contribute to efficient bipolar attachment by facilitating their proper microtubule captures to promote congression as well as full chromosome alignment.  相似文献   

11.
Merotelic kinetochore attachment is a major source of aneuploidy in mammalian tissue cells in culture. Mammalian kinetochores typically have binding sites for about 20-25 kinetochore microtubules. In prometaphase, kinetochores become merotelic if they attach to microtubules from opposite poles rather than to just one pole as normally occurs. Merotelic attachments support chromosome bi-orientation and alignment near the metaphase plate and they are not detected by the mitotic spindle checkpoint. At anaphase onset, sister chromatids separate, but a chromatid with a merotelic kinetochore may not be segregated correctly, and may lag near the spindle equator because of pulling forces toward opposite poles, or move in the direction of the wrong pole. Correction mechanisms are important for preventing segregation errors. There are probably more than 100 times as many PtK1 tissue cells with merotelic kinetochores in early mitosis, and about 16 times as many entering anaphase as the 1% of cells with lagging chromosomes seen in late anaphase. The role of spindle mechanics and potential functions of the Ndc80/Nuf2 protein complex at the kinetochore/microtubule interface is discussed for two correction mechanisms: one that functions before anaphase to reduce the number of kinetochore microtubules to the wrong pole, and one that functions after anaphase onset to move merotelic kinetochores based on the ratio of kinetochore microtubules to the correct versus incorrect pole.  相似文献   

12.
BACKGROUND: Metaphase is thought to be a force-equilibrium state of "tug of war," in which poleward forces are pulling kinetochores and counteracting the cohesive forces between the centromeres. Unlike conventional kinesins, members of the Kin I family are microtubule-depolymerizing enzymes, which are expected to be molecules that could generate poleward forces. RESULTS: We have characterized mitotic roles of two Kin I homologs, Klp5 and Klp6, in fission yeast. Klp5 and Klp6 colocalize to the mitotic kinetochores and the spindle midzone. These two proteins form a heterocomplex, but not a homocomplex. Albeit not essential, both proteins are required for accurate chromosome segregation and normal morphology of interphase microtubules. Time-lapse live analysis using GFP-alpha-tubulin indicates that these mutants spend a much longer time (2-fold) in mitosis before the initiation of anaphase B. Further observation using kinetochore and centromere markers shows that, in these mutants, sister centromeres move back and forth between the two poles, indicating that entry into anaphase A is delayed. This is supported by live image analysis showing that Cut2 securin is retained during the prolonged mitosis. Furthermore, the mitotic extension is dependent upon the Mad2 spindle checkpoint. CONCLUSIONS: We discuss two models of Kin I function in fission yeast. One proposes that Klp5 and Klp6 are required for efficient capturing of kinetochores by the spindles, while the other proposes that they are required to generate tension upon kinetochore capturing. Kin I, therefore, plays a fundamental role in the establishment of metaphase, probably by generating poleward forces at the kinetochores.  相似文献   

13.
Urs-Peter Roos 《Chromosoma》1976,54(4):363-385
Chromosome orientation and behavior during prometaphase of mitosis in PtK1 rat kangaroo cells were investigated by cinémicrography and electron microscopy. The first chromosome movements occur soon after the nuclear envelope begins to break down in the region near each pole. Initial chromosome behavior is primarily determined by the distance from the kinetochore region to the spindle poles. The predominant pattern is a movement to and/or association with the proximal pole. Movement to and association with the more distant pole, or direct alignment at or near the spindle equator (direct congression) are less frequent patterns. Except for rare cases, pole-associated chromosomes congress sooner or later and most congressed chromosomes oscillate about the equator. — Ultrastructural observations suggest that pole-associated chromosomes are oriented only to the proximal pole (monotelic or syntelic orientation) and they demonstrate that the sister-kinetochores of congressing or oscillating chromosomes are oriented to opposite poles (amphitelic orientation). — Based on the structure of the early prometaphase spindle and four assumptions concerning the formation of kinetochore fibers and their force-producing interaction with complementary elements, the different patterns of chromosome behavior observed can be explained as a result of synchronous or asynchronous formation of sister-kinetochore fibers. The few chromosomes whose kinetochore region is approximately equidistant from the poles amphi-orient immediately because their sister-kinetochores form fibers synchronously and they congress directly because of the bidirectional forces to which they are subjected. The kinetochore region of most chromosomes is not equidistant from the poles. Therefore, they form a functional fiber first to the nearer pole and move to, or associate with, it because of the unidirectional force. Eventually, however, these chromosomes achieve amphitelic orientation and congress. Once established, amphitelic orientation is stable. Re-orientations do not occur during congression or oscillatory movements.  相似文献   

14.
Chromosome alignment during mitosis is frequently accompanied by a dynamic switching between elongation and shortening of kinetochore fibers (K-fibers) that connect kinetochores and spindle poles . In higher eukaryotes, mature K-fibers consist of 10-30 kinetochore microtubules (kMTs) whose plus ends are embedded in the kinetochore . A critical and long-standing question is how the dynamics of individual kMTs within the K-fiber are coordinated . We have addressed this question by using electron tomography to determine the polymerization/depolymerization status of individual kMTs in the K-fibers of PtK1 and Drosophila S2 cells. Surprisingly, we find that the plus ends of two-thirds of kMTs are in a depolymerizing state, even when the K-fiber exhibits net tubulin incorporation at the plus end . Furthermore, almost all individual K-fibers examined had a mixture of kMTs in the polymerizing and depolymerizing states. Therefore, although K-fibers elongate and shrink as a unit, the dynamics of individual kMTs within a K-fiber are not coordinated at any given moment. Our results suggest a novel control mechanism through which attachment to the kinetochore outer plate prevents shrinkage of kMTs. We discuss the ramifications of this new model on the regulation of chromosome movement and the stability of K-fibers.  相似文献   

15.
Tanaka TU 《Chromosoma》2008,117(6):521-533
To maintain their genetic integrity, eukaryotic cells must segregate their chromosomes properly to opposite poles during mitosis. This process mainly depends on the forces generated by microtubules that attach to kinetochores. During prometaphase, kinetochores initially interact with a single microtubule that extends from a spindle pole and then move towards a spindle pole. Subsequently, microtubules that extend from the other spindle pole also interact with kinetochores and, eventually, each sister kinetochore attaches to microtubules that extend from opposite poles (sister kinetochore bi-orientation). If sister kinetochores interact with microtubules in wrong orientation, this must be corrected before the onset of anaphase. Here, I discuss the processes leading to bi-orientation and the mechanisms ensuring this pivotal state that is required for proper chromosome segregation.  相似文献   

16.
Anchorage of microtubule minus ends at spindle poles has been proposed to bear the load of poleward forces exerted by kinetochore-associated motors so that chromosomes move toward the poles rather than the poles toward the chromosomes. To test this hypothesis, we monitored chromosome movement during mitosis after perturbation of nuclear mitotic apparatus protein (NuMA) and the human homologue of the KIN C motor family (HSET), two noncentrosomal proteins involved in spindle pole organization in animal cells. Perturbation of NuMA alone disrupts spindle pole organization and delays anaphase onset, but does not alter the velocity of oscillatory chromosome movement in prometaphase. Perturbation of HSET alone increases the duration of prometaphase, but does not alter the velocity of chromosome movement in prometaphase or anaphase. In contrast, simultaneous perturbation of both HSET and NuMA severely suppresses directed chromosome movement in prometaphase. Chromosomes coalesce near the center of these cells on bi-oriented spindles that lack organized poles. Immunofluorescence and electron microscopy verify microtubule attachment to sister kinetochores, but this attachment fails to generate proper tension across sister kinetochores. These results demonstrate that anchorage of microtubule minus ends at spindle poles mediated by overlapping mechanisms involving both NuMA and HSET is essential for chromosome movement during mitosis.  相似文献   

17.
A bioriented chromosome is tethered to opposite spindle poles during congression by bundles of kinetochore microtubules (kMts). At room temperature, kinetochore fibers are a dominant component of mitotic spindles of PtK2 cells. PtK2 cells at room temperature were injected with purified tubulin covalently bound to DTAF and congression movements of individual chromosomes were recorded in time lapse. Congression movements of bioriented chromosomes between the poles occur over distances of 4.5 microns or greater. DTAF-tubulin injection had no effect on either the velocity or extent of these movements. Other cells were lysed, fixed, and the location of DTAF-tubulin incorporation was detected from digitally processed images of indirect immunofluorescence of an antibody to DTAF. Microtubules were labeled with an anti-beta tubulin antibody. At 2-5 minutes after injection, concentrated DTAF-tubulin staining was seen in the kinetochore fibers proximal to the kinetochores; a low concentration of DTAF-tubulin staining occurred at various sites through the remaining length of the fibers toward the pole. Kinetochore fibers in the same cell displayed different lengths (0.2 to 4 microns) of concentrated DTAF-tubulin incorporation proximal to the kinetochore, as did sister kinetochore fibers. Ten minutes after injection, the lengths of DTAF-containing chromosomal fibers were greater than expected if incorporation resulted solely from the lengthening of kinetochore microtubules due to congression movements of the chromosomes. Besides incorporation as a result of chromosome movement, two other mechanisms might explain the length of the DTAF-containing segments: 1) a poleward flux of tubulin subunits (Mitchison, 1989) or 2) capture of DTAF-containing nonkinetochore microtubules.  相似文献   

18.
We used laser microsurgery to cut between the two sister kinetochores on bioriented prometaphase chromosomes to produce two chromosome fragments containing one kinetochore (CF1K). Each of these CF1Ks then always moved toward the spindle pole to which their kinetochores were attached before initiating the poleward and away-from-the-pole oscillatory motions characteristic of monooriented chromosomes. CF1Ks then either: (a) remained closely associated with this pole until anaphase (50%), (b) moved (i.e., congressed) to the spindle equator (38%), where they usually (13/19 cells) remained stably positioned throughout the ensuing anaphase, or (c) reoriented and moved to the other pole (12%). Behavior of congressing CF1Ks was indistinguishable from that of congressing chromosomes containing two sister kinetochores. Three-dimensional electron microscopic tomographic reconstructions of CF1Ks stably positioned on the spindle equator during anaphase revealed that the single kinetochore was highly stretched and/or fragmented and that numerous microtubules derived from the opposing spindle poles terminated in its structure. These observations reveal that a single kinetochore is capable of simultaneously supporting the function of two sister kinetochores during chromosome congression and imply that vertebrate kinetochores consist of multiple domains whose motility states can be regulated independently.  相似文献   

19.
CENP-E is a kinesin-like protein that when depleted from mammalian kinetochores leads to mitotic arrest with a mixture of aligned and unaligned chromosomes. In the present study, we used immunofluorescence, video, and electron microscopy to demonstrate that depletion of CENP-E from kinetochores via antibody microinjection reduces kinetochore microtubule binding by 23% at aligned chromosomes, and severely reduces microtubule binding at unaligned chromosomes. Disruption of CENP-E function also reduces tension across the centromere, increases the incidence of spindle pole fragmentation, and results in monooriented chromosomes approaching abnormally close to the spindle pole. Nevertheless, chromosomes show typical patterns of congression, fast poleward motion, and oscillatory motions. Furthermore, kinetochores of aligned and unaligned chromosomes exhibit normal patterns of checkpoint protein localization. These data are explained by a model in which redundant mechanisms enable kinetochore microtubule binding and checkpoint monitoring in the absence of CENP-E at kinetochores, but where reduced microtubule-binding efficiency, exacerbated by poor positioning at the spindle poles, results in chronically monooriented chromosomes and mitotic arrest. Chromosome position within the spindle appears to be a critical determinant of CENP-E function at kinetochores.  相似文献   

20.
In mitotic cells, an error in chromosome segregation occurs when a chromosome is left near the spindle equator after anaphase onset (lagging chromosome). In PtK1 cells, we found 1.16% of untreated anaphase cells exhibiting lagging chromosomes at the spindle equator, and this percentage was enhanced to 17.55% after a mitotic block with 2 microM nocodazole. A lagging chromosome seen during anaphase in control or nocodazole-treated cells was found by confocal immunofluorescence microscopy to be a single chromatid with its kinetochore attached to kinetochore microtubule bundles extending toward opposite poles. This merotelic orientation was verified by electron microscopy. The single kinetochores of lagging chromosomes in anaphase were stretched laterally (1.2--5.6-fold) in the directions of their kinetochore microtubules, indicating that they were not able to achieve anaphase poleward movement because of pulling forces toward opposite poles. They also had inactivated mitotic spindle checkpoint activities since they did not label with either Mad2 or 3F3/2 antibodies. Thus, for mammalian cultured cells, kinetochore merotelic orientation is a major mechanism of aneuploidy not detected by the mitotic spindle checkpoint. The expanded and curved crescent morphology exhibited by kinetochores during nocodazole treatment may promote the high incidence of kinetochore merotelic orientation that occurs after nocodazole washout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号