首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bormann CL  Ongeri EM  Krisher RL 《Theriogenology》2003,59(5-6):1373-1380
Only a small proportion of goat oocytes selected for in vitro oocyte maturation (IVM) can successfully complete cytoplasmic maturation and support embryonic development. To produce goat blastocysts more efficiently in vitro, it is necessary to identify factors required during oocyte maturation. The objective of this study was to determine the role of vitamins during maturation of caprine oocytes in semi-defined medium on subsequent developmental capacity in vitro. Cumulus oocyte complexes (COCs) collected from a local abattoir were matured in synthetic oviductal fluid (SOF) medium supplemented with BSA, LH, FSH, and EGF in the presence or absence of MEM vitamins for 24 h. The COCs were co-incubated with frozen-thawed sperm in Bracket and Oliphant fertilization medium for 18-22 h. Embryos were cultured in G1.2 medium for 72 h followed by culture in G2.2 medium for an additional 72 h. Addition of vitamins significantly increased (P<0.05) overall blastocyst development (16.4+/-1.2% versus 12.3+/-1.1%), and tended to increase (P<0.06) the percentage of cleaved embryos (61.4+/-3.0% versus 52.7+/-2.6%). Addition of MEM vitamins to SOF maturation medium significantly increased (P<0.05) mean blastocyst cell number compared with control medium (107.7+/-6.0 versus 85.1+/-6.3). Hatched blastocysts tended to have increased (P<0.06) cell numbers in the vitamin-treated group (150.5+/-8.4 versus 123.4+/-8.8). These results suggest that addition of vitamins during oocyte maturation is beneficial for subsequent blastocyst development and viability.  相似文献   

2.
Széll AZ 《Theriogenology》1995,44(5):673-680
The effects of glutamine (Gln) on the in vitro development of sheep embryos cocultured with sheep oviduct epithelial cells (SOEC) or cultured in medium alone were investigated. The in vitro development was evaluated after culture in synthetic oviduct fluid (SOF) medium to Day 6, and then the viability of some of the morula/blastocyst stage embryos was assessed by transfer into recipient ewes. In Experiment 1, sheep embryos were cultured from Day 2 to Day 6 in SOF containing 0 or 1 mM Gln with or without (SOEC) support in a 2 x 2 factorial design. An interaction was found between the effects of Gln and SOEC (P<0.001). The addition of Gln increased blastocyst formation (6%, 2 36 vs 35%, 11 31 ) and the rate of pregnancy (50%, 4 8 vs 100%, 5 5 ) when the embryos were cultured in medium alone, but had no beneficial effect in the presence of SOEC. In Experiments 2 and 3, sheep embryos were cultured from Day 1 to Day 6 in SOF supplemented with 1 mM Gln, with 1 mM alpha-ketoglutarate or without supplementation (control). In Experiment 2, no other amino acids were added, but in Experiment 3 SOF was supplemented with 19 other amino acids. In Experiment 2, when Gln was the only amino acid, the rate of blastocyst formation was increased by the addition of Gln (24%, 8 35 ), but alpha-ketoglutarate caused no increase in blastocyst formation (3%, 1 34 ) compared to the control group (6%, 2 34 ). In Experiment 3, when 19 other amino acids were added, neither Gln nor alpha-ketoglutarate affected the rate of blastocyst formation or the subsequent development of embryos in recipient ewes. These results showed that Gln, when used as a single amino acid, has a beneficial effect on the development of sheep embryos in serum free culture without somatic cells. The data suggest that Gln is used as a source of amino groups rather than as a source of energy since no beneficial effects were found when its deaminated carbon skeleton (alpha-ketoglutarate) was used or when other amino acids were present.  相似文献   

3.
Follicular fluid from 2 to 4 and 5 to 8 mm diameter non-atretic follicles (SFF and LFF, respectively) of sows was added during IVM of cumulus oocytes complexes (COCs) to study its effects on cumulus expansion, nuclear maturation, and subsequent fertilization and embryo development in presence or absence of recombinant human FSH. COCs aspirated from 2 to 5 mm follicles of sow ovaries, were cultured for the first 22 h in TCM-199 and 100 microM cysteamine, with or without 10% pFF and/or 0.05 IU/ml recombinant hFSH. For the next 22 h, the COCs were cultured in the same medium, but without pFF and FSH. After culture, cumulus cells were removed and the oocytes were either fixed and stained to evaluate nuclear stages or co-incubated with fresh sperm. Twenty-four hours after fertilization, presumptive zygotes were fixed to examine fertilization or cultured for 6 days to allow blastocyst formation. Subsequently, embryos were evaluated and the blastocysts were fixed and stained to determine cell numbers. When LFF was added to maturation medium, cumulus expansion and percentage of nuclear maturation (277 +/- 61 microm and 72%, respectively) of COCs were significantly higher (P < 0.05) than those in SFF (238 +/- 33 microm and 55%, respectively). However, in the presence of FSH both FF stimulated cumulus expansion and nuclear maturation to a similar degree. No differences were observed with regards to sperm penetration, male pronucleus formation, and to polyspermia between fertilized oocytes matured either in SFF or LFF. Fertilized oocytes matured in the presence of LFF without or with FSH showed a higher cleavage (45 +/- 7% and 51 +/- 7%, respectively) and blastocyst (14 +/- 4% and 22 +/- 6%, respectively) formation rate compared to SFF (cleavage, 35 +/- 8% and 41 +/- 4%, blastocyst: 8 +/- 3 and 13 +/-3, respectively; P < 0.05). The mean number of cells per blastocyst did not differ significantly between treatments. These findings indicate that factor(s) within follicles at later stages of development play an important role during oocyte maturation and thereby enhance developmental competence to occur.  相似文献   

4.
The objectives of this study were to: (1) evaluate the pregnancy rates after transfer of embryos produced in the presence or absence of epidermal growth factor (EGF) during in vitro maturation, and (2) compare several variables of the gravid uterus on day 140 after fertilization in single, twin and triplet pregnancies in ewes (n = 12) bred naturally and in ewes (n = 18) after transfer of embryos produced in vitro. Oocytes collected from FSH-treated ewes (n = 18) were collected from all visible follicles and cultured in maturation medium with or without EGF. Oocytes were then fertilized in vitro by frozen-thawed semen. On day 5 after fertilization, embryos with > or = 16 cells were transferred to recipient ewes (n = 39). In addition 12 ewes were bred naturally. Pregnancy was verified by real-time ultrasonography on day 45 or later after embryo transfer (ET) or breeding. On day 140 of pregnancy, the reproductive tract was collected from all ewes and the following parameters were determined: the number, sex, weight and crown to rump length (CRL) of fetuses, weights of gravid uterus and fetal membranes, and weight and number of placentomes. Presence of EGF in maturation medium increased (P < 0.04) cleavage rates (78% versus 59%) and percentage of > or = 16 cell embryos on day 5 after fertilization (62% versus 40%). Pregnancy rates tended to be greater (P < 0.1) after transfer of embryos matured in the presence of EGF (52%) than in the absence of EGF (39%). EGF presence in maturation medium did not affect any variables of gravid uterus or fetal weight. For single pregnancies in naturally bred ewes and ewes after ET all uterine variables were similar. For twin pregnancies, weight of gravid uterus, weight of uterus plus fetal membranes, total weight of placentomes/ewe, mean weight of individual placentome, mean weight of fetus, total fetal weight/ewe and CRL were greater (P < 0.0001-0.04) for ewes after ET than for ewes bred naturally. The weights of gravid uterus, fluid, uterus plus fetal membranes, fetal membranes, total placentomes/ewe, mean weight of individual placentome and total fetal weight/ewe were greater (P < 0.0001-0.08) for triplet pregnancies in ewes after ET than single and twin pregnancies in ewes naturally bred or after ET. The number of placentomes/fetus was greatest (P < 0.0001-0.06) in single pregnancies in ewes bred naturally and after ET fewer in twin pregnancies in ewes bred naturally and after ET and fewest in triplet pregnancies in ewes after ET. The total number of placentomes/ewe was greatest (P < 0.0001-0.06) for twin pregnancies in ewes naturally bred, fewer in single pregnancies in ewes naturally bred and twin and triplet pregnancies after ET, and fewest in single pregnancies in ewes after ET. The mean weight of fetus was greater (P < 0.0001-0.07) in single pregnancies in ewes naturally bred or after ET than in twin or triplet pregnancies in ewes naturally bred or after ET. The CRL was the lowest (P < 0.01) in twin pregnancies in ewes bred naturally. For pregnancies after natural breeding and after ET, the number of fetuses/ewe was negatively correlated (P < 0.03-0.0001) with the weight of placentomes/fetus, the number of placentomes/fetus, the mean weight of the fetus and CRL, and was positively correlated (P < 0.0001-0.05) with weight of gravid uterus, the total number of placentomes/ewe and total fetal weight/ewe. These data demonstrate that the presence of EGF in maturation medium increases the rates of cleavage and early embryonic development, and has a tendency to enhance rates of pregnancy but does not affect variables of the gravid uteri in ewes after transfer of in vitro produced embryos. Transfer of embryos produced in vitro affected some uterine variables in twin but not single pregnancies to compare with pregnancies after natural breeding. In addition, culture conditions in the present experiment did not create large offspring syndrome. The low number of placentomes/fetus seen in triple pregnancies appears to be compensated for by the increase in the weight of each individual placentome.  相似文献   

5.
Employing a total of 3465 bovine oocytes this study was aimed at improving the efficiency of bovine embryo production under defined and undefined conditions. Following in vitro maturation (IVM) and in vitro fertilization (IVF), oocytes were allocated to various culture treatments using synthetic oviduct fluid (SOF). In our 3 experiments we showed that: 1) the addition of fetal calf serum (FCS 10% v/v) to SOF droplets after 20 to 24 h significantly improved blastocyst yields on Day 6 (21 vs 12%; P < 0.01), but not at later stages and resulted in significantly higher Day-8 blastocyst cell numbers (148 +/- 61 vs 92 +/- 35; P < 0.05); 2) the removal of bovine serum albumin (BSA) from the standard SOF medium resulted in significantly reduced blastocyst yields on Days 6, 7 and 8, respectively (17 vs 8%; 28 vs 18%; 31 vs 21%; P < 0.05); 3) the presence or absence of cumulus cells surrounding the presumptive zygote in culture in SOF had no effect on cleavage rate, percentage of 5-8 cell embryos or blastocyst yields (Day 6,7 or 8); 4) the culture of presumptive zygotes in SOF in an atmosphere of 5% CO2 in air (20% O2) resulted in significantly reduced development compared with culture in 5% CO2, 5% O2, 90% N2 in terms of blastocyst yield on Days 6, 7 and 8 and on Day 8 hatching rate, respectively (5 vs 22%; 9 vs 33%; 13 vs 48%; 50 vs 8%; P < 0.001) and 5) embryo density (1 embryo per 1 or 3 microl SOF) or replacing the culture medium every 48 h had no effect when SOF was supplemented with serum; however, under serum-free conditions, changing of the media resulted in a slightly improved Day-6 blastocyst yield such that renewal of serum-free medium mimicked the effect of serum addition.  相似文献   

6.
The objectives of the present study were to examine whether delayed exposure of porcine cumulus-oocyte complexes (COCs) to gonadotropins affects the diameter of oocytes, the nuclear morphology of the germinal vesicle, the rate of germinal vesicle breakdown (GVBD), and the embryonic developmental rate of inseminated oocytes following maturation and fertilization in vitro (IVM/IVF). After preincubation (experimental) or no preincubation (control) in BSA-free NCSU23 medium containing 1096 porcine follicular fluid for 12 h, COCs were cultured for maturation in the same medium supplemented with gonadotropins for 20 h and then without those gonadotropins for 20 h. During the preincubation period, the nuclear morphology of the germinal vesicles became more homogeneous. Incidence of GVBD after 20 h of maturation culture was not different between the control and experimental group. When cultured in NCSU23 medium for 7 d following IVF, the incidence of embryos that developed to the blastocyst stage (23.1 +/- 3.1%) was higher in the experimental group than in the control group (8.7 +/- 1.2%). Blastocysts in the experimental group had a larger number of cells than control blastocysts. Following embryo transfer into the oviduct of recipient gilts, IVM/IVF embryos had elongated by Day 12 of gestation. These results indicate that preincubation of porcine COCs, before exposure to gonadotropins to induce the resumption of meiosis, increases the rate of development of IVM/IVF embryos to the blastocyst stage.  相似文献   

7.
8.
More abnormal fertilization has been found in sheep oocytes after intracytoplasmic sperm injection (ICSI) than after in vitro fertilization (IVF). Although the birth of a normal lamb has been reported, the efficiency of blastocyst production is low. We therefore evaluated the cleavage, development and viability of sheep embryos obtained from ICSI, IVF and sham injection. In vitro matured oocytes either injected or inseminated with spermatozoa were assessed for cleavage 1 and 4 d after injection or insemination, and for development to blastocyst after 7 d of culture. A total of 699 oocytes was injected (ICSI); 198 (30.6%) were activated and 55 (8.5%) developed to the blastocyst stage. Of the 17 recipient ewes with 1, 2, 3 or 4 embryos, 15 (88.2%) were pregnant on Day 18; of these 17 recipients, 7 (41.1%) and 6 (35.2%) ewes remained pregnant on Days 45 and 110, respectively. Two normal lambs were born, one ewe died on Day 110 with 2 normal male fetuses, another ewe aborted on Day 90 and 4 pregnancies were maintained. A total of 517 oocytes was inseminated (IVF); 296 (62%) were activated and 90 (18.8%) reached the blastocyst stage. A total of 19 ewes received 1, 2, 3 or 4 embryos; of these, 13 (68.4%) were pregnant on Day 18, 8 (42.1%) ewes remained pregnant on each of Days 45 and 110. Three ewes delivered 5 lambs. Five pregnancies were maintained. A total of 156 oocytes was sham injected, 38 (24.3%) were activated and no blatocysts were obtained after culture. The results of this study showed that blastocysts obtained after ICSI are potentially viable and are not a result of parthenogenesis.  相似文献   

9.
Reduced atmospheric oxygen concentration is beneficial to embryo development; however, optimal oxygen concentration for oocyte maturation remains undetermined. Likewise, there is no consensus of appropriate medium supplementation during maturation. The objective of this study was to determine whether oxygen tension (20% or 5% O2) and epidermal growth factor (EGF) affect oocyte metabolism and subsequent embryo development. Cumulus-oocyte complexes (COCs) were collected from 28-day-old equine chorionic gonadotropin (eCG) primed or unprimed F1 (C57BL/6xCBA) mice. COCs were matured in defined medium in one of four groups: 20% O2, 20% O2 + EGF, 5% O2, 5% O2 + EGF. In vivo matured COCs were also collected for analysis. COCs from unprimed mice, matured in 5% O2 +/- EGF or 20% O2 + EGF had higher metabolic rates than COCs matured in 20% O2 (P < 0.05). COCs from primed mice had higher metabolic rates when matured in the presence of EGF, regardless of oxygen tension (P < 0.01). Oxygen uptake and mitochondrial membrane potential were higher for in vivo matured oocytes and oocytes matured under 5% O2 compared to oocytes matured under 20% O2 (P < 0.05). Blastocyst formation was not different between maturation groups (primed or unprimed); however, embryo cell numbers were 20-45% significantly higher when COCs were matured at 5% O2 (P < 0.05). Results suggest that oocytes matured in physiological concentrations of oxygen have improved development and metabolic activity, more closely resembling in vivo maturation. These findings have implications for oocyte maturation in both clinical and research laboratories.  相似文献   

10.
Evidence indicates that oocyte/embryo quality in the sheep is affected by nutrient status during the cycle of conception. This study aimed to determine, in the superovulated ewe, if there are stages during the peri-conception period (-18 days to +6 days relative to the day of ovulation [Day 0]) when quality is more likely to be influenced by nutrition. In Experiment 1, ewes were provided with either a 0.5 x maintenance (L), 1.0 x maintenance (M) or 1.5 x maintenance (H) diet (in terms of daily energy requirements) during the peri-conception period. Diet did not affect the mean ovulation rate (range: 15.4+/-1.47 to 16.1+/-1.55) nor the mean number of embryos collected per ewe (range: 10.9+/-2.05 to 12.4+/-1.82) but there was an increase (P<0.05) in the mean number of cells per blastocyst in the L diet (74.7+/-1.45) compared with either the M (66.4+/-1.29) or H (62.0+/-0.84) diets. This increase was due to an increase in the number of trophectoderm (Tr) cells, resulting in a shift (P<0.05) in the Tr:inner cell mass (ICM) cell ratio (range 0.69+/-0.03 to 0.73+/-0.04). In Experiment 2, six diets (HHH, MHH, MHL, MLH, MLL and LLL) were imposed during three 6-day periods commencing 12 days before and continuing until 6 days after ovulation. Although diet had minimal effect on the superovulatory response, both the mean number of cells per blastocyst and the Tr:ICM ratio were increased (P<0.05) when the L diet was provided after Day 0 (diets MHL, MLL and LLL). It is concluded that the ewe is able to respond to acute changes in nutrition imposed immediately after ovulation, resulting in changes in embryo development including cell lineage differentiation. The significance of these findings, in terms of fetal development, embryo-maternal signalling and the nutritional management of the ewe is discussed.  相似文献   

11.
Bovine blastocysts were produced using 6 different systems: 5 commonly used in vitro culture systems (synthetic oviduct fluid medium - SOF- without fetal calf serum, SOF supplemented with 10% serum for the entire culture period, SOF supplemented with 10% serum from Day 4 of culture, M199 coculture with bovine oviduct epithelial cells, M199 coculture with granulosa cell monolayer) and 1 in vivo culture system involving collection of blastocysts from superovulated bovine donors at Day 7. Zygotes obtained from IVM/IVF were assigned randomly to 1 of the 5 systems tested and were cultured for 9 d (Day 0= day of insemination). Cleavage, development to the blastocyst stage and blastocyst sex ratio were assessed in all treatments. In addition, the effect of the IVC system on the kinetics of blastocyst development and sex ratio was assessed on Days 6, 7, 8, and 9. The presence of fetal calf serum in SOF not only resulted in faster development (19.1% of blastocysts in SOF supplemented with serum vs 7.1% in absence of serum at Day 6; P < 0.05) and increased blastocyst production (47.5% of blastocysts in SOF supplemented with serum vs 34.4% in absence of serum; P < 0.05) but it also enhanced overall male survival. The coculture systems produced fewer blastocysts than culture in SOF (27.6 to 28.3% in coculture vs 47.5% in SOF supplemented with serum; P < 0.05), but similar to SOF without fetal calf serum, they had no effect on blastocyst sex ratio.  相似文献   

12.
The objectives of this study were to determine whether the addition of growth hormone (GH) to maturation medium and GH or insulin-like growth factor-I (IGF-I) to culture medium affects development of cultured bovine embryos. We matured groups of 10 cumulus-oocyte complexes (COCs) in serum-free TCM-199 medium containing FSH and estradiol with or without 100 ng/ml GH. After fertilization, we transferred groups of 10 putative zygotes to 25 microl drops of a modified KSOM medium containing the following treatments: non-specific IgG (a control antibody, 10 microg/ml); GH (100 ng/ml) + IgG (10 microg/ml, GH/IgG); IGF-I (100 ng/ml) + IgG (10 microg/ml, IGF/IgG); antibody to IGF-I (10 microg/ml, anti-IGF); GH (100 ng/ml) + anti-IGF (10 microg/ml GH/anti-IGF); IGF-I (100 ng/ml) + anti-IGF (10 microg/ml, IGF/anti-IGF); no further additions (control). We repeated the experiment six times. Adding GH to the maturation medium increased cleavage rates at Day 3 compared to control (87.3 +/- 1.2% > 83.9 +/- 1.2%; P < 0.05) but had no effects on blastocyst development at Day 8. At Day 8, blastocyst development was greater (P < 0.01) for GH/IgG (24.8 +/- 2.5%) and IGF/IgG (33.7 +/- 2.5%) than for IgG (16.1 +/- 2.1%) and greater for IGF/IgG than for GH/IgG (P < 0.02). Blastocyst development at Day 8 did not differ between anti-IGF (20.4 +/- 1.8%) and GH/anti-IGF (24.1 +/- 1.9%) or IGF/anti-IGF (17.7 +/- 1.9%), but it was greater for GH/anti-IGF than for IGF/anti-IGF (P < 0.05). The Day 8 blastocysts of GH/IgG and IGF-I/IgG groups had a higher (P < 0.01) number of cells than the IgG group. The addition of anti-IGF-I eliminated the effects of IGF-I on cell number but did not alter GH effects. In conclusion, both GH and IGF-I stimulate embryonic development in cattle and GH effects may likely involve IGF-I-independent mechanisms.  相似文献   

13.
The objectives of this study were to examine the effect of culture system on bovine blastocyst formation rates and quality. Presumptive IVM/IVF bovine zygotes were cultured either in vitro in synthetic oviduct fluid (SOF, 25 embryos/25 microL in 5% CO2, 5% O2, 90% N2 at 39 degrees C) or in vivo in the ewe oviduct (approximately 100 embryos per oviduct). The recovery rate after in vivo culture was 53% (813/1,530). The blastocyst rate on Day 7 was significantly higher for the in vitro system (28%, 362/1,278 vs 17%, 37/813; P< 0.0001). However, after culture in vitro for a further 24 h, there was no difference in Day 8 yields (36%, 457/1,278 vs 32%, 258/813, for in vitro and in vivo culture, respectively). There was no difference in blastocyst cell number between treatments (Day 7: 96 vs 103; Day 8: 78 vs 85 for in vitro and in vivo culture, respectively). Irrespective of culture system, Day 7 blastocysts had a significantly higher cell number than those appearing on Day 8. There was no difference in pregnancy rate at Day 35 after fresh transfer of a single Day 7 blastocyst (37.5%, 21/56 vs 45.3%/, 24/53 for in vitro and in vivo culture, respectively). After cryopreservation by freezing in 10% glycerol, VS3a vitrification or solid surface vitrification, the survival of in vitro cultured embryos was significantly lower than survival of embryos cultured in the ewe oviduct or those produced by superovulation of donors. In conclusion, these findings demonstrate that while bovine zygotes cultured in vitro are capable of rates of development similar to those of their in vivo cultured counterparts (in terms of Day 8 blastocyst yield, cell number and early pregnancy rate), there are significant differences in embryo cryosurvival. This suggests that current in vitro culture systems need to be improved to optimize embryo quality and pregnancy rates.  相似文献   

14.
The objective of this study was to compare the effect of different supplements to the basic IVM medium (TCM199) on the efficiency of cattle oocyte maturation and blastocyst production, and the incidence of apoptosis in both oocytes and blastocysts. Two protein supplements (FBS and fafBSA) and a macromolecule (PVP40) were compared in a 3 treatmentsx9 replicates design. Cumulus-oocyte complexes (COCs) aspirated from slaughterhouse ovaries were matured for 24h in TCM199 medium supplemented with 10% FBS, 6% fafBSA or 4% PVP40 (50-70 COCs in each treatment/replicate), then inseminated and cultured in vitro for 8 days. Immature and mature oocytes as well as Day 8 blastocysts were subjected to TUNEL analysis. Cleavage rate was monitored on Day 2 post-insemination (pi), whereas blastocyst yield on Day 8 pi. The composition of maturation media did not affect zygotic cleavage rate on Day 2 (on average 71.0%), however the blastocyst rate on Day 8 pi was significantly lower (P<0.001) for embryos derived from oocytes matured with PVP40 (16.0%) than for those matured with FBS (22.4%) or fafBSA (22.1%). The rate of TUNEL positive oocytes differed significantly between immature (1.4%) and mature (11.2%) oocytes (P<0.01). Supplements to maturation medium were not related to the incidence of apoptosis in mature oocytes (11.2%) and the rate of oocytes at the second metaphase stage (71.5%). Cumulus cell expansion was reduced by maturation in medium supplemented with PVP40. This macromolecule was also correlated with higher apoptotic index in blastocysts (5.8%) when compared to FBS (3.2%) and fafBSA (3.1%; P<0.001). In conclusion, lower blastocyst rate and elevated apoptotic index in embryos derived from oocytes matured with PVP40 may suggest that synthetic macromolecule provides less balanced environment for oocyte maturation and therefore should be treated with caution.  相似文献   

15.
The effects of FSH, LH, and epidermal growth factor (EGF) on the dynamics of nuclear maturation and subsequent embryo development were examined in pig oocytes cultured either conventionally or after preincubation with cycloheximide (CHX). In conventional culture, FSH or EGF significantly increased the rate of attainment of metaphase II (MII) for both gilt (50.0%+/-4.2% and 54.8%+/-4.3%, respectively; control, 5.8%+/-1.8%; P<0.001) and sow (87.6%+/-3.4% and 78.8%+/-3.9%, respectively; control, 7.8%+/-2.5%; P<0.001) oocytes. Gilt oocytes treated with both FSH and EGF showed an additive response (93.7%+/-2.1%). Treatment with LH had no effect. Preincubation with CHX caused the majority (84-100%) of both gilt and sow oocytes to undergo germinal vesicle breakdown. Compared to those treated with LH and/or EGF (both>80%), fewer FSH-treated oocytes reached metaphase I (43.8%+/-5.3%, P<0.001) by 14 h and MII (48.4%+/-5.9%, P<0.001) by 24 h, although the majority (71%) did mature to MII by 36 h after removal of CHX. After in vitro fertilization, higher proportions of both CHX-pretreated and untreated, FSH-exposed oocytes cleaved (71.3%+/-2.9% and 75.3%+/-3.1%, respectively) compared with those not treated with FSH (37.7%+/-3.0% and 43.0%+/-2.9%, respectively; P<0.001). Pretreatment with CHX significantly increased blastocyst yield for both FSH-treated (32.8%+/-2.0% and 10.3%+/-1.5%, respectively; P<0.001) and untreated (16.7%+/-1.5% and 9.4%+/-1.2%, respectively; P<0.001) oocytes. Polyspermy rates were unaffected. In conclusion, pig oocytes meiotically arrested by CHX before maturation retain and improve their developmental competence. FSH stimulates nuclear maturation but slows meiotic progression.  相似文献   

16.
We have previously reported that the percentage of fertilized oocytes which reached the blastocyst stage by Day 6 after AI with frozen-thawed semen was higher for Belclare (94%) than Suffolk (59%) ewes. This may reflect differences in the timing of fertilization (Experiment 1) or differences in oocyte quality (Experiments 2 and 3). In Experiment 1, oocytes recovered from slaughterhouse ovaries were matured in vitro for 18, 20, 24, 28 or 30 h prior to fertilization and were then cultured in vitro. In Experiment 2, Belclare (n = 69) and Suffolk (n = 71) ewes were laparoscopically inseminated using frozen-thawed semen. Presumptive zygotes were recovered between 23 and 47 h post-insemination and cultured in vitro (grouped by breed). In Experiment 3, immature oocytes from Suffolk and Belclare ewes, were matured, fertilized and cultured in vitro (grouped by breed). Cleavage rate and blastocyst development was assessed. There was no effect of time of fertilization on cleavage rate, however, a lower proportion of cleaved oocytes reached the blastocyst stage after insemination at 30h compared to 24 h (P < 0.001). Ewe breed did not affect cleavage rate of oocytes matured and fertilized in vivo (41+/-9.6 and 47+/-10.1) or in vitro (47+/-9.4 and 52+/-9.4) for Belclare and Suffolk ewes, respectively (P > 0.05; %+/-S.E.). Likewise, ewe breed had no effect on the percentage (+/-S.E.) of cleaved oocytes developing to the blastocyst stage for in vivo (29+/-7.2 and 25+/-7.9) or in vitro matured and fertilized oocytes (29+/-6.1 and 36+/-5.9) from Belclare and Suffolk ewes, respectively (P>0.05). Based on this study oocyte quality does not differ between the breeds and in addition a 4h difference in the timing of fertilization, reflective of the breed difference in the timing of the LH surge in vivo, would not affect early embryo development.  相似文献   

17.
The effects of season (January-March = I; April-June = II; July-September = III; October-December = IV) and ovarian status (freshly ovulated, follicular, luteal, intermediate, or inactive) on the efficiency of the in vitro production of domestic cat embryos were evaluated. Ovaries and testes from cats with access to daylight were collected at local veterinary clinics. A total of 6843 cumulus-oocyte complexes (COCs) were recovered from 363 pairs of ovaries, matured in TCM 199 supplemented with BSA and gonadotropins (IVM), fertilized with epididymal sperm in a medium based on Tyrode albumin lactate pyruvate (IVF), and cultured in synthetic oviduct fluid (SOF) medium supplemented with 10% estrous cow serum (ECS) and essential and nonessential amino acids. The proportion of freshly ovulated, follicular, or luteal ovaries was higher (P < 0.05) in seasons II (64.4%) and III (60.5%) than in seasons I (42.0%) and IV (30.6%). The average number of COCs recovered per donor was not influenced by season. After IVM/IVF, cleavage rates (Day 2) were significantly higher (P < 0.05) in seasons II (mean +/- SEM: 53.1% +/- 1.9%) and III (54.6% +/- 2.8%) than in seasons I (48.4% +/- 1.4%) and IV (44.9% +/- 3.0%). Blastocyst rates on Day 6 were similar in seasons I (25.3% +/- 1.3%), II (28.2% +/- 1.5%), and III (29.6% +/- 2.3%) but were significantly lower (P < 0.01) in season IV (18.6% +/- 2.4%). The corresponding blastocyst rates on Day 8 were 28.9% +/- 1.3%, 33.7% +/- 1.6%, 37.9% +/- 2.3%, and 23.6% +/- 2.6%. In addition, we found a significant effect (P < 0.05) of ovary type; luteal, follicular, and intermediate ovaries yielding a higher proportion of developmentally competent oocytes than did freshly ovulated and inactive ovaries. These data show that the culture system used in our study supports development of IVM/IVF cat oocytes to blastocysts at a higher rate than those obtained with other methods. Although embryos could be produced throughout the year, the efficiency was significantly affected by season and ovary type.  相似文献   

18.
This study was performed to establish an individual bovine oocyte-IVP system using a chemically defined simple medium (mSOFaa containing 1 mg/ml polyvinyl alcohol: PVA) and to investigate the effects of epidermal growth factor (EGF) during oocyte maturation on in vitro maturation, fertilization and embryonic development. Cumulus-oocyte complexes were collected from bovine ovaries and were matured in mSOFaa containing PVA (control medium) supplemented with 0, 1, 10 or 50 ng/ml of EGF. Two further groups (TCM199 and mSOFaa, supplemented with 10% fetal calf serum were also included. In this study, mSOFaa containing PVA were used as a basic medium for fertilization and embryo development in vitro. Experiments were conducted in both group- and individual-IVP systems. In the group-IVP system, the proportion of matured oocytes (MII) in the control medium (62.7% +/- 5.0%) was significantly (p < 0.05) lower than in all other treatments, and in the individual-IVP system, the addition of 1 ng/ml EGF significantly (p < 0.05) increased the maturation rate (1 ng/ml EGF vs control: 76.2% +/- 5.4% vs 57.1% +/- 14.4%). The addition of EGF did not affect the proportions of penetrated and normally fertilized oocytes in either individual- or group-culture systems. In the group-IVP system, no significant difference among treatments was found in the rate of blastocyst formation, whereas in the individual-IVP system the control medium supplemented with 10 ng/ml EGF resulted in a significantly (p < 0.05) higher the rate of blastocyst formation (20.0 +/- 5.2%) than that in the control medium (6.2% +/- 3.5%). These results indicate that bovine oocytes can successfully develop to blastocysts in an individual-IVP system using a single chemically defined medium, and that the group-IVP system also resulted in a similar level of blastocyst formation to that in a standard multiple-media system in our laboratory. The effect of EGF during oocyte maturation medium differed depending on whether embryos were cultured individually or in groups.  相似文献   

19.
Embryos were collected from ewes on Day 6 after estrus (Day 0 = estrus), placed in M2 culture medium, and assigned to 1 of 4 treatment groups. Some embryos were transferred to recipient ewes on Day 6 of their estrous cycle either in pairs (group 1) or singularly (group 2) within 3 h of collection. The remaining embryos were individually cultured for 48 h in an atmosphere of 5% CO2 in humidified air in either synthetic oviduct fluid (SOF) medium (group 3) or SOF containing 1,000 U/ml of recombinant human leukemia inhibitory factor (hLIF) (SOF + hLIF: group 4). These embryos were then transferred to recipient ewes on Day 8 of their estrous cycle. The addition of hLIF to culture medium significantly improved the development of the embryos compared with control embryos prior to transfer (blastocysts hatching from the zona pellucida: group 3 = 16% vs. group 4 = 64%, p less than 0.05; those degenerative: group 3 = 27% vs. group 4 = 9%, p less than 0.05) and the subsequent pregnancy rates of the recipient ewes, receiving a single embryo, at Day 70 of pregnancy (group 3 = 16% vs. group 4 = 50%, p less than 0.05). The pregnancy rate of ewes given embryos cultured for 48 h in SOF + hLIF prior to transfer (50%; group 4) was similar to the group 2 ewes receiving a single embryo soon after collection (52%), but the pregnancy rate for both groups was significantly lower than that for the group 1 ewes receiving two embryos soon after collection (89%: 53% twins, 36% singles; p less than 0.05).  相似文献   

20.
Overall, significantly more antral follicles greater than or equal to 1 mm diameter were present in Romney ewes during anoestrus than in the breeding season (anoestrus, 35 +/- 3 (mean +/- s.e.m.) follicles per ewe, 23 sheep; Day 9-10 of oestrous cycle, 24 +/- 1 follicles per ewe, 22 sheep; P less than 0.01), although the mean numbers of preovulatory-sized follicles (greater than or equal to 5 mm diam.) were similar (anoestrus, 1.3 +/- 0.2 per ewe; oestrous cycle, 1.0 +/- 0.1 per ewe). The ability of ovarian follicles to synthesize oestradiol did not differ between anoestrus and the breeding season as assessed from the levels of extant aromatase enzyme activity in granulosa cells and steroid concentrations in follicular fluid. Although the mean plasma concentration of LH did not differ between anoestrus and the luteal phase of the breeding season, the pattern of LH secretion differed markedly; on Day 9-10 of the oestrous cycle there were significantly more (P less than 0.001) high-amplitude LH peaks (i.e. greater than or equal to 1 ng/ml) in plasma and significantly fewer (P less than 0.001) low amplitude peaks (less than 1 ng/ml) than in anoestrous ewes. Moreover, the mean concentrations of FSH and prolactin were significantly lower during the luteal phase of the cycle than during anoestrus (FSH, P less than 0.05, prolactin, P less than 0.001). It is concluded that, in Romney ewes, the levels of antral follicular activity change throughout the year in synchrony with the circannual patterns of prolactin and day-length. Also, these data support the notion that anovulation during seasonal anoestrus is due to a reduced frequency of high-amplitude LH discharges from the pituitary gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号