首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Partanen 《Histochemistry》1978,57(2):161-175
A study was made of the accumulation of the strongly fluorescent 2-carboxymethyl-6,7-dihydroxy-3,4-dihydroisoquinolinium compound (2-Carb. Me-DIQ) derived from the condensation reaction of dopamine with glyoxylic acid in endocrine cells possessing the capacity to take up and store biogenic monoamine precursors. Thin-layer chromatographic studies of urine showed that 2-Carb. Me-DIQ was metabolized into two strongly fluorescent metabolites, possessing at least one hydroxyl group in the phenol moiety of the molecule, which were excreted in urine together with the parent compound. Histochemical observations, however, indicated that the tissue fluorescence showing maximal emission at 480 nm was due to 2-Carb. Me-DIQ. Generally, the injection of 2-Carb. Me-DIQ induced a strong fluorescence in those tissue components possessing the extraneuronal uptake mechanism of catecholamines. In the endocrine cells strong fluorescence was seen in the pineal glandular cells and in some cells of the pars distalis of the hypophysis, of which some cells also took up DL-5-HTP, as was seen following formaldehyde vapour treatment. No accumulation of 2-Carb. Me-DIQ was observed in the pancreatic islet cells, the C cells of the thyroid gland or the tracheal enterochromaffin-like cells. These findings lead to the conclusion that biogenic monoamines in the cells of the pars distalis of the hypophysis might use the phenolic moiety of the molecule to bind to some intracellular receptor. Thus, the pars distalis cells may have an intracellular binding mechanism for biogenic monoamines that is different from other endocrine cells showing the uptake and storage of biogenic monoamines. On the other hand, the findings gave further support to the suggestion that in the pancreatic islet cells, the thyroidal C cells and the tracheal enterochromaffin-like cells biogenic monoamines are stored by a mechanism in which the basic, positively charged amino group of biogenic monoamines is bound electrostatically to the anionic, negatively charged carboxyl group of a hormone storage granule. The pars distalis cells and the pineal glandular cells seemed to take up amines and amine derivatives in a similar manner. This suggests that in the pars distalis cells, too, biogenic monoamines have an active metabolism and possibly some regulative role in hormone synthesis and/or secretion.  相似文献   

2.
Chromogranins (Cg) and secretogranins (Sg) are acidic proteins localized in the secretory granules of a large variety of endocrine cells collectively named APUD cells (amine precursor uptake and decarboxylation). To examine the possible function of Cg/Sg as amine storage proteins, enteroendocrine cells of the rat gastric antral mucosa, i.e., serotonin-containing enterochromaffin (EC)-cells, gastrin (G)-, and somatostatin (D)-cells, were investigated immunohistochemically in serial semi-thin sections of controls and after intervention in serotonin synthesis. CgA and CgB immunoreactivity was determined semiquantitatively by optical density measurements. Experiments included inhibition of serotonin synthesis by p-chlorophenylalanine (pCPA), exogenous application of the serotonin precursor 5-hydroxytryptophan (5-HTP), and a combination of both treatments. The cellular distribution of Cg and the density of its immunoreactivity were closely related to the primary content of serotonin and the ability to store serotonin after 5-HTP application. Thus, Cg may act as amine-binding proteins in enteroendocrine cells, binding most probably being due to ionic interactions between Cg and the biogenic amines. EC- and G-cells, however, differed in their amine-handling properties and in the response of their Cg immunoreactivity after intervention in serotonin synthesis. We conclude, therefore, that the physiological function of Cg as amine storage proteins is restricted to endocrine cells with an endogenous content of amines. In other endocrine cells, exhibiting only a potential amine production, APUD may be considered as a kind of supravital staining without physiological significance.  相似文献   

3.
Summary A study was made of the accumulation of the strongly fluorescent 2-carboxymethyl-6,7-dihydroxy-3,4-dihydroisoquinolinium compound (2-Carb. Me-DIQ) derived from the condensation reaction of dopamine with glyoxylic acid in endocrine cells possessing the capacity to take up and store biogenic monoamine precursors. Thin-layer chromatographic studies of urine showed that 2-Carb. Me-DIQ was metabolized into two strongly fluorescent metabolites, possessing at least one hydroxyl group in the phenol moiety of the molecule, which were excreted in urine together with the parent compound. Histochemical observations, however, indicated that the tissue fluorescence showing maximal emission at 480 nm was due to 2-Carb. Me-DIQ. Generally, the injection of 2-Carb. Me-DIQ induced a strong fluorescence in those tissue components possessing the extraneuronal uptake mechanism of catecholamines. In the endocrine cells strong fluorescence was seen in the pineal glandular cells and in some cells of the pars distalis of the hypophysis, of which some cells also took up DL-5-HTP, as was seen following formaldehyde vapour treatment. No accumulation of 2-Carb. Me-DIQ was observed in the pancreatic islet cells, the C cells of the thyroid gland or the tracheal enterochromaffin-like cells. These findings lead to the conclusion that biogenic monoamines in the cells of the pars distalis of the hypophysis might use the phenolic moiety of the molecule to bind to some intracellular receptor. Thus, the pars distalis cells may have an intracellular binding mechanism for biogenic monoamines that is different from other endocrine cells showing the uptake and storage of biogenic monoamines On the other hand, the findings gave further support to the suggestion that in the pancreatic islet cells, the thyroidal C cells and the tracheal enterochromaffin-like cells biogenic monoamines are stored by a mechanism in which the basic, positively charged amino group of biogenic monoamines is bound electrostatically to the anionic, negatively charged carboxyl group of a hormone storage granule. The pars distalis cells and the pineal glandular cells seemed to take up amines and amine derivatives in a similar manner. This suggests that in the pars distalis cells, too, biogenic monoamines have an active metabolism and possibly some regulative role in hormone synthesis and/or secretion.This work was supported by grants from the Jalmari and Rauha Ahokas Foundation and the J.K. Paasikivi Foundation  相似文献   

4.
Summary Thyroid parafollicular cells of normocalcemic and vitamin D2-treated rats were investigated by electron microscopy and with the histochemical fluorescence technique of Hillarp and Falck.Administration of high doses of vitamin D2 caused hypercalcemia and an extensive degranulation of the parafollicular cells.The formation and storage of monoamines in granulated and degranulated parafollicular cells was investigated by fluorescence microscopy after injection of monoamine precursors (DOPA, 5-HTP), alone or in combination with Ro 4-4602, nialamide or reserpine.No fluorescence was observed in parafollicular cells of untreated rats. l-DOPA and l-5-HTP (but not the corresponding D-amino acids) were taken up by a process closely linked to the decarboxylation of the amino acids to the corresponding amines (dopamine and 5-hydroxytryptamine). Treatment with vitamin D2 did not seem to affect the formation of amines in the parafollicular cells or the formation and storage of amines in other cell systems investigated. The amine itself (dopamine) was not taken up by the parafollicular cells.In normocalcemic rats, the amine formed was retained in the cytoplasm of the parafollicular cells by a partially reserpine-resistant mechanism. The storage of amines is concluded to occur in association with the calcitonin-containing granules.In parafollicular cells of vitamin D2-treated rats, a certain amount of amine was bound in the cytoplasm in the absence of typical granules. As a considerable amount of calcitonin is known to remain in the thyroid of vitamin D2-treated rats, the present observations may indicate an association between the amine and the polypeptide hormone calcitonin, whether the latter is confined to typical granules or not.The present study was supported by grants B72-12X-3352-02 and B72-14X-2207-06B from the Swedish Medical Research Council and by grants from Magnus Bergwall's Foundation, Gustav and Majen Lundgren's Foundation, Wilhelm and Martina Lundgren's Foundation and from the Faculty of Medicine, University of Göteborg, Sweden. For skilful technical assistance we are indebted to Mrs. Kirsten Collin and Mr. Pär-Anders Larsson.  相似文献   

5.
Summary An ultrastructural study of enterochromaffin-like (ECL) cells in the gastric mucosa of the white-belly opossum Didelphis albiventris (Marsupialia) was carried out. In parallel, histochemical methods were used at the light-microscopical level to demonstrate argentaffin cells, argyrophilic cells, and serotonin- and histamine-immunoreactive elements. Argentaffin and serotonin-immunoreactive cells were scattered, and argyrophilic cells were numerous, within the full thickness of the mucosa. Argyrophilic cell distribution was similar to that of histamine-immunoreactive elements. At the electron-microscopical level, the oxyntic mucosa of D. albiventris presented endocrine cells with secretory granules morphologically similar to those of the ECL cell of eutherian mammals. However, in this marsupial, the ECL cell exhibited a variable mixture of two distinct types of secretory granules: (1) granules with the morphological appearance of the eutherian ECL cell, and (2) granules morphologically similar to those of the eutherian enterochromaffin (EC) cells. Based on this morphological pattern of the ECL cell granules, it is proposed that in the oxyntic mucosa of the opossum D. albiventris, the EC and ECL cells represent distinct steps in the same line of cell differentiation; the ECL cell should also be a site of histamine storage.  相似文献   

6.
This study correlates the fine structure of mouse gastric endocrine cells with their ability to synthesize serotonin (5-HT) from 5-hydroxytryptophan (5-HTP). Mice were sacrificed 2 hr after the intravenous injection of 5-HTP-3H or 5-HT-3H. Their stomachs were processed for light- and electron microscope radioautography in a manner which retained labeled 5-HT while washing out other labeled substances. Stomachs from additional mice were incubated in vitro with 5-HT-3H and processed similarly. All morphologic types of mouse gastric endocrine cells exhibited a similar facility to incorporate exogenous 5-HTP and to convert it to 5-HT which was bound intracellularly. Differences in densities of silver grains observed over endocrine cells suggested that individual endocrine cells indeed varied in their ability to synthesize and/or to bind 5-HT; such variations, however, were not reflected by differences in fine structure, with the exception that endocrine cells with few granules always contained little newly synthesized 5-HT. The newly synthesized 5-HT was associated with the intracellular granules. The gastric endocrine cells were not labeled by exogenous 5-HT-3H, whereas mast cells were labeled by either 5-HT-3H or 5-HTP-3H administration. The findings of the present study support the position that the gastric endocrine cells represent a single cell type, at least in respect to serotonin metabolism—that the argyrophil or argentaffin reactivity of these cells merely reflects their amine content at a given time.  相似文献   

7.
Summary In the oxyntic gland area of the rat stomach the histamine-containing epithelial cells (also referred to as enterochromaffin-like cells because of their morphologic similarity with the 5-hydroxytryptamine-storing enterochromaffin cells) constitute the system of argyrophil cells in this area as previously shown by the combined use of fluorescence and light microscopic techniques. By performing the argyrophil staining reaction directly on ultra-thin sections it could be demonstrated in the electron microscope that the argyrophil cells have features suggesting that they are endocrine. Based on the ultrastructure of their secretory granules at least two such endocrine cell systems—both argyrophil—could be recognized in the oxyntic glands. The silver deposits were accumulated over the secretory granules of both these cell systems.It is well known that after injection of 1-3,4-dihydroxyphenylalanine, the histamine-storing (enterochromaffin-like) cells of the oxyntic glands store also dopamine. Under these conditions the enterochromaffin-like cells stain argentaffin, which has been shown at the light microscopic level. Also this reaction could be performed directly on ultra-thin sections. By electron microscopy it was then established that the two endocrine cell systems of the oxyntic gland area stained argentaffin upon treatment with 1-3,4-dihydroxyphenylalanine, and that the staining was confined to the secretory granules.The results clearly show that the enterochromaffin-like cells of the rat oxyntic gland area (which is devoid of 5-hydroxytryptamine-containing enterochromaffin cells) are identical with cells characterized as endocrine by ultrastructural criteria, and that gastric non-mast-cell histamine occurs in at least two separate systems of enterochromaffin-like cells.  相似文献   

8.
This study describes distrinctive cells with ultrastructural and histochemical features of APUD-type endocrine cells within the tracheal epithelium of human fetuses, newborns and children as well as different animal species. These cells referred to as Kultschitzky cells (K cells) were found to be argyrophilic, but not argentaffin, and are considered analogous to the same type of cells in lung and gastro-intestinal tract. Fluorescence histochemistry demonstrated the presence of intracellular amine within tracheal K cells, but only after in-vitro or in-vivo administration of amine precursor (L-DOPA). Ultrastructurally, these cells are characterized by the presence of numerous cytoplasmic granules (dense core vesicles) which show species related morphologic variations. Two different types of K cells were found in trachea of lamb and armadillo, each type possessing morphologically different dense core vesicles. In human and rabbit tracheas, only one type of K cell was identified. K cells in the trachea are distributed as single cells between other epithelial cells; neuroepithelial bodies such as those found in bronchial mucosa were not identified. Well differentiated K cells were found in tracheas of early human fetuses and throughout gestation, infancy, and childhood. Preservation of K cells in human autopsy material and widespread occurence of these cells in various laboratory animals will permit further studies into the nature and function of tracheobronchial endocrine cells.  相似文献   

9.
Summary The following histological methods, previously proved to be useful in selective light microscopic detection of endocrine cells, were applied to the cat gastrointestinal mucosa: for the identification of biogenic amines, diazonium, ammoniacal silver and xanthydrol methods; for granules identification, methyl green-red acid dyes, toluidine blue, HCl-basic dye, lead-haematoxylin, phosphotungstic haematein and argyrophil methods. Results were compared with those of an extensive electron microscopic investigation.Five types of endocrine cells were identified in the gastric mucosa. Three types were found in the pyloric mucosa: the previously described 5-hydroxytryptamine-producing enterochromaffin cell, the gastrin producing G cell and a cell with an unknown function, labelled in this paper the X cell. Four types were found in the fundic mucosa: enterochromaffin cells (rarely observed), enterochromaffin-like cells secreting a 5-hydroxyindole but showing some ultrastructural and staining differences from true enterochromaffin cells (numerously present), A-like cells (few), resembling A cells of the pancreatic islets, and X cells, resembling those in the pyloric mucosa.In the intestinal mucosa, at least three endocrine cell types were distinguished in its duodenal part: enterochromaffin cells and two types of polypeptide-producing cells — some with smaller granules (S cells) and others with larger granules (L cells). Only two types were found in the mucosa of terminal ileum: enterochromaffin cells and numerously-occurring cells with large granules resembling in part duodenal L cells. The possibility of a relationship between S and L cells and the production respectively of the intestinal hormones secretin and cholecystokinin-pancreozymin was discussed.This investigation was supported by a grant N. 115/1139/0/4715 of the Italian Consiglio Nazionale delle Ricerche.  相似文献   

10.
Summary The ultimobranchial gland (UBG) is a rich source of the polypeptide hormone calcitonin, which is present in a cell system analogous to the mammalian parafollicular cells (C cells) of the thyroid gland. Both types of cells are argyrophilic and, ultrastructurally, they are furnished with numerous electron-dense granules considered to contain the hormone. In the chicken, the main cells of the UBG contain large amounts of dopamine. The possible functional relationship between this amine and the hormone has been studied by a combination of fluorescence and electron microscopy of the UBG from chickens treated with vitamin D2. This stimulus produced a depletion of dopamine and a pronounced degranulation of the UBG cells, concomitant with a loss in their argyrophilia. Administration of l-3,4-dihydroxyphenylalanine (l-DOPA) to vitamin D2-treated animals was followed by a reappearance of dopamine in the cytoplasm of the UBG cells, whereas electron-dense granules or argyrophilia were not restored. It is suggested that this concomitant depletion of dopamine and the secretory granules from the UBG cells reflects a participation of the amine in the secretion of the polypeptide hormone.  相似文献   

11.
The endocrine cells of the pyloric glands of adult ox   总被引:1,自引:0,他引:1  
As part of a project to identify the endocrine cells ("EC" and "APUD" series) of the gastroenteric apparatus of ruminants, the ultrastructure of the mucosa of the pyloric glands of adult ox was studied morphologically and cytochemically, in parallel with a light microscope histochemical analysis. The results show that: the "EC" cells (producing 5-HT) are recognizable by their secretory granules which are heavily osmiophilic, argentaffin ("Masson") and argyrophilic ("Grimelius"). A further distinction is possible on the basis of their morphological features: the "EC" cells of the gastric type (which belong to the "ECn" group) contain granules fairly homogeneous in shape and size, while the "EC" cells of the intestinal type (or "EC1") show granules which are more pleiomorphic and variable in size. Of particular interest is the presence in some cells of granules typical of the "EC" cells of the intestinal type, in the vicinity of a few others, which appear quite similar to those of the adjoining exocrine cells; the "G" cells (gastrin producing) contain medium sized granules, which are unreactive to "Masson" and poorly argyrophilic. Their morphology is rather diverse; some of them (these are the "typical" cells) have a granular and weakly electron dense content, others (which we consider "atypical") show a homogeneous and heavily osmiophilic core, with an eccentrical empty area. Also present are granules whose appearance is intermediate and empty vesicles; the "D cells" (somatostatin producting) show round, medium sized granules which have a granular, moderately osmiophilic core, tightly encircled by the membrane. These granules are unreactive to "Masson" and to "Grimelius"; the "D1" cells (whose function is yet unclear) contain small, round granules whose core is variously but discretely electron dense and not always homogeneous; they are unreactive to "Masson" and fairly argyrophilic. These granules may be numerous and packed, or scarce; in this latter instance the few granules are intermingled with variously running tufts of parallel filaments, thus resembling the "P" cells, whose function is still undefined. These data show therefore that the types of endocrine cells we have identified in the pyloric glands of adult ox correspond to those described in other mammals; "X" and "F" or "PP" cell appear to be lacking.  相似文献   

12.
In order to identify the endocrine cell types in various parts of the Ruminant gut, we have applied ultrastructural, both morphological and cytochemical, techniques, in parallel to the histochemical ones, to study the rectal mucosa of the adult Ox. In these studies we show that: "EC" cells, of the intestinal type, contain predominantly pleiomorphic granules, which are very electron dense and heavily reactive to "Masson" and "Grimelius" methods; "L" cells are recognizable by their numerous granules, which are fairly homogeneous in shape and osmiophilia. They do not react with "Masson" and are weak or negative to Grimelius s reaction. These granules occur near to others that are less dense, unreactive to "Masson", and that contain an argyrophilic matrix, with an eccentric electron dense core, which does not react with silver; "F-like" cells contain granules which are variable in shape, size and osmiophilia. They are unreactive to "Masson" and weak or unreactive to Grimelius silver; "H" cells contain few, small and uniformly osmiophilic granules. These are unreactive to "Masson" and uniformly reactive to "Grimelius". Our data suggest that the morphology, frequency and distribution of the cell types we have identified in the mucosa of the bovine rectum correspond with those reported in large intestine and rectum of Monogastrics, as by other authors described.  相似文献   

13.
Uptake, distribution and turnover of 5-Hydroxytryptamine (5-HT) was studied by cytofluorometric analysis of whole mast cells and individual granules. Injection of 5-HT as well as 5-Hydroxytryptophan (5-HTP) intraperitoneally or subcutaneously resulted in a parallel uptake of 5-HT in cells and granules. Intraperitoneal injections of 5-HT in such small quantities that may be available under physiological conditions resulted in an increase in fluorescence intensity of the mast cells, indicating a very efficient uptake mechanism for 5-HT in vivo. Much larger doses of 5-HTP were required to obtain a corresponding uptake of 5-HT in the mast cells. The 5-HT was rather rapidly taken up in the granules and eliminated very slowly, at the same rate both from granules and mast cells. The low elimination rate confirms our previous findings that the turnover of 5-HT is much lower in mast cells than in other amine containing cell systems. The combination of an extremely efficient, rapid uptake of 5-HT with a slow elimination suggests a specific function for mast cells in the regulation of free amine concentrations in tissues.  相似文献   

14.
Adult Syrian hamsters were given a subcutaneous injection of reserpine 3 days before an intraperitoneal injection of 3H-3,4 dihydroxyphenylalanine or 3H-5, hydroxytryptophan and the carotid bodies were subsequently prepared for electron microscopic radioautography. Other Syrian hamsters were given a subcutaneous injection of reserpine and the carotid bodies were subjected to a sensitive cytochemical test for the detection of unsubstituted amines. These studies were made to determine whether the labeled amine precursors were incorporated into the cells and to see whether the parenchymal cells were affected by reserpine treatment. Material from hamsters treated first with reserpine and subsequently injected with 3H-3,4 dihydroxyphenylalanine or 3H-5, hydroxytryptophan exhibited reduced grains of silver over the cells which were associated mainly with the dense cores of the cytoplasmic granules. These studies offer evidence that the granules of the carotid body incorporate catecholamine and indolamine precursors. Material from hamsters incubated for the presence of unsubstituted amines gave a positive reaction (opaque cytoplasmic granules) for catecholamines but not for indolamines. The latter substances may not be present in quantities sufficient to register a positive reaction in the cytochemical test. The opaque granules, indicative of the presence of catecholamines, decreased in density after reserpine treatment. 5 days after one reserpine injection the granules had regained opacity and were comparable to those seen in the control cells.  相似文献   

15.
Summary Uptake, distribution and turnover of 5-Hydroxytryptamine (5-HT) was studied by cytofluorometric analysis of whole mast cells and individual granules. Injection of 5-HT as well as 5-Hydroxytryptophan (5-HTP) intraperitoneally or subcutaneously resulted in a parallel uptake of 5-HT in cells and granules. Intraperitoneal injections of 5-HT in such small quantities that may be available under physiological conditions resulted in an increase in fluorescence intensity of the mast cells, indicating a very efficient uptake mechanism for 5-HT in vivo. Much larger doses of 5-HTP were required to obtain a corresponding uptake of 5-HT in the mast cells. The 5-HT was rather rapidly taken up in the granules and eliminated very slowly, at the same rate both from granules and mast cells. The low elimination rate confirms our previous findings that the turnover of 5-HT is much lower in mast cells than in other amine containing cell systems. The combination of an extremely efficient, rapid uptake of 5-HT with a slow elimination suggests a specific function for mast cells in the regulation of free amine concentrations in tissues.Supported by grants from the Swedish Medical Research Council, Project no 2235  相似文献   

16.
Adrenomedullary cells, after fixation with OsO4, are filled with well formed granules which are considered to represent their catechol amine content. The submicroscopic appearance of these cells was studied in reserpine-treated rats during the late phase of catechol amine depletion and during the period of its restoration. At 3 days after the beginning of reserpine treatment, the granules appeared to be emptied of their content and small vesicles containing scattered, dense deposits of, presumably, catechol amines began to be seen. At 9 days after the beginning of treatment, these deposits had already become granules and the cells had attained a completely normal appearance. The submicroscopic structure of the adrenomedullary cells of rats pretreated with iproniazid (before reserpine), in which a complete inhibition of monoamine oxidase activity had thus been obtained, was similar to that seen in non-treated animals. In numerous cases, however, some characteristic features were noted: the sacs which usually contained a dense granule of catechol amines appeared swollen and many fine granules could be seen around them; the latter were dispersed in a way suggesting that they may represent a partial breakdown of the large granules which, under the inhibitory action of iproniazid, do not release the catechol amines contained within them.  相似文献   

17.
Amine-containing cells in the tracheal epithelium are typically of the small-granule type (diameter approximately 100 nm). However, in the rat, another amine-containing cell type has been identified that possesses the amine-handling features of the APUD-series of cells (amine precursor uptake and decarboxylation) but not the ultrastructural characteristics. It has been postulated that these cells may be related to cutaneous melanocytes. In this study, fluorescent cells were present in the laryngeal and tracheal epithelial lining of adult Sprague-Dawley rats following freeze-drying and exposure to formaldehyde vapor (FIF or formaldehyde-induced fluorescence). Microspectrofluorimetry revealed an emission maximum at 493 nm. The excitation maximum could not be calculated but appeared to be around or below 350 nm (to record spectra below requires the use of quartz optics). Yellow fluorescence also emanated from serotonin-containing mast cells (excitation and emission maxima: 401/515 nm). Tracheal segments processed according to the aqueous formaldehyde ( AFIF ) technique, for the demonstration of 5- hydroxytryptophan (5-HTP) or serotonin (5-HT), failed to identify fluorescent cells in the epithelial lining even though connective-tissue mast cells were evident. Subsequent treatment of AFIF -fixed sections with formaldehyde and HCl vapors ( AFIF -HCl) resulted in the formation of a fluorogenic compound within numerous cells in the tracheal lining (455/537 nm). This spectral shift and increase in intensity of fluorescence following acidification are characteristic for standards and/or cells that contain tryptamine, tryptophan, or peptides with NH2-terminal tryptophan and are markedly different from microspectrofluorimetric data reported for the phenylethylamines or serotonin. It is therefore postulated that these cells contain a closely related beta-(3-indolyl) ethylamine-like compound, serotonin excluded. The morphology of the fluorescent cells was similar when prepared according to the FIF or AFIF -HCl techniques. Conjunctive staining, the examination of a single section first by fluorescence microscopy and subsequently by other histochemical and cytochemical methods, demonstrated that the fluorescent granules were also methylene blue, alcian blue, periodic-acid Schiff, and ferric- fericyanide positive. Subsequent correlative electron microscopic examination of Epon-embedded AFIF -HCl-treated tracheal sections demonstrated that these amine-containing cells were globule leukocytes.  相似文献   

18.
Endothelial cells store the multimeric adhesive glycoprotein von Willebrand factor (vWf), which promotes the formation of a platelet plug at the site of vessel injury. To investigate the packaging of vWf into the granules called Weibel-Palade bodies, we expressed pro-vWf cDNA and cDNA lacking the prosequence in a variety of cell lines. Storage granules formed only in cells that contain a regulated pathway of secretion. Furthermore, packaging required the prosequence. Pro-vWf, lacking the C-terminal region involved in interchain disulfide bonding, formed granules. We conclude that the signal for storage is universal in that an adhesive glycoprotein can be stored by a hormone-secreting cell; the storage of vWf is independent of its covalent multimeric structure; the unusual rod shape of Weibel-Palade bodies is due to vWf; and the vWf propolypeptide is necessary for the formation of vWf storage granules.  相似文献   

19.
Pick U  Zeelon O  Weiss M 《Plant physiology》1991,97(3):1226-1233
Amines at alkaline pH induce in cells of the halotolerant alga Dunaliella a transient stress that is manifested by a drop in ATP and an increase of cytoplasmic pH. As much as 300 millimolar NH4+ are taken up by the cells at pH 9. The uptake is not associated with gross changes in volume and is accompanied by K+ efflux. Most of the amine is not metabolized, and can be released by external acidification. Recovery of the cells from the amine-induced stress occurs within 30 to 60 minutes and is accompanied by massive swelling of vacuoles and by release of the fluorescent dye atebrin from these vacuoles, suggesting that amines are compartmentalized into acidic vacuoles. The time course of ammonia uptake into Dunaliella cells is biphasic—a rapid influx, associated with cytoplasmic alkalinization, followed by a temperature-dependent slow uptake phase, which is correlated with recovery of cellular ATP and cytoplasmic pH. The dependence of amine uptake on external pH indicates that it diffuses into the cells in the free amine form. Studies with lysed cell preparations, in which vacuoles become exposed but retain their capacity to accumulate amines, indicate that the permeability of the vacuolar membrane to amines is much higher than that of the plasma membrane. The results can be retionalized by assuming that the initial amine accumulation, which leads to rapid vacuolar alkalinization, activates metabolic reactions that further increase the capacity of the vacuoles to sequester most of the amine from the cytoplasm. The results indicate that acidic vacuoles in Dunaliella serve as a high-capacity buffering system for amines, and as a safeguard against cytoplasmic alkalinization and uncoupling of photosynthesis.  相似文献   

20.
Histamine (HA), contained in the enterochromaffin-like (ECL) cells of the gastric mucosa in animals, plays an important role in gastric acid secretion, although methods for its exact morphological localization are still lacking. We used a pre-embedding indirect immunoperoxidase approach to define the fine structural localization of HA in rat oxyntic mucosa that was fixed with a glutaraldehyde-based fixative and HA monoclonal antibodies (MAbs AHA-1 and 2). Transmission electron microscopy showed that the peroxidase endproduct not only was concentrated in the cores of cytoplasmic granules but also was distributed to a high degree in the cytoplasm peripheral to the granules of the ECL cells. These results suggest that in ECL cells HA is enzymatically synthesized in the cytoplasm, then is transported and stored in the cores of the granules before its release from the basal lamina. The present HA immunoelectron microscopic method with MAbs would be applicable more generally to the ultrastructural identification of HA-containing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号