首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Two alternative pathways for methionine biosynthesis are known in Corynebacterium glutamicum: one involving transsulfuration (mediated by metB and metC) and the other involving direct sulthydrylation (mediated by metY). In this study, MetB (cystathionine gamma-synthase) and MetY (O-acetylhomoserine sulfhydrylase) from C. glutamicum were purified to homogeneity and the biochemical parameters were compared to assess the functional and evolutionary importance of each pathway. The molecular masses of the native MetB and MetY proteins were measured to be approximately 170 and 280 kDa, respectively, showing that MetB was a homotetramer of 40-kDa subunits and MetY was a homohexamer of 45-kDa subunits. The Km values for the O-acetylhomoserine catalysis effected by MetB and MetY were 3.9 and 6.4 mM, and the maximum catalysis rates were 7.4 (kcat = 21 s(-1)) and 6.0 (kcat=28 s(-1)) micromol mg(-1) min(-1), respectively. This suggests that both MetB and MetY can be comparably active in vivo. Nevertheless, the Km value for sulfide ions by MetY was 8.6 mM, which was too high, considering the physiological condition. Moreover, MetB was active at a broad range of temperatures (30 and 65 degrees C) and pH (6.5 and 10.0), as compared with MetY, which was active in a range from 30 to 45 degrees C and at pH values from 7.0 to 8.5. In addition, MetY was inhibited by methionine, but MetB was not. These biochemical data may provide insight on the role of the parallel pathways of methionine biosynthesis in C. glutamicum with regard to cell physiology and evolution.  相似文献   

5.
6.
Enzyme derepression and feedback inhibition of the first enzyme are the regulatory mechanisms demonstrated for the tryptophan pathway in Saccharomyces cerevisiae. The relative contributions of the two mechanisms to the control of the flux through the pathway in vivo were analyzed by (i) measuring feedback inhibition of anthranilate synthase in vivo, (ii) determining the effect of regulatory mutations on the level of the tryptophan pool and the flux through the pathway, and (iii) varying the gene dose of individual enzymes of the pathway at the tetraploid level. We conclude that the flux through the pathway is adjusted to the rate of protein synthesis by means of feedback inhibition of the first enzyme by the end product, tryptophan. The synthesis of the tryptophan enzymes could not be repressed below a basal level by tryptophan supplementation of the media. The enzymes are present in excess. Increasing or lowering the concentration of individual enzymes had no noticeable influencing on the overall flux to tryptophan. The uninhibited capacity of the pathway could be observed both upon relieving feedback inhibition by tryptophan limitation and in feedback-insensitive mutants. It exceeded the rate of consumption of the amino acid on minimal medium by a factor of three. Tryptophan limitation caused derepression of four of the five tryptophan enzymes and, as a consequence, led to a further increase in the capacity of the pathway. However, because of the large reserve capacity of the "repressed" pathway, tryptophan limitation could not be imposed on wild-type cells without resorting to the use of analogs. Our results, therefore, suggest that derepression does not serve as an instrument for the specific regulation of the flux through the tryptophan pathway.  相似文献   

7.
Rat hepatocytes have been studied in suspension culture for 10-h periods. Levels of extractable lactate dehydrogenase (LDH) have been measured in these hepatocytes at hourly intervals in order to note the balance between biosynthesis and degradation of this enzyme. Newly synthesized LDH has been measured by following the rate of incorporation of [3H]leucine into radiochemically pure LDH of high specific catalytic activity as isolated by a rapid affinity chromatographic procedure. The effects of the addition of physiological concentrations of the following hormones at the beginning of 10-h culture periods immediately following preparation of the hepatocytes by the collagen perfusion procedure have been recorded. The hormones triiodothyronine (T3), insulin, glucagon, and dexamethasone have been added singly or in combination. The culture medium has supplied variable amounts of these hormones in the 10% of fetal calf (or other) serum added, and the hepatocytes themselves have provided intracellular amounts of hormones. In addition to the added hormones, N6,O2'-dibutyryl cyclic AMP (Bt2cAMP) has also been studied. Control suspensions of hepatocytes show reproducible initial levels of extractable LDH which are maintained or slightly increased during 10 h. Such control systems also incorporate [3H]leucine into total protein and into highly purified LDH at reproducible rates during 10 h of incubation. The effects of added hormones on LDH lavels are as follows: (a) T3 causes about a 2-fold increase in LDH at 7 to 8 h in hepatocytes from young adult animals, an effect which is lowered in either younger or older animals or in thyroidectomized animals. (b) Insulin leads to a similar increase in LDH at 5 to 6 h and a falling off at 8 to 10 h. (c) Glucagon also causes an approximate doubling of the amount of extractable LDH during a 10-doubling of the amount of extractable LDH during a 10-h period. (d) Dexamethasone does not produce an increase. (e) Bt2-cAMP produces an effect indistinguishable from that of glucagon. Paired combinations of these hormones fail to produce an additive response in any case. The combinations of T3 plus dexamethaseon and insulin plus dexamethasone lead to significant reductions in levels of extractable LDH when compared to the single hormone effects cited above. With respect to rates of synthesis of total protein as measured by [3H]leucine incorporation, only glucagon, glucagon plus Bt2-cAMP, glucagon plus insulin, T3 plus Bt2cAMP, and T3 plus insulin produce significant increases during a 10-h period. However, when [3H]leucine incorporation into highly purified LDH is measured as an index of LDH biosynthesis, T3, insulin, and glucagon consistently increase the biosynthetic rates during a 10-h period. Bt2cAMP produces a smaller increase. Dexamethasone fails to produce any significant change when compared to controls. Paired combinations of hormones again do not produce any additive effect on LDH biosynthesis when the hormone producing the higher level is taken as the reference...  相似文献   

8.
3-Aminobenzamide (3AB), a potent inhibitor of poly(ADP-ribose) polymerase, induces cytotoxicity and cell cycle delays in exposed cells. 3AB has been reported to inhibit de novo nucleotide synthesis in human lymphoblasts. To determine if the 3AB-mediated effects are related to this inhibition of DNA synthesis, cytotoxicity and cell cycle progression in human lymphoblastoid cell lines, proficient or deficient in salvage nucleotide synthesis pathways, were determined after exposures to 3AB. In addition, changes in cell cycle progression were followed after treatment with 3-aminobenzoic acid (ABA), a nonactive analog of 3AB, and 5-methylnicotinamide (5MN), a less potent inhibitor of poly(ADP-ribose) synthesis. All three lines responded similarly to the different treatments. Cells deficient in salvage nucleotide synthesis pathways were no more sensitive to the cytotoxic or cell cycle effects of 3AB, ABA or 5MN. Thus, effects on nucleotide synthesis are not responsible for either cytotoxicity or the retarded cell growth found in human lymphoblastoid cells exposed to inhibitors of poly(ADP-ribose) synthesis.  相似文献   

9.
Both polyamines and methionine derivatives are nitrogen compounds directly related to the regulation of gene expression. In silico predictions and experimental evidence suggest a cross-talk between polyamine and methionine metabolism in mammalian tissues. Since liver is the major organ that controls nitrogen metabolism of the whole organism, it is the best tissue to further test this hypothesis in vivo. In this work, we studied the effects of the chronic administration of a methionine-supplemented diet (0.5% Met in drinking water for 5 months) on the liver of mice (designated as MET-mice). Metabolic and proteomic approaches were performed and the data obtained were subjected to biocomputational analysis. Results showed that a supplemental methionine intake can indeed regulate biogenic amine metabolism in an in vivo model by multiple mechanisms including metabolic regulation and specific gene demethylation. Furthermore, putative systemic effects were investigated by molecular and cellular biology methods. Among other results, altered expression levels of multiple inflammation and cell proliferation/death balance markers were found and macrophage activation was observed. Overall, the results presented here will be of interest across a variety of biomedical disciplines, including nutrition, orphan diseases, immunology and oncology.  相似文献   

10.
The three-dimensional structure of the dehydrogenase-cyclohydrolase bifunctional domain of the human trifunctional enzyme indicates that Arg-173 and Ser-197 are within 3 A of the 2'-phosphate of bound NADP. Site-directed mutagenesis confirms that Arg-173 is essential for efficient binding and cannot be substituted by lysine. R173A and R173K have detectable dehydrogenase activity, but the K(m) values for NADP are increased by at least 500-fold. The S197A mutant has a K(m) for NADP that is only 20-fold higher than wild-type, indicating that it plays a supporting role. Forward and reverse cyclohydrolase activities of all the mutants were unchanged, except that the reverse cyclohydrolase activity of mutants that bind NADP poorly, or lack Ser-197, cannot be stimulated by 2',5'-ADP. The 50% channeling efficiency in the forward direction is not improved by the addition of exogenous NADPH and cannot be explained by premature dissociation of the dinucleotide from the ternary complex. As well, channeling is unaffected in mutants that exhibit a wide range of dinucleotide binding. Given that dinucleotide binding is unrelated to substrate channeling efficiency in the D/C domain, we propose that the difference in forward and reverse channeling efficiencies can be explained solely by the movement of the methenylH(4)folate between two overlapping subsites to which it has different binding affinities.  相似文献   

11.
Nineteen mutants of Salmonella typhimurium responding to either cysteine or methionine (cym) have been identified amongst cysteine (cys) and methionine (met) auxotrophs. Their growth responses to known intermediates in the related pathways of cysteine and methionine biosynthesis and complementation patterns in abortive transduction tests divided the mutants into six groups. Results of conjugation, cotransduction and deletion mapping experiments substantiated these groups, each of which carried a lesion within known cys genes. Enzyme assays on cym mutants from five of the six groups confirmed their cys gene deficiencies. Growth response and enzyme assay data were not consistent with mutants being leaky cys mutants (spared by methionine). None of eight cym mutants tested were able to convert [35S]methionine into [35S]cysteine. Selenate specifically inhibits the early enzymes of cysteine synthesis. In cym mutants this inhibition was relieved by cysteine but not by methionine, indicating that cym mutants require active cys enzymes for growth on methionine. There was evidence that methionine stimulated in vivo activity of cys enzymes in a cym mutant. Resistance to inhibition by 1,2,4-triazole results in reduced levels of the O-acetyl serine sulphydrylase. In cym mutants triazole resistance gave unstable suppression of the cym phenotype. Cym mutants may result from mutation in regulatory regions common to each of the cys genes, with the precise role of methionine as yet unknown.  相似文献   

12.
An extensive computer-simulation study is performed on a simple but general molecular model recently proposed (J?rgensen et al. (1991) Biochem. Biophys. Acta 1062, 277-238) to describe foreign molecules interacting with lipid bilayers. The model is a multi-state lattice model of the main bilayer transition in which the foreign molecules are assumed to intercalate at interstitial lattice positions. Specific as well as non-specific interactions between the foreign molecules and the lipid acyl chains are considered. Particular attention is paid to the fluctuating properties of the membrane and how the presence of the foreign molecules modulates these fluctuations in the transition region. By means of computer-stimulation techniques, a detailed account is given of the macroscopic as well as microscopic consequences of the fluctuations. The macroscopic consequences of the fluctuations are seen in the thermal anomalies of the specific heat and the passive trans-membrane permeability. Microscopically, the fluctuations manifest themselves in lipid-domain formation in the transition region which implies an effective dynamic membrane heterogeneity. Within the model it is found that certain anaesthetics and insecticides which are characterised by specific interactions with the lipids have a strong effect on the heterogeneity of the membrane inducing regions of locally very high concentration of the foreign molecules. This leads to a broadening of the specific heat peak and a maximum in the membrane/water partition coefficient. These results are in accordance with available experimental data for volatile general anaesthetics like halothane, local anaesthetics like cocain derivatives, and insecticides like lindane.  相似文献   

13.
Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR), riboflavin-dependent enzymes, participate in homocysteine metabolism. Reported effects of riboflavin status on the association between the MTHFR 677C>T polymorphism and homocysteine vary, and the effects of the MTRR 66A>G or MTRR 524C>T polymorphisms on homocysteine are unclear. We tested the hypothesis that the effects of the MTHFR 677C>T, MTRR 66A>G and MTRR 524C>T polymorphisms on fasting plasma total homocysteine (tHcy) depend on riboflavin status (erythrocyte glutathionine reductase activation coefficient, optimum: <1.2; marginally deficient: 1.2–1.4; deficient: ≥1.4) in 771 adults aged 18–75 years. MTHFR 677T allele carriers with middle or low tertile plasma folate (<14.7 nmol/L) had 8.2 % higher tHcy compared to the 677CC genotype (p < 0.01). This effect was eliminated when riboflavin status was optimal (p for interaction: 0.048). In the lowest cobalamin quartile (≤273 pmol/L), riboflavin status modifies the relationship between the MTRR 66 A>G polymorphism and tHcy (p for interaction: 0.034). tHcy was 6.6 % higher in MTRR 66G allele carriers compared to the 66AA genotype with marginally deficient or optimal riboflavin status, but there was no difference when riboflavin status was deficient (p for interaction: 0.059). tHcy was 13.7 % higher in MTRR 524T allele carriers compared to the 524CC genotype when cobalamin status was low (p < 0.01), but no difference was observed when we stratified by riboflavin status. The effect of the MTHFR 677C>T polymorphism on tHcy depends on riboflavin status, that of the MTRR 66A>G polymorphism on cobalamin and riboflavin status and that of the MTRR 524C>T polymorphism on cobalamin status.  相似文献   

14.
Cadmium is known as to be a potent pulmonary carcinogen to human beings and to induce prostate tumor. The sequestration of cadmium, an extremely toxic element to living cells, which is performed by biological ligands such as amino acids, peptides, proteins or enzymes is important to minimize its participation in such deleterious processes. The synthesis of metallothionein is induced by a wide range of metals, in which cadmium is a particularly potent inducer. This protein is usually associated with cadmium exposure in man. Because metallothioneins may act as a detoxification agent for cadmium and chelation involves sulfur donor atoms, we administered only cadmium, cysteine, or methionine to rats and also each of these S-amino acids together with cadmium and measured the production of superoxide radicals derived from the conversion of xanthine dehydrogenase to xanthine oxidase. It could be seen in this work that the presence of cadmium enhances this conversion. However, its inoculation with cysteine or methionine almost completely diminishes this effect and this can be the result of the fact that these amino acids complex Cd(II). Thus, these compounds can be a model of the action of metallothionein, removing cadmium from circulation and preventing its deleterious effect.  相似文献   

15.
In this study, we examine the effects of binding to protein upon nucleotide conformation, by the comparison of X-ray crystal structures of free and protein-bound nucleotides. A dataset of structurally non-homologous protein-nucleotide complexes was derived from the Brookhaven Protein Data Bank by a novel protocol of dual sequential and structural alignments, and a dataset of native nucleotide structures was obtained from the Cambridge Structural Database. The nucleotide torsion angles and sugar puckers, which describe nucleotide conformation, were analysed in both datasets and compared. Differences between them are described and discussed. Overall, the nucleotides were found to bind in low energy conformations, not significantly different from their 'free' conformations except that they adopted an extended conformation in preference to the 'closed' structure predominantly observed by free nucleotide. The archetypal conformation of a protein-bound nucleotide is derived from these observations.  相似文献   

16.
The activity and regulation of alpha-aminoadipate reductase in three Penicillium chrysogenum strains (Q176, D6/1014/A, and P2), producing different amounts of penicillin, were studied. The enzyme exhibited decreasing affinity for alpha-aminoadipate with increasing capacity of the respective strain to produce penicillin. The enzyme from all three strains was inhibited by L-lysine, and the enzyme from the lowest producer, Q176, was least sensitive. Between pH 7.5 and 6.5, inhibition of alpha-aminoadipate reductase by L-lysine was pH dependent, being more pronounced at lower pH. The highest producer strain, P2, displayed the lowest alpha-aminoadipate reductase activity at pH 7.0. In Q176, the addition of 0.5-1 mM of exogenous lysine stimulated penicillin formation, whereas the same concentration was ineffective or inhibitory with strains D6/1014/A and P2. The addition of higher (up to 5 mM) lysine concentrations inhibited penicillin production in all three strains. In mutants of P. chrysogenum D6/1014/A, selected for resistance to 20 mM alpha-aminoadipate, highest penicillin production was observed in those strains whose alpha-aminoadipate reductase was most strongly inhibited by L-lysine. The results support the conclusion that the in vivo activity of alpha-aminoadipate reductase from superior penicillin producer strains of P. chrysogenum is more strongly inhibited by lysine, and that this is related to their ability to accumulate increased amounts of alpha-aminoadipate, and hence penicillin.  相似文献   

17.
18.
19.
Drosophila alcohol dehydrogenase (DADH) is an NAD+-dependent enzyme that catalyzes the oxidation of alcohols to aldehydes/ketones and that is also able to further oxidize aldehydes to their corresponding carboxylic acids. The structure of the ternary enzyme-NADH-acetate complex of the slow alleloform of Drosophila melanogaster ADH (DmADH-S) was solved at 1.6 A resolution by X-ray crystallography. The coenzyme stereochemistry of the aldehyde dismutation reaction showed that the obtained enzyme-NADH-acetate complex reflects a productive ternary complex although no enzymatic reaction occurs. The stereochemistry of the acetate binding in the bifurcated substrate-binding site, along with previous stereochemical studies of aldehyde reduction and alcohol oxidation shows that the methyl group of the aldehyde in the reduction reaction binds to the R1 and in the oxidation reaction to the R2 sub-site. NMR studies along with previous kinetic studies show that the formed acetaldehyde intermediate in the oxidation of ethanol to acetate leaves the substrate site prior to the reduced coenzyme, and then binds to the newly formed enzyme-NAD+ complex. Here, we compare the three-dimensional structure of D.melanogaster ADH-S and a previous theoretically built model, evaluate the differences with the crystal structures of five Drosophila lebanonensis ADHs in numerous complexed forms that explain the substrate specificity as well as subtle kinetic differences between these two enzymes based on their crystal structures. We also re-examine the electrostatic influence of charged residues on the surface of the protein on the catalytic efficiency of the enzyme.  相似文献   

20.
Glenn G  van der Geer P 《FEBS letters》2007,581(28):5377-5381
The CSF-1 receptor is a protein-tyrosine kinase that has been shown to undergo regulated intramembrane proteolysis, or RIPping. Here, we have compared receptor downregulation and RIPping in response to CSF-1 and TPA. Our studies show that CSF-1 is a relatively poor inducer of RIPping and that CSF-1-induced receptor downregulation is largely independent of RIPping. TPA is a strong inducer of RIPping and TPA-induced receptor downregulation is mediated by RIPping. We further found that RIPping is dependent on TACE or a TACE-like protease, that CSF-1 and TPA use independent pathways to initiate RIPping, and that the intracellular domain is targeted for degradation through ubiquitination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号